



2013 Trial Examination

# FORM VI

## MATHEMATICS 2 UNIT

Thursday 1st August 2013

### General Instructions

- Reading time — 5 minutes
- Writing time — 3 hours
- Write using black or blue pen.
- Board-approved calculators and templates may be used.
- A list of standard integrals is provided at the end of the examination paper.

### Total — 100 Marks

- All questions may be attempted.

### Section I — 10 Marks

- Questions 1–10 are of equal value.
- Record your solutions to the multiple choice on the sheet provided.

### Section II — 90 Marks

- Questions 11–16 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

### Collection

- Write your candidate number on each booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single well-ordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place your multiple choice answer sheet inside the answer booklet for Question Eleven.
- Write your candidate number on this question paper and submit it with your answers.

### Checklist

- SGS booklets — 6 per boy
- Multiple choice answer sheet
- Candidature — 98 boys

Examiner  
BDD

**SECTION I - Multiple Choice**

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

---

**QUESTION ONE**

The value of  $\int_0^2 (6x^2 + 1) dx$  is:

- (A) 17
- (B) 18
- (C) 24
- (D) 66

**QUESTION TWO**

The line intersecting the  $x$ -axis at  $x = -1$  and passing through the point  $A(1, -4)$  is represented by which of the following equations?

- (A)  $x + 2y - 1 = 0$
- (B)  $x + 2y + 1 = 0$
- (C)  $2x - y - 2 = 0$
- (D)  $2x + y + 2 = 0$

**QUESTION THREE**

The quadratic equation  $2x^2 + 12x - 9 = 0$  has roots  $\alpha$  and  $\beta$ . The value of  $\alpha^2\beta + \alpha\beta^2$  is:

- (A) -108
- (B) -27
- (C) 27
- (D) 108

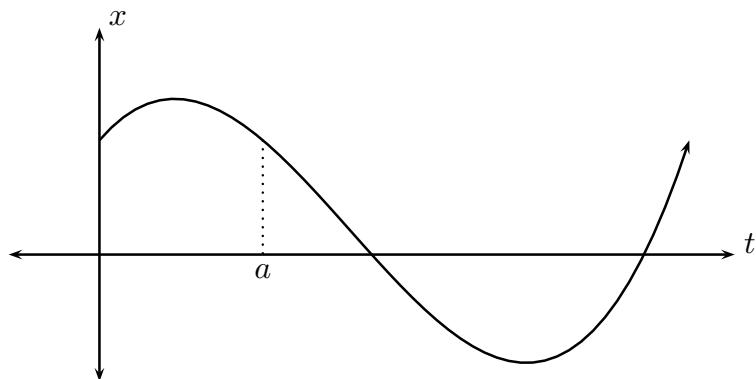
**QUESTION FOUR**

What is the sum of the first ten terms of the series  $96 - 48 + 24 - 12 + \dots$ ?

- (A) 63.9375
- (B) 191.8125
- (C) -32.736
- (D) 98.208

**QUESTION FIVE**

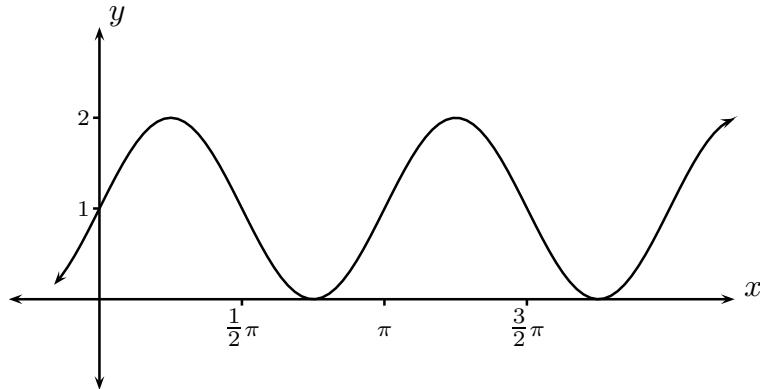
Which of the following does  $\frac{d}{dx}(e^3)$  equal?


- (A)  $3e^2$
- (B)  $e^3$
- (C) 0
- (D)  $\frac{1}{4}e^4$

**QUESTION SIX**

Which of the following statements is INCORRECT?

- (A)  $\log a^n = n \log a$
- (B)  $\log ab = \log a + \log b$
- (C)  $\log(a - b) = \frac{\log a}{\log b}$
- (D)  $\log e = 1$


**QUESTION SEVEN**



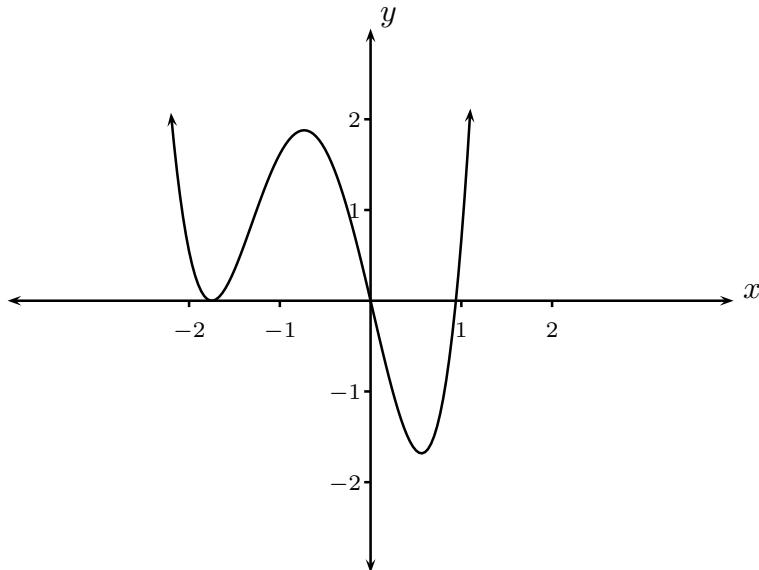
A particle's motion is described by the cubic graph above. Which of the following statements is NOT true of the particle at time  $t = a$ ?

- (A) The particle's velocity is negative.
- (B) The particle has positive acceleration.
- (C) The particle is moving towards the origin.
- (D) The particle has returned to its initial position.

**QUESTION EIGHT**



The equation of the graph sketched above could be:


- (A)  $y = 1 + \sin 2x$
- (B)  $y = 1 - \sin 2x$
- (C)  $y = 1 + 2 \sin 2x$
- (D)  $y = 1 - 2 \sin x$

**QUESTION NINE**

Which of the following statements is NOT true of the function  $y = x^4 + 4x^2$ ?

- (A) It is even.
- (B) It has a single stationary point at  $x = 0$ .
- (C) It has a single  $x$ -intercept at  $x = 0$ .
- (D) It has a single point of inflexion at  $x = 0$ .

**QUESTION TEN**



The diagram above shows the graph of a function  $y = f(x)$ . A pupil draws the graph of  $y = 2 - |x|$  on the diagram in order to determine the number of solutions to the equation  $f(x) = 2 - |x|$ . His answer should be:

- (A) 0
- (B) 1
- (C) 2
- (D) 4

————— End of Section I —————

**SECTION II - Written Response****Answers for this section should be recorded in the booklets provided.****Show all necessary working.****Start a new booklet for each question.****QUESTION ELEVEN (15 marks) Use a separate writing booklet.****Marks**

(a) Find the value of  $\frac{e^x}{1+x^2}$  when  $x = -3$ . Give your answer correct to 3 decimal places. 1

(b) Differentiate:

(i)  $y = \cos 2x$  1

(ii)  $y = \ln(3x + 1)$  1

(iii)  $y = e^{3x}$  1

(c) Find the exact value of  $\tan \frac{2\pi}{3}$ . 1

(d) Rationalise the denominator of  $\frac{1}{3 - \sqrt{5}}$ . 1

(e) Find the following integrals:

(i)  $\int (3x^2 + 4x) \, dx$  1

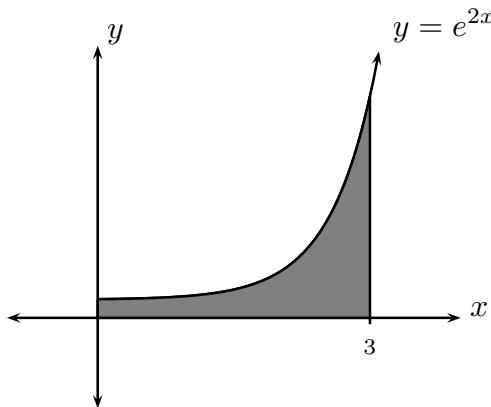
(ii)  $\int \frac{5}{x} \, dx$  1

(iii)  $\int (2x + 1)^5 \, dx$  1

(f) Find the area of a sector subtending an angle of 6 radians at the centre of a circle of radius 3 cm. 1

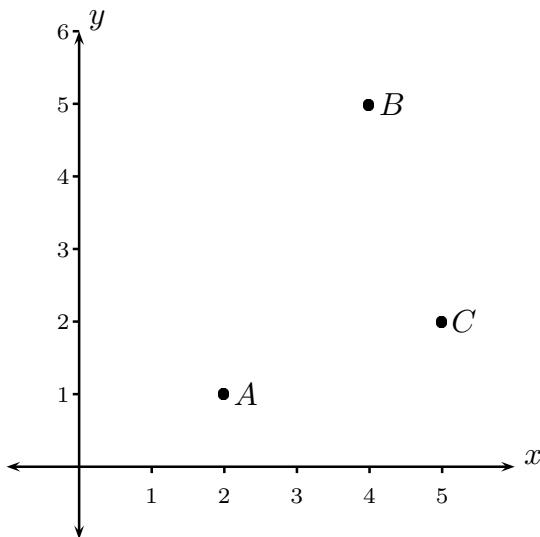
(g) Find the one-hundredth term of the arithmetic sequence with first term 8 and common difference 3. 1

(h) Solve  $2 \cos \theta - 1 = 0$ , for  $0 \leq \theta \leq 2\pi$ . 2


(i) Draw a one-third page sketch of the parabola  $x^2 = -8y$ , carefully marking the focus and directrix. 2

## QUESTION TWELVE (15 marks) Use a separate writing booklet.

Marks


(a) Find the equation of the tangent to  $y = x^2 + 4x$  at  $x = 1$ . 2

(b)

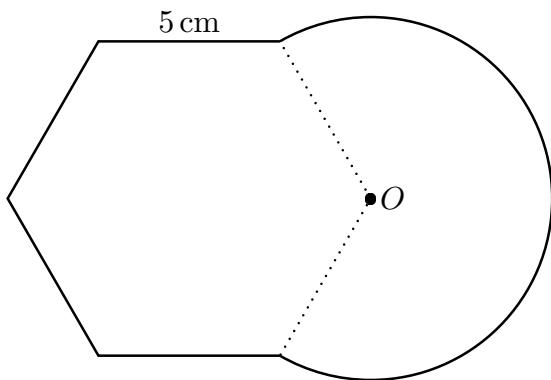
2

The graph above shows the area bounded by the curve  $y = e^{2x}$ , the line  $x = 3$  and the coordinate axes. Find the exact shaded area.

(c)



The points  $A(2, 1)$ ,  $B(4, 5)$  and  $C(5, 2)$  have been marked in the coordinate plane above.

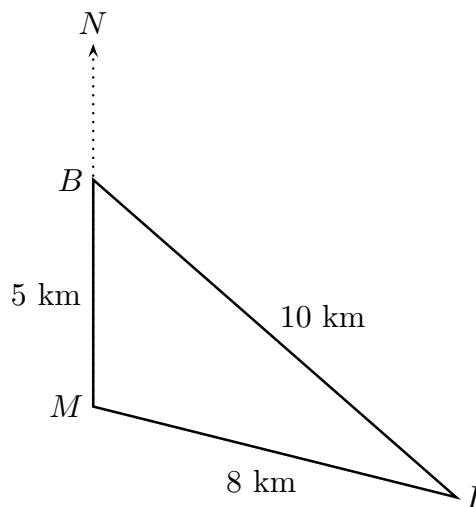

- (i) Show that the equation of the line passing through  $A$  and  $B$  is  $2x - y - 3 = 0$ . 2
- (ii) Determine the length of interval  $AB$ . 1
- (iii) Find the perpendicular distance from the point  $C$  to the line  $AB$ . 1
- (iv) Hence find the area of triangle  $ABC$ . 1

(d) Find the domain and range of  $y = \sqrt{2x - 6}$ . 2(e) Solve the quadratic inequation  $x^2 + 2x - 3 < 0$ . 2

## QUESTION TWELVE (Continued)

(f)

2




The diagram above shows a regular hexagon joined to the radii of a sector. The side length of the hexagon is 5 cm. Find the exact perimeter of the resulting shape.

## QUESTION THIRTEEN (15 marks) Use a separate writing booklet.

Marks

(a)



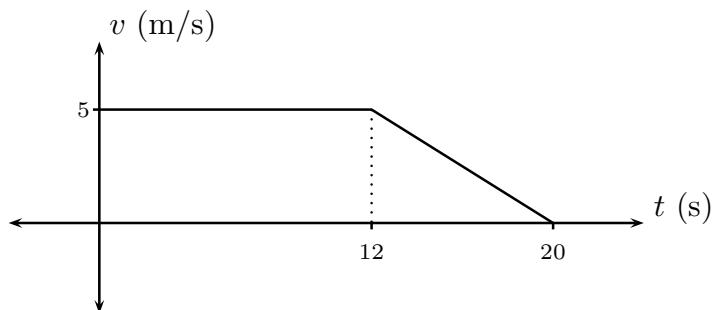
An island  $I$ , a buoy  $B$  and the mainland  $M$  lie on the vertices of a triangle, as in the diagram above. The distance from  $M$  to  $B$  is 5 km, from  $B$  to  $I$  is 10 km and from  $I$  to  $M$  is 8 km. The buoy is directly north of the mainland.

(i) Use the cosine rule to find  $\angle MBI$ , correct to the nearest minute.

2

(ii) What is the true bearing of the island from the buoy?

1


(b) Differentiate  $y = \frac{e^{5x} + 1}{e^x}$ .

2

**QUESTION THIRTEEN** (Continued)

(c) Consider the region bounded by the curve  $y = \sec x$ , the  $x$ -axis and the lines  $x = 0$  2 and  $x = \frac{\pi}{3}$ . Find the volume obtained by rotating this region about the  $x$ -axis.

(d)

1

The velocity-time graph of a particle is shown above. Find the distance travelled in the first 20 seconds.

(e) A particle travelling in one dimension has velocity function  $v = 6 - 2t$ , where  $v$  is in metres per second and  $t$  is in seconds. The particle is initially seven metres to the right of the origin. Assume that the positive direction is to the right.

- (i) Find the particle's acceleration function. 1
- (ii) Find the particle's displacement function. 1
- (iii) When is the particle at rest and what is its displacement at this time? 2
- (iv) Draw a one-third page sketch of the particle's displacement function, showing the intercepts with the axes and the vertex of this parabola. 2
- (v) What is the total distance travelled over the first eight seconds? 1

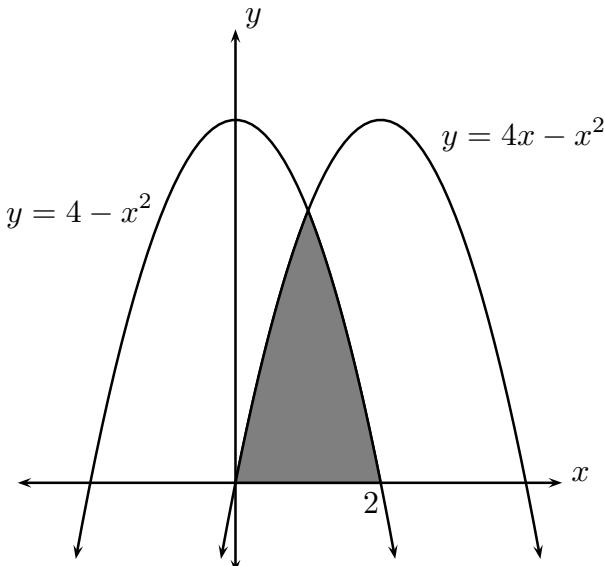
**QUESTION FOURTEEN** (15 marks) Use a separate writing booklet.

Marks

(a) Consider the function  $f(x) = x^4 - 4x^3 + 5$ .(i) Find the coordinates of the stationary points of  $y = f(x)$ .

3

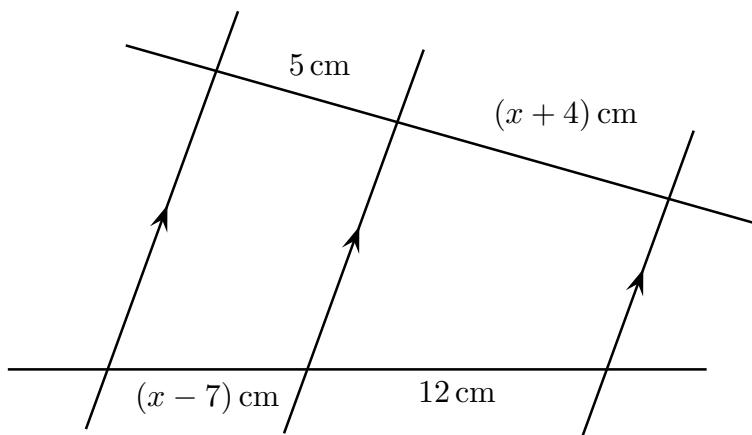
(ii) Determine the nature of the stationary points.


2

(iii) Sketch the graph of  $y = f(x)$ , showing the stationary points and  $y$ -intercept.  
You need not find any  $x$ -intercepts.

2

(b)


3



Find the area of the region shaded in the diagram above.

(c)

2

Find the value of  $x$  in the diagram above, giving a reason.(d) A point  $P(x, y)$  moves so that its distance from  $A(6, 1)$  is twice its distance from  $B(-3, 4)$ .(i) Show that the locus of  $P$  is a circle.

2

(ii) Find the centre and radius of the circle.

1

**QUESTION FIFTEEN** (15 marks) Use a separate writing booklet.**Marks**

(a) Find the exact value of  $\cos \theta$  given that  $\tan \theta = 7$  and  $\sin \theta < 0$ . 2

(b) (i) Show that  $3x^2 + 4x + 5$  is positive definite. 1

(ii) Explain why the function  $y = x^3 + 2x^2 + 5x + 7$  is always increasing. 1

(c) Prove that  $\sin \theta \tan \theta + \cos \theta = \sec \theta$ . 2

(d) Prove that  $f(x) = \frac{2x}{x^2 + 1}$  is an odd function. 1

(e) (i) Differentiate  $xe^x$ . 1

(ii) Hence find  $\int xe^x dx$ . 1

(f) The rate of elimination  $\frac{dQ}{dt}$  of a drug by the kidneys is given by the equation

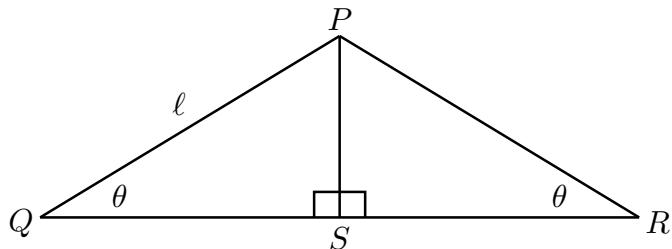
$$\frac{dQ}{dt} = -kQ$$

where  $k$  is a constant and  $Q$  is the quantity of drug present in the blood. In this question,  $t$  is measured in minutes and  $Q$  in milligrams.

(i) Show that  $Q = Q_0 e^{-kt}$  satisfies the equation  $\frac{dQ}{dt} = -kQ$ . 1

(ii) The initial quantity of drug present was measured to be 100 mg and at time  $t = 20$  minutes, the quantity was 74 mg. Find the values of  $Q_0$  and  $k$ . Give  $k$  correct to five decimal places and  $Q_0$  to the nearest mg. 2

(iii) What is the initial rate of elimination of the drug? Give your answer correct to one decimal place. 1


(iv) How long is it until only half the original quantity of drug remains? Give your answer correct to the nearest minute. 2

**The exam continues on the next page****Exam continues overleaf ...**

**QUESTION SIXTEEN** (15 marks) Use a separate writing booklet.

Marks

(a) In the diagram below,  $\angle PQS = \angle PRS = \theta$  and  $PQ = \ell$ .



(i) Prove that  $\triangle PQS \equiv \triangle PRS$ . 1

(ii) Give a reason why  $QS = RS$ . 1

(iii) Show that  $QR = 2\ell \cos \theta$ . 1

(iv) Show that the area of  $\triangle PQR$  is given by 1

$$A = \ell^2 \cos \theta \sin \theta.$$

(v) Use calculus to find the value of  $\theta$  that gives the maximum area of  $\triangle PQR$ . 3

(b) A university student is planning to use a cash account containing \$50 000 to help fund his expenses. The account earns interest at 6% per annum, compounded monthly. At the end of each month interest is added to the account balance and then the student withdraws \$1500. Let  $A_n$  be the amount of money remaining in the account at the end of the  $n$ th month, following the student's withdrawal.

(i) Find an expression for  $A_1$ . 1

(ii) Find expressions for  $A_2$  and  $A_3$ . 2

(iii) After how many months will the account have a balance of zero dollars?  
Give your answer to the nearest month. 2

(c) Solve the following equation, for  $0 \leq \theta \leq 2\pi$ : 3

$$3 \sin^2 \theta + 3 \cos^2 \theta + 3 \tan^2 \theta + 3 \cot^2 \theta + 3 \sec^2 \theta + 3 \cosec^2 \theta = 29$$

---

 End of Section II 

---

**END OF EXAMINATION**

**B L A N K   P A G E**

The following list of standard integrals may be used:

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left( x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left( x + \sqrt{x^2 + a^2} \right)$$

NOTE :  $\ln x = \log_e x, \quad x > 0$



2013  
Trial Examination  
FORM VI  
MATHEMATICS 2 UNIT  
Thursday 1st August 2013

- Record your multiple choice answers by filling in the circle corresponding to your choice for each question.
- Fill in the circle completely.
- Each question has only one correct answer.

**Question One**

A  B  C  D

**Question Two**

A  B  C  D

**Question Three**

A  B  C  D

**Question Four**

A  B  C  D

**Question Five**

A  B  C  D

**Question Six**

A  B  C  D

**Question Seven**

A  B  C  D

**Question Eight**

A  B  C  D

**Question Nine**

A  B  C  D

**Question Ten**

A  B  C  D