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Abstract

Firewalls are hardware and software systems that protect a network from attacks

coming from the Internet. Most packet filtering operations use packet classifiers

known as access lists. Packet filtering firewalls are efficient, fast and provide a

good level of security. Packet filtering based firewalls provide protection through

granting or denying access to passing packets. Each individual incoming or out-

going packet is inspected against a list of rules in an access list. The result of this

inspection determines the decision to be made.

The use of packet filtering based on access lists is no longer limited to firewalls

and routers; many other devices and functions in communication systems are

becoming dependent on packet filtering. In the future, the great expansion in

communication and the increased number of services and users on the Internet

is expected to lead to more packets being exchanged. It is also expected that

higher levels of security will be needed requiring more rules in access lists. All

this places more pressure on packet filtering devices to provide greater security

at higher performance levels without causing a communication bottleneck. Many

approaches have been suggested to improve the performance of firewalls with

varying degrees of success. In this research, a new approach to improving the

performance of access list-based packet filtering is presented.

The proposed approach suggests that rearranging rules in access lists can provide

better performance in packet filtering for a particular pattern of packet stream.

This research aims at investigating this claim and providing definitive evidence

for or against such a claim. The approach is based on observing packet streams

arriving into a network device, being able to recognise packet patterns in the

past and predicting future patterns. It is also based on dividing the rules in an

access list into classes and rearranging these classes of rules in the list to suit a

particular packet pattern. As a consequence of this work two novel algorithms

PRCW (Packet-Rule Cost Weighing algorithm) and HCE (High Cost Elimination

ix



algorithm) were developed, implemented and evaluated. Those algorithms make

it possible to predict the best arrangement for an access list for a particular packet

pattern which will provide the best performance. This thesis provides a detailed

analysis of the proposed scheme. This is achieved through simulating packet

filtering operations and providing comparisons of the performance of thousands

of simulations.
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Chapter 1

Introduction

This thesis describes the design and implementation of a system for the simulation

of access list rules, filtering packets arriving into a communication device. The

following chapters investigate existing packet filtering and firewalling schemes.

The proposed scheme is discussed in detail. The method of implementing the

new approach is described in detail outlining the proposed model and algorithms.

The overall objective of this work is to investigate a possible improvement in

performance of access list based classifiers. In other words, whether access list

performance can be improved through the reorganising of these lists. The main

aim is to establish better performance, at a low cost and using an easily regener-

ated solution which can be customised and implemented for access list filtering.

This chapter explains the motivation for the proposed approach and the imple-

mentation of the reorganised access lists in packet filters used in communication

devices. It outlines the work carried out and describes the results that were ob-

tained.

1.1 Motivation

Filtering access to and from the Internet has largely been implemented by fire-

walls. Firewalls are the most common, often the only form of protection and

usually the first form of protection against the dangers of the Internet. Packet

filtering is also referred to as packet classification. The ability to classify packets
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is becoming necessary for many other areas of communication systems for a va-

riety of reasons. For example different services can be offered to different classes

of packets. Virtual Private Networks (VPN) only permit packets from predefined

sources. Quality of Service (QoS) makes some network connections dedicated to

some particular services. Also, packet classification is largely used as a mechanism

for the implementation of a wide variety of network security policies such as the

prevention of unauthorized access to a subnet, as in firewalls, or the prevention

of some Internet attacks such as Denial of Service (DoS) attacks. Routers use

packet classification for route determination and functions such as traffic shaping

and load balancing. The idea is that a packet is classified into a particular class

known as a flow. Based on that classification, a particular event occurs with re-

gard to the packet. The purpose of this classification can be one of many such as

protection, flow control, routing, load balancing or tunnelling.

The growth of network and Internet communication has placed greater emphasis

on two important issues, namely security and performance. As the volume of com-

munication increases and the requirement of availability becomes more important,

the demand for better performance and higher levels of security will become even

more important(Hazelhurst et al., 1998).

As the number of hosts has increased many fold over the years, so have commu-

nication activities. The Internet has grown to be the major medium for many or-

ganisations’ and corporations’ activities, like banking, insurance, retail and many

more. Unfortunately, that has meant an overall decrease in security and an in-

creased number of different types of unwanted access or attacks.

On one hand, the number of packets flowing through networks is expected to in-

crease due to the increased number of users and increased level of communication

utilisation. On the other hand, higher levels of security will require more rules on

access lists, as each individual incoming or outgoing packet is inspected against

each rule in the list of rules. Firewalls are likely to become a bottleneck in commu-

nication systems unless improved performance can be achieved. This necessitates

a search for better or more efficient methods of implementing firewalls. Packet

filtering firewalls are efficient, fast and provide a good level of security (CERT,

1996) and have stood the test of time. Finding ways to improve the performance

of packet filtering will no doubt help improve performance in all communication

areas dependent on packet filtering. Improving the performance of packet filtering

is of great importance for the continued development of the safe communication

on the Internet.
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1.2 Problem Definition

Very briefly, access list-based packet filtering works in the following way. The

filtering device will have a list of rules. Each rule contains two parts, a decision

and an inspection. The second part shows the inspection to be carried out on

the packet. The first part is the decision to accept or reject the packet, only

to be applied if the packet conforms with the inspection. This is like the logic

of an “IF” statement in programming: if < condition > then < action >. In

most implementations of access list filtering, as soon as a rule is found in the list

to which the packet conforms (i.e. the result of applying the condition to the

packet is true), then the inspection stops, and the packet is accepted or rejected

according to the decision in the rule. There is a small time cost for each rule in

the list used to inspect the packet. The total time for a packet to be accepted

or rejected will depend on the number of rules used to inspect the packet. The

maximum time for an individual packet will be the time needed for all the rules

in the list to inspect the packet. The maximum total time cost for a large number

of packets will depend on the number of packets and the number of rules in the

list.

Traditionally packet filtering was used in firewalls for providing security. Packet

filtering has also been applied to provide many other functionalities in communi-

cation systems. Packet filtering is popular due to the fact that it is hidden from

the user, and in many cases requires little or no maintenance for years. In general,

packet filtering is also fast, effective and efficient. Access list-based packet filtering

seems to be excellent as long as it does not negatively affect the communication

system it is meant to protect.

A network device with packets arriving at the rate of 20 packets per second and

an access list of 20 rules is very different to a device with packets arriving at the

rate of 2,000,000 packets per second and an access list of 2000 rules. In the latter

case, inspecting all the packets can cause large delays which can be well below the

acceptable requirements for many services. In such cases, packet filtering can be

the bottleneck for communication.

Consider the following question: is it reasonable to expect such high numbers of

packets in communication, and large numbers of rules in access lists?

In recent years advances in computing and telecommunication technologies have

3



expanded computer system capabilities and also greatly expanded user require-

ments and available tools. As a consequence, users and their organizations are

becoming more dependent on the services provided by their systems and computer

networks. This trend increased the volume of communication on the Internet par-

ticularly as many users were browsing the Web. The number of users, servers and

services offered is on the increase. More services are switching to using the Internet

instead of mail, TV and other broadcasting services. This answers the first part

of the question about the higher number of packets expected to be exchanged. In-

deed, the quantity of communication on the Internet has been steadily increasing

over the past few years, and is expected to continue for the next decade (Landwehr

et al., 1997).

The unfortunate part of this increase of communication on the Internet is the

increase in security threats. Security attacks are on the increase, yet experts

believe that the number of actual attacks are much higher than is officially re-

ported (Howard, 1998). Many companies and organisations no longer think, for

different reasons, that reporting security breaches of their systems is a good idea,

especially if the nature of their business is fully or partly, the provision of a secure

and safe system. The fact that security attacks are on the increase requires more

forms and higher levels of protection. This reflects on access list-based packet

filtering by requiring more inspection rules to be added to access lists. This an-

swers the second part of the question about the need for large numbers of rules

in access lists in the future. In fact, it is believed that the need for larger access

lists is already materialising in many organisations. This places more pressure on

firewalls to provide greater security at higher performance levels.

There are two reasons why longer access lists are not at present being used on a

large scale despite the need for them. The first reason is the difficulty in actually

stating the rules that accurately reflect the security policy required. Access lists

are an efficient way of implementing first level security at relatively low cost. As

long as the list of rules is short, it will be fast, easy to edit, and easy to append

more rules without great difficulty. The difficulty becomes apparent in large and

complicated security policies with less experienced users. As lists become larger,

editing such lists becomes even more difficult and at best often produces access

lists with many duplicated and useless rules. At worst they may not precisely

reflect the required security policy.

The second reason for not using long access lists at this point is the performance

issue. The more rules in an access list which need to be used to inspect a packet

4



the longer the processing time required for the particular packet. Clearly, it is

desirable to keep this processing time to a minimum. Many approaches have been

investigated and many algorithms were suggested. Some are more promising than

others and more effective in one respect or another. It is still the case that longer

access lists will cause a relatively large amount of delay to the point where some

security inspections may be sacrificed for the sake of improved performance.

1.3 Solution Approach

One of the aims of our research is to investigate performance improvements of

access list-based packet filtering devices. Many approaches are implemented or

proposed which reduce the processing time of the list for a packet in one form or

another, e.g. by reducing the size of the list, or using a binary decision diagram

implementation of access lists as a compact way of representing and manipulating

Boolean expressions. But ultimately, all approaches end up with a list of rules

that is applied to inspect incoming or outgoing packets.

It is believed that the most commonly used implementations of packet filtering

incur a lookup latency linear in the number of rules in the access list. A linked

list structure is typically used to store the access list rules. Search is performed

sequentially through the list. This has the advantage of using a small amount of

memory for storing the list, but the lookup time is linear with the size of the list.

The way access list rules operate is that a packet is inspected against each rule

in the access list until a clear accept or reject rule is met which applies to the

packet. Otherwise, all the rules in the list are checked. From a performance point

of view, it is desirable that each packet meets that critical (accept or refuse) rule

at or near the start of the list. This would reduce the time required for the packet

to be inspected and consequently improve performance. If the critical rule for a

packet is met at or near the end of the list, or the rule is never met, the processing

time for the packet will be very high and performance will degrade.

It is feasible to classify access list rules into different classes based on a number of

factors. For example, the rules can be divided into those that inspect and filter a

packet based only on the source address or only on the target address or on them

both. Also, rules can inspect and filter a packet based on the port number in the

packet or the protocol used. So, it is proposed to classify the rules in a list then

5



reorganise the rules in the list according to their class. It is intended to test the

different organisations of an access list from the performance point using the same

set of packets. This, of course, is a very simplistic way to visualise the approach,

and a number of assumptions are made here. Assume that rules are organised

in a particular way such that all rules of some class “x” are made at the top of

the access list. When packets start arriving, and if all arriving packets or most of

them require the critical “x” rule for acceptance or refusal, then our organisation

of the rules list was a successful choice and performance is expected to improve.

The reason is that for all or most of the packets, only a few rules will be checked.

An assumption was made here that it was known in advance that arriving packets

required a specific type of a filtering rule to determine their acceptance or refusal.

Ideally, for each packet arriving, if its filtering rule requirement is known, then

those rules are used first to inspect the packet. For example, if a packet required

class “x” rules then it is inefficient to inspect the packet using rules belonging to

classes “a”, “b”, “c”... etc. It is best to have class “x” rules immediately inspect

the packet.

It is suggested that a profile of packets arriving into a network device can be de-

veloped to determine the pattern of such packets. Packet classification of arriving

packets in the past can be used to predict types and numbers of packets arriving

in the future. This pattern can periodically be inspected for changes in pattern,

and consequently to determine the most effective reorganisation of the rules in

the access list.

This thesis suggests that different organisations of the rules in an access list will

give better performance in filtering a particular pattern of packets. The rest of

this thesis investigates whether ordering the rules in an access can make any im-

provements when processing a flow of packets with some particular characteristics.

In particular two innovative algorithms PRCW (Packet-Rule Cost Weighing algo-

rithm) and HCE (High Cost Elimination algorithm) were developed. Numerous

experiements were carried out to evaluate the effectiveness of those algorithms.

1.4 Research Objectives

The main objectives can be summarised in three hypotheses in the form of state-

ments. A number of sub-objectives have been identified which are listed later.
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Hypothesis One:

“Performance of packet filtering using access lists is improved by the ordering or

by the re-arrangement of the rules in an access list based on their classes.”

Hypothesis Two:

“When filtering a specific stream of packets, if performance of an access list can

be improved by class reordering of the list, then a method can be devised which

will find the best order of the classes in an access list to give the best performance

possible.”

Hypothesis Three:

“If a method can be devised which will find the order of the classes in an access

to give the best performance when filtering a packet stream, then an efficient way

must exist in finding that order.”

In order to achieve those objectives, by finding answers to those hypotheses, the

following sub-objectives were identified:

1. Full investigation and understanding of the topics of network security and

network communication including Internet protocols.

2. Investigation of existing methods and future expectations of packet filtering

in network devices such as firewalls, routers, bridges and gateways.

3. Design and develop a model of the operation of a network device that uses

access lists to filter a stream of packets.

4. Perform detailed simulation experiments using different combinations of

packets and filtering rules to perform analyses of the experimental results

and draw the appropriate conclusions and recommendations.

5. Produce conclusions about the effect of reordering of access lists on the

performance of packet filtering operations.

1.5 Relevant Publications

The work in this research was discussed and described in a number of papers. The

papers were a representation of different stages of the research and different parts

of the thesis. The following is a list of relevant papers which were submitted and

published or are awaiting publication:
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1. Bukhatwa, F., “High Cost Elimination Method for best class permuta-

tion in Access Lists”, Submitted to the IADIS International Conference

- WWW/Internet 2004 Conference, 6-9 October 2004, Madrid, Spain.

(http://www.iadis.org/icwi2004/)

2. Bukhatwa, F., “Packet-Rule Cost Weighting Method for Best Organisa-

tion of Access Lists in Packet Filtering.”, Accepted at the 2004 Interna-

tional Conference on Computers, Communication and Control Technologies

CCCT’04, August 14-17, 2004 - Austin, Texas, USA.

3. Bukhatwa, F., “Class Ordering of Access lists in Packet Filtering”, Submit-

ted to the ”Journal of Computer Security” (JCS), March 2004.

4. Bukhatwa, F. and Patel, A., 2003. “Effects of Ordered Access

Lists in Firewalls”, In Proceedings of IADIS International Confer-

ence - WWW/Internet 2003, Algarve, Portugal, 5-8 November 2003,

(http://www.iadis.org/icwi2003/).

1.6 Outline of The Thesis

This thesis presents a study performed to analyse the effects that reordering the

access lists has on the performance of communication devices for the purpose of

packet filtering.

The thesis starts by investigating packet classification and access lists. A model

was developed of the packet classification process. The processes of packet streams

arriving to a network device and the filtering of these packets was simulated. The

model was first verified and then large numbers of simulations carried out and

the results observed. Different size access lists, different orderings and different

classes of rules were tested and performance observed. Performance is determined

by the measurement of the average processing time per packet.

Reorganising the access list was found not to be the only factor for improving

performance. It was found that a close relation between access list organisation

and the pattern of arriving packet stream together could improve performance.

The thesis describes these findings in more detail. The logical progress through

the research is described to the point where the best organisation for an access list
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can be determined for a particular packet pattern. The potential benefits, possible

implementations, problems and disadvantages are discussed and evaluated.

Finally, conclusions based on the work are presented and some ideas for future

research are discussed. There are a total of eight chapters in this thesis:

• chapter 2: Network Security and Firewalls. This chapter gives some

background information about network security in relation to communica-

tion. It also provides a detailed introduction to packet filtering and firewalls.

• chapter 3: Performance Evaluation. This chapter looks at simulation

as a tool for developing and testing communication systems. It investigates

how simulation can be applied and how models can be developed.

• chapter 4: Requirements Analysis. This chapter formulates the re-

quirements related to this research for packet filtering using access lists. It

identifies the problems and suggests solutions.

• chapter 5: Design. This chapter discusses the design of the models to be

developed based on data previously compiled. It also specifies the testing

and verification procedures to be applied.

• chapter 6: Implementation. This chapter presents the implementation

phase of these simulation model and the experiments. It describes the stages

of development.

• chapter 6: Evaluation. This chapter presents the evaluation performed

on the model performance and on the simulation results. It describes the

performance of the different algorithms used.

• chapter 7: Conclusion. This Chapter presents the overall conclusions

of the thesis and identifies directions for future work.
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Chapter 2

Network Security and Firewalls

2.1 Introduction

This chapter discusses issues relating to computer security leading to network and

communication security. It outlines the threats, attacks and security problems

relating to computer systems and networks. Next, precautions and measures to

reduce the effects of computer crime are discussed. This chapter also discusses

firewalls as a security tool, how suitable and effective they are, their advantages

and disadvantages. Packet filtering is investigated as a method of implementing

firewalls via the use of access lists. Access lists are analysed and described in more

detail.

2.2 Computer and Network Security

The technology of present day networks offers users increasing transmission ca-

pacity (Marzo et al., 2003). As a consequence, users and their organisations are

becoming more and more dependent on the services provided by their systems and

computer networks (Muftic, 1994). Data, programs and information critical to

the functioning of an organisation are kept on computer systems and exchanged

over telecommunication facilities. This trend raises the need for secure systems

for processing and exchanging information. In broad terms, security is the restric-

tion of actions within a system with the aim of protecting the operation of the
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system. Safety and security are closely related, and are often supported by the

same mechanisms within a system. For our purposes, safety is distinguished from

security using the rule of thumb that safety is to protect a system from itself,

while security protects a system from others (Alexander et al., 2001). Highland

(1990) from the State University of New York defines security: “Computer secu-

rity is the protection of a company’s assets by ensuring the safe, uninterrupted

operation of the system and the safeguarding of its computer, programs and data

files”. One form of protecting a system is by restricting access to the system and

also restricting the flow of information from the system. One level of providing

this restriction is through packet filtering. One form of implementation of packet

filtering is through firewalls.

2.2.1 Principal Reasons for Security

Computer networks are becoming very convenient targets for attacks and illegal

operations. The security of a system is addressed to prevent, detect and correct

different forms of attacks. The required levels of security for networks and organ-

isations differ but generally the principal reasons for security are confidentiality,

integrity, availability and accountability.

1. Confidentiality: refers to the prevention of unauthorised information dis-

closure. In other words, the data access must be restricted to authorised

entities on a legitimate “need to know” basis.

2. Integrity: refers to systems and data, and it reflects that users must have

confidence that information can be retrieved from the system and, internal

system processes work as expected or claimed.

3. Availability: refers to the property of a system being accessible and usable

on demand by an authorised entity. This encompasses the prevention of

unauthorised entities withholding of information or resources. In a system,

availability means that the requested services are provided to clients at the

desired moments. In other words, availability is the minimum level of service

delivery to the users (Wulf, 1997). The minimum level of delivery means

the provision of a service regardless of its quality of service (QoS).

4. Accountability: is the property that ensures that actions of an entity may

be traced uniquely to that entity. This refers to the actions of individuals

or of the system.
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Attacks against the availability of a system are called denial of service (DoS)

attacks. These attacks are divided into three categories.

1. Resource allocation attacks, in which the attacker repeatedly uses the lim-

ited resources of the system and does not give enough time to the server to

release such resources. Therefore, a new genuine request for a service that

requires such resources for its execution is rejected.

2. Resource destruction attacks, in which the conditions for the correct exe-

cution of some services are ignored. Thus, the attacker provides a scenario

resulting in an unconformable execution of a service. The unconformable

execution of a service engages some resources for an infinite duration of time.

Hence, the request for a service requiring such resources is rejected during

this period (Menezes et al., 1996).

3. Alteration or destruction of configuration information, in which the attacker

alters some information required for the execution of services, or modifies

the configuration of the operating system (Icove et al., 1995).

Distributed Denial of Service (DDoS) attacks have become an increasingly fre-

quent disturbance of the Internet (Ioannidis and Bellovin, 2002). DDoS attacks

consist of two main phases. The first is breaking into hosts and installing slave

programs, and the second is instructing these thousands or millions of slave pro-

grams to attack a particular destination. This artificial high load of traffic denies

or severely degrades service to legitimate users of the targeted destination. Flash

crowds are problems that occur as a consequence of a DDoS attack. That is when

a large number of users try to access the same server simultaneously. Apart from

over-loading at the server itself, the traffic from such flash crowds can overload

the network links and thereby interfere with other, unrelated users on the In-

ternet (Mahajan et al., 2001). An example of a legitimate flash crowd was the

degradation of Internet performance experienced during the NASA Pathfinder

mission (Mahajan et al., 2001).

DDoS attacks are very hard to defend against because they do not target specific

vulnerabilities of systems, but rather the very fact that the target is connected

to the network. All known DDoS attacks take advantage of the large number of

hosts on the Internet that have poor security. The attack does not necessarily

exploit a security hole at the target to cause a problem and the installed slave

programs can remain in the host unnoticed for a long time.
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2.2.2 Categories of Computer Abuse

Computer abuse can be categorised as follows (Commission, 1998), (Furnell,

2002).

• Fraud: usually for private and personal gain or benefit. It may involve

altering input, data or programs in an unauthorised way. It may also involve

destruction, suppression or misappropriation of output from a computer

process. This excludes any alterations caused by virus infections.

• Theft: of data or software.

• The use of unlicensed software through the use of illicit copies.

• The unauthorised use of computer or computing facilities of an organisation

or at the work place for private gain or benefit.

• Misuse of personal data through unauthorised browsing through computer

records causing breaches of the data protection legislation.

• Hacking: the deliberate gaining of unauthorised access to a computer sys-

tem.

• Sabotage: interfering with the computer process by causing deliberate dam-

age to data, programs or equipment.

• Introducing illegal or unsuitable material such as pornographic material.

• Viruses, or the distribution of a program with the intention of corrupting

computer processes.

• Web site defacement: This most common form of web-related security inci-

dent is on the increase. Web site defacement includes alteration of text and

images on the web site.

• Denial of service impacting the availability of sites/systems for legitimate

users. One form is known as SYN Flooding. The attacking machine sends

many SYN packets as requests to establish a TCP connection with different

source addresses and never responds with ACK.

• Remote administration, where users are deceived into downloading and in-

stalling software that enables their systems to be accessed remotely.
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2.2.3 Type of Abusers

Abusers may be classified into the following (Furnell, 2002):

• External Penetrators: Those outsiders attempting or gaining unauthorised

access to the system.

• Internal Penetrators: Authorised users of the system who access data, re-

sources or programs to which they are not entitled.

• Misfeasors: Users who are authorised to use the system and resources ac-

cessed, but misuse their privileges.

• Malicious Processes: Software-based abuse, including viruses, worms, Tro-

jan horses and logic or time bombs. Also known as Malware.

• Hackers: Persons deliberately gaining unauthorised access to a computer

system. Generally, divided into Explorers (hackers) or malicious vandals

(crackers).

Penetrators can be divided into two groups depending on the form of penetration:

1. Masqueraders: users who operate under the identity of another user.

2. Clandestine users: users who evade access controls and auditing.

The definition of “hacker” (Furnell et al., 1999) has changed considerably over

the last thirty years. In the 1960s, hackers were dedicated software and hardware

gurus, and the term largely referred to persons capable of implementing elegant

and/or technically advanced solutions to technologically complex problems. In the

1990s, however, the term implies something rather different and is commonly used

to refer to persons dedicated to entering the system by identifying and exploiting

security weaknesses. At the extreme, hackers are a subset (often distinguished

by the term “crackers”) who openly perform malicious actions upon the systems

they enter, such as deleting files, modifying data and stealing information. Modern

data hackers are one part of a so-called Computing Underground (Mizrach, 1997)

referring to subgroups that would generally be classed as undesirable by society

at large. These subgroups include crackers, phreakers, virus writers and software

pirates. “Phreaking” is defined as (Humphrey and Gabrielson, 1995):

• The art and science of cracking the phone network (so as, for example to

make free long-distance calls).

• By extension, security-cracking in any other context (especially, but not

exclusively, on communications networks).
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Intruders get into a computer system electronically in a number of ways:

1. Software bugs: buffer overflows and un-handled input.

2. System configuration: default configurations that allow access.

3. Password cracking: weak passwords, dictionary attacks and brute force at-

tacks.

4. Sniffing unsecured traffic: using shared media, server sniffing and remote

sniffing.

5. Design flaws: in the operating systems or in the different protocols.

2.2.4 System Vulnerability

A vulnerable system is a system where potential threats are likely to become a

reality. The more protection that is provided the less vulnerable the system should

be. A threat in this respect is any action or event that could cause damage to an

information system. Many points of vulnerability have been identified:

1. Default installs of operating systems and applications, which normally in-

cludes un-needed sample programs/scripts, services and corresponding open

ports. Such problems can be checked by running port and vulnerability

scanning programs. Protection may be improved by removing unnecessary

software, services and ports.

A communicating computer has one IP (Internet Protocol) address, referred

to as the the network address, so other computers on the network can com-

municate with. In addition to a network address a port number is used. A

port is owned by a specific application on a single computer. Port numbers

allows several different applications to communicate over the network even

though theres only one IP address. Some ports are well known and are

defined historically. For example, the FTP program uses port 21.

2. Accounts with no passwords or weak passwords. Easy to guess or default

passwords are a major problem as are default or built-in accounts. An audit

of all accounts on the system should be maintained and regularly validated.

Passwords should be checked or assigned to accounts if they do not exist.

Procedures for adding or removing authorized accounts should be devel-

oped. Password cracking tools should be regularly run against the accounts.
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All user passwords should be validated after a change, new passwords not

meeting the security policy should be rejected. User awareness and training

is usually required.

3. Non-existent or incomplete backups. Even if backups exist, sometimes they

are not up-to-date or are not verified, with no restoration policies and pro-

cedures. The backup medium may have insufficient physical protection.

4. Large number of open ports. The minimum set or subset of ports that must

be open should be identified. All others should be closed with the corre-

sponding services disabled or removed. Internal and external port scanners

should be executed.

5. Not filtering packets for correct incoming and outgoing addresses, as decoy

or spoofing of IP addresses is a common method used by attackers to hide

their tracks. External firewalls or routers should be tested by sending de-

coy packets. An indication of dropped test packets should show in the log

produced by the device.

6. Non-existent or incomplete logging. System logs should be regularly re-

viewed for each key system. Logs should be archived and backed up on a

write once device so hackers cannot overwrite the logs to avoid detection.

7. Vulnerable Common Gateway Interface (CGI) programs. Most servers sup-

port CGI programs to provide interactivity in web pages enabling functions

such as data collection and verification. Vulnerability scanning tools should

be run to scan the system. All sample CGI programs should be removed

from the production web server and auditing performed on the remaining

scripts on all servers.

2.2.5 Goals of Security

A system can never be guaranteed to be one hundred per cent safe. Total security

requires that all possible threats be accounted for, and all vulnerabilities be de-

tected. But different levels of security can be achieved through imposing different

levels of security measures. Security measures will always incur some type of cost

and if there is a higher need to protect the assets then more security measures

need be adopted.
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Assets in this respect refer to an organisation’s information systems including

hardware, software, infrastructure, people and staff, information and data, good-

will, the organisation’s income, integrity and image. The value of an asset is either

its cost of replacement or its importance to the organisation. The value of an asset

can be higher than its isolated value if there exists other assets in the system that

depend on this particular asset.

The cost to fully protect an asset may be far higher than the overall value of the

asset, therefore it may not always be the goal to fully protect an asset. A number

of factors may affect the level of protection required or considered reasonable to

be applied. Assessment of the threats, vulnerabilities, impact and consequences

in relation to an asset will be an indication of how to:

• Minimize the probability of a threat occurring,

• Reduce vulnerabilities in relation to an asset,

• Reduce the impacts and/or consequences of an attack.

A security breach can have tremendous effects. The effects of a failure to preserve

confidentiality, integrity and or availability are:

1. Disclosure of information to unauthorised entities

2. Denial of service to authorised entities

3. Destruction of information or a part of the system

4. Modification of system processes or data

The consequences of security failure may also cause financial loss, embarrassment,

breach of personal privacy or commercial confidentiality, legal liability, disruption

to activities or even a threat to personal safety. Security comes at a high cost

and any approach to security will be based on identifying the assets requiring

protection and determining the appropriate level of countermeasures to be applied.

The following points are part of an approach to security in general:

1. Identify assets to be protected: Including data, software and physical equip-

ment.

2. Valuation of Assets: Replacement value and the impact on the system that

can be caused by loss or damage of an item.

3. Threats identification and assessment: Threats in all forms as deliberate

attacks or wilful damage, theft, natural disaster and technical failures.
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4. Identify vulnerabilities.

5. Estimate risks: Risk assessment should include combination of asset values.

The value of a piece of equipment may be the combination of its purchase

value and the value of the data stored in it. The estimate may include the

impact of the threats and vulnerabilities on the system.

6. Select suitable protective measures: Formalising a customised security plan

containing the type, number and complexity of countermeasures as well as

the characteristics of the security policy. The plan indicates, the security

measures for achieving the appropriate level of protection for the identified

assets, as well as the roles and procedures for ensuring the effectiveness of

the security measures.

7. Monitor security related events to take the appropriate responsive action

that may include corrective measures, analysis or other actions such as pros-

ecution, litigation or recovery.

People are one of the most important and difficult entities in any system from a

security point of view. The organisation is dependent upon the attitudes of the

end-users and their belief that the information that they use is important and in

need of protection. Where the user is held accountable for the security of informa-

tion, they are more likely to adhere to the policies and procedures that have been

put in place (Beatson, 1992). Responsible end-users, who are motivated and well

informed of the need for information security, are an organisation’s best defence

against security threats. Management has a crucial role to play in achieving such

a desirable end-user environment (Beatson, 1992).

2.3 Firewalls and Packet Filtering

The use of packet filtering as a means of improving system security is well estab-

lished. Although packet filtering has its limitations, low-level filtering has proved

to be efficient and effective (Schuba and Spafford, 1997). The increase in com-

munication traffic, and increased demand for security, will in the future place

a heavy burden on communication systems if improvements are not found for

existing schemes.

The commercial viability of the Internet in the future depends on its ability to

provide a differentiated service to paying customers. The Internet at the present
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delivers only so called best effort (undifferentiated) service. Differentiated service

requires Internet routers to move from simple destination-based packet forwarding

to a more complex form of forwarding, called layer 4 switching (Suri and Varghese,

1999).

Limiting packets that can pass or selectively allowing only some packets is a

simple and easy method of providing many functionalities. Examples are security,

network management and the reduction of congestion problems.

Firewall technology is used to protect networks, by being situated strategically at

a single security screening station where the private network or the Intranet con-

nects to the public Internet (ISO, 1988), see Figure 2.1. Firewalls can also be used

to isolate or protect sub-networks. A firewall is a computer, router or other com-

munication device that filters access to the protected network (Schreiner, 1998).

(Cheswick and Bellovin, 1994) define a firewall as a collection of components or a

system that is placed between two networks and possesses the following properties:

Figure 2.1: A typical firewall setup protecting an internal network 1

• All traffic from inside to outside, and vice-versa, must pass through it.

• Only authorised traffic, as defined by the local security policy, is allowed to

pass through it.

• The firewall itself is immune to penetration.

A firewall is simply a program or hardware device that filters the information

coming through the Internet connection into a private network or into a com-

puter system. If an incoming packet of information is flagged by the filters, it is

not allowed through. Organisations may have large numbers of computers that

have network cards connecting them together. Access to the Internet is provided

through one or more connections like T1 or T3 lines. Without a firewall in place,

all of those computers are directly accessible to anyone on the Internet. It is easy

to make FTP or Telnet connections to such unprotected machines.
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If a security hole is discovered, hackers can get to a machine and exploit the situ-

ation. With a firewall in place, the landscape is much different. An organisation

will place a firewall at every connection to the Internet. Security rules can be im-

plemented by the firewall. For example, only one of computers may be permitted

to receive public FTP connections. An organisation can set up rules like this for

FTP servers, Web servers, Telnet servers and so on. In addition, the organisation

can control how employees connect to Web sites, whether files are allowed to leave

the organisation over the network and so on. A firewall gives an organisation some

control over how the network is used. The following are some examples of what

the consequences can be for unprotected computers machines:

1. Remote login: When someone is able to connect to the victim computer and

controls it in some form. This can range from being able to view or access

files to actually executing programs on the computer.

2. Application back–doors: Some programs have special features that allow for

remote access. Others contain bugs that provide a back–door, or hidden

access, that provides some level of control of the program.

3. SMTP session hijacking: SMTP is the most common method of sending

e-mail over the Internet. By gaining access to a list of e-mail addresses, a

person can send unsolicited junk e-mail (spam) to thousands of users. This

is done quite often by redirecting the e-mail through the SMTP server of an

unsuspecting host, making the actual sender of the spam difficult to trace.

4. Operating system bugs: Like applications, some operating systems have

backdoors. Others provide remote access with insufficient security controls

or have bugs that an experienced hacker can take advantage of.

5. Denial of service: This type of attack is nearly impossible to counter. What

happens is that the hacker sends a request to the server to connect to it.

When the server responds with an acknowledgement and tries to establish

a session, it cannot find the system that made the request. By inundating a

server with these unanswerable session requests, a hacker causes the server

to slow down or eventually crash.

6. E-mail bombs: An e-mail bomb is usually a personal attack. The same e-

mail is sent hundreds or thousands of times until the victims e-mail system

cannot accept any more messages.

7. Macros: To simplify complicated procedures, many applications allow the

creation of a script of commands that the application can run. This script
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is known as a macro. Hackers have taken advantage of this to create their

own macros that, depending on the application, can destroy data or crash

a computer.

8. Viruses: Probably the most well-known threat is the computer virus. A

virus is a small program that can copy itself to other computers. This way

it can spread quickly from one system to the next. Viruses range from

harmless messages to erasing entire data on a machine.

9. Spam: Typically harmless but always annoying, spam is the electronic equiv-

alent of junk mail. Spam can be dangerous. Quite often it contains links to

Web sites. Clicking on these may cause a computer to accept a cookie that

provides a backdoor to the computer.

10. Redirect bombs: Hackers can use the Internet Control Message Protocol

(ICMP) to change (redirect) the path information takes by sending it to a

different router. This is one of the ways that a denial of service attack is set

up.

11. Source routing: In most cases, the path a packet travels over the Internet

(or any other network) is determined by the routers along that path. But

the source providing the packet can arbitrarily specify the route that the

packet should travel. Hackers sometimes take advantage of this to make

information appear to come from a trusted source or even from inside the

network. Most firewall products disable source routing by default.

Packet filtering in the form of firewalls offers a level of security based on the

following:

1. A packet filter is placed in a strategically selected place at the gateway of the

network to be protected from the outside world, usually the Internet. Based

on this, it is worth mentioning that any traffic that manages to bypass the

filter is not inspected thereafter and can create a potential hazard.

2. Packets passing through the device in which the packet filter is placed are

inspected against a list of rules called the access list. Each rule within

the access list can decide to accept or refuse the packet passing through

depending on the condition in the particular rule. A rule may have the

following basic form: if condition is met then accept-packet. If the end of

the access list is reached before a matching accept or refuse rule is found, in

most implementations, the packet is refused.
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3. Rules in access lists are generated based on a security policy. Simple security

policies can be implemented easily with a small number of rules, while others

can be very long. Very long lists can be difficult to comprehend and edit and

can contain duplicated or contradicting rules and may not fully implement

the security policy. They can also negatively affect performance, as they are

a potential bottleneck for the communication channel.

Approaches used to provide security by firewalls are broadly classified according

to Selani (1998) and CORBA (1998), into two types: transport level and applica-

tion level. Packet filtering is used for transport level type firewalls.

Application level firewalls, also known as the proxy type or circuit proxy gateways,

do not rely on general purpose mechanisms (access list rules) to allow traffic

to pass but use special purpose code for each desired service. Proxies hide all

addresses in the network they protect, and communicate with the outside world

using the proxies’ own IP (Internet Protocol) address. The circuit proxy replaces

the original address on a packet (its own address) with the address of the intended

destination (Habtamu, 2000).

In Network and Transport level packet filtering firewalls, packet filtering refers

to the basic operation performed by the firewall to inspect the packet header,

verifying any of the fields in the packet header, i.e. the IP address, the port or

both, and then accepting or rejecting the packet. Filtering can be applied to

incoming or outgoing packets or both. Packet filtering is transparent to the users

or independent of the user’s knowledge or intervention. Firewalls of this type

are cheap, simple, fast, efficient and provide a good level of security (Habtamu,

2000). IP level filtering has proved to be efficient and effective at improving

system security (Schuba and Spafford, 1997). A single rule can help protect an

entire network by prohibiting connections between specific Internet sources and

internal computers. Packet filters do not require client computers to be specifically

configured; the packet filters do all of the work. But the cost of filtering may still

be a significant bottleneck (Ballew, 1997). The time cost of performing a look-up

on a rule list may become too high, particularly for routers where this may add

significantly to the latency of the network.

The rules are implemented one at a time to check if the condition matches the

incoming packet and consequently accept or reject it depending on the action. If

the condition does not match the rule then the checking continues with the next

rule. If none of the conditions in all the rules are matched then the packet is
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usually rejected. The rules are checked in a specific order and the order is very

critical. Changing the order can result in a different decision of acceptance or

rejection for some packets (Hazelhurst, 2001).

The firewall design policy describes how the firewall will implement the network

service access policy, and precisely how it will take access decisions in accordance

with it. Typically, the policy is either “permit any service not expressly denied”

or “deny any service not expressly permitted”. This determines what happens to

a packet if no rule is found in the list that will cause it to be accepted or rejected.

An extreme access policy example allows only outgoing access to the Internet but

no incoming access. Another example is to allow access only to certain selected

services.

Although the main function of firewalls through packet filtering was originally

a basic security implementation, packet filtering has now been applied in many

other areas. The following are some of the services and applications where packet

filtering and firewalling are applied:

• Logging of alerts and notification. Logging of events is important for future

analyses of attacks.

• Virtual Private Networks (VPNs). A VPN is an encrypted tunnel over

the Internet or untrusted network. A VPN provides confidentiality and

integrity of transmissions, and logically all hosts in a VPN are in one In-

tranet (Schreiner, 1998). As well as the filtering of packets by accepting

packets only from hosts who are members of the VPN, firewalls can imple-

ment other functionalities like strong authentication and encryption of all

traffic.

• Quality of Service (QoS). Packet filtering can be used as a control to limit

the use of certain network connections and therefore make a particular con-

nection dedicated for a particular service. This allows administrators to

control what proportion of a given network connection is to be dedicated to

a given service.

2.3.1 Limitations of Firewalls

IP was not designed with security as a priority and is, as such, inherently inse-

cure. Firewalls are a common method of addressing these insecurities and are
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often regarded the only line of defence (Haeni, 1997). Firewalls do not eliminate

these insecurities entirely, but do make unauthorised access to a system from the

Internet far more difficult. Packet interception and filtering can suffer from some

difficulties:

1. A firewall is not effective against users with authorised access.

2. Most firewalls are not a real defence against attacks using known software

bugs or malicious problems such as mail bombs, ping floods, viruses and

Trojan horses.

3. Firewalls rely on accurate IP source addresses for making filtering decisions.

IP addresses can be faked (Bellovin, 1992).

4. Packet fragmentation complications. IP will break up large transmission

units into small units of data known as fragments. This is done so that the

data can be transferred over networks that support small maximum packet

sizes. IP will re-assemble those fragment packets when the data is received

at the destination (Tanenbaum, 1996). Packet fragmentation increases the

complication for firewall filtering.

5. Scalability, with reference to having a single point (firewall) where all traffic

flows through it makes it a central bandwidth bottleneck. Extra strain is

created with the growing number of packets and computational cost due to

increased sophistication of the filtering required. There is security a versus

performance dilemma (Friedman and Nagle, 2001). Computational cost is

influenced by how far up the network stack a packet must travel, as well as

what level of security checks are being performed on each packet. Packet

filter firewalls operate at the lowest level of all filters. They generally provide

the highest performance (speed-wise), followed by circuit level firewalls and

application layer firewalls. As packets pass through more protocol layers,

they are inspected in more detail. As a result, application layer firewalls

are considered more secure than circuit level firewalls. However, because a

circuit level firewall does not perform extensive security checks, other than

whether a network packet is associated with a valid connection, it can (and

often does) perform faster than a packet filter firewall that contains a large

set of accept and deny rules.

6. The process of configuring and testing packet filtering rules tends to be

lengthy, difficult and complicated. The complexity of packet filtering con-

sists of two parts. The first is the difficulty of correctly specifying fil-

ters (Chapman, 1992). The second is that reordering filtering rules makes
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correctly specifying filters even more difficult (Hazelhurst, 1999). The order

in which rules are specified is critical, to the extent that changing the order

of the rules could result in some packets that were previously rejected being

accepted and vice-versa. Consider the following simple example of a security

policy “Accept packets from the domain D only if access is required through

port P, while all other packets are refused” expressed by the following two

rules and in this order:

(a) Accept any packet from domain D on port P

(b) Refuse all packets from domain D

In this order, the first rule above will cause acceptance of a packet from

domain D if it requests access on port P. The second rule deals with all

other packets from domain D and causes them to be refused. Consider the

situation if the order of the rules is changed to the following:

(a) Refuse all packets from domain D

(b) Accept any packet from domain D on port P

The first rule now will cause the refusal of all packets arriving from domain

D. Those packets requesting access for port P will not have a chance of

reaching the second rule. The change in the ordering of the rules in this

case causes the refusal of packets that according to security policy should

have been accepted.

In general, application layer firewalls are the architecture with the lowest perfor-

mance due to the fact that all network packets are sent up one network stack and

down another, thus being treated as two separate network sessions. Application

layer firewalls also implement the broadest set of security data checks, which in-

creases the processing time required. Throughout the industry, application layer

firewalls are generally considered to provide the best security.

2.3.2 Packet Classifications

The basic concept behind packet filtering consists of inspecting the header fields

of incoming and/or outgoing packets and then applying rules from a rule base to

determine whether to permit the packet or deny and drop it.

As opposed to a “best-effort” service, different qualities of service are requested

from routers and are expected for different applications. Internet routers that
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operate as firewalls, or provide a variety of service classes, perform different op-

erations on different flows. A flow is defined to be all packets sharing common

header characteristics (Gupta and McKeown, 1999); for example, a flow may be

defined as all the packets between two specific IP addresses. Another flow may

contain all of the packets that have the same source or destination IP addresses.

Packets within a flow obey a pre-defined rule and are processed in a similar manner

by the router.

In order to classify a packet, a router consults of a table (or classifier) using one

or more fields from the packet header to search for the corresponding flow. The

classifier is a set of rules that identifies each flow and the actions to be performed

on each. Packet classification is the process of categorising packets into “flows”

in an Internet router based on a specified collection of rules.

Packet classification is employed by Internet Routers and other communication

devices to implement a number of Internet services and a wide variety of network

security policies. Examples are to prevent unauthorized access from outside the

protected network and to prevent attacks of DoS resulting in actual denial of

service to legitimate users. For Virtual Private Networks (VPN), packet inter-

ception can ensure their privacy by only allowing packets sent by members of the

same private network. Another use of packet interception is for Quality of Service

(QoS) as a control to limit the use of certain network connections (dedication)

to a particular service. Packet classification is a base for routing, rate limiting,

access-control, resource reservation such as virtual bandwidth allocation, policy-

based routing, service differentiation, load balancing, traffic shaping, and traffic

billing services (Feldmann and Muthukrishnan, 2000).

All of these services require the devices to distinguish packets belonging to dif-

ferent flows. The router for example is required to classify incoming packets into

different flows and then perform appropriate actions depending upon which flow

the incoming packet has been identified as its flow.

For instance, each rule in a firewall access list could specify a set of source and

destination addresses, and associate a corresponding ‘deny’ or ‘permit’ action

with it. Alternatively the rules could be based on several fields of the packet

containing addressing and protocol information. Traditionally, in firewalls, rules

are mainly used to accept or deny a packet, and in a router they are used to

ultimately find the IP address of the next hop of where the packet needs to be

routed. The simplest and most well known form of packet classification is used to
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route IP datagrams, were each rule specifies a destination prefix. The associated

action is the IP address of the next hop. Generic packet classification requires

the router to classify a packet based on multiple fields in its header. Each rule

of the classifier specifies a class that is based on some criteria on some header

fields, a packet may belong to, and associates with, each class an identifier. This

identifier uniquely specifies the action associated with the rule. Each rule has a

number of components. The ith component of rule R, referred to as R[i], is a

regular expression on the ith field of the packet header. A packet P is said to

match a particular rule R, if, the ith field of the header of P satisfies the regular

expression R[i] (Gupta and McKeown, 1999).

2.4 Summary

This chapter presented issues related to computer network security. It described

categories of abuse and attacks on computer networks from the Internet. Firewalls

and packet filtering were discussed and some of the related problems outlined.

The next chapter investigates simulation as a technique for system development,

testing and performance analysis. Advantages and types of simulation. It will

also looks into model development validation and verification.
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Chapter 3

Performance Evaluation

3.1 Introduction

A number of approaches may be used to design, develop and evaluate the perfor-

mance of a system. Such approaches range from the design and development of

a real life system and testing it in real life environments; to using a model of the

system and the environments. In this chapter we discuss the pros and cons of us-

ing simulation, performance evaluation using simulation and model development

for simulation, and issues relating to using simulation in this research work.

3.2 Simulation and Modelling

Many definitions for simulation are available. The following is a general definition

given by Shannon (1975) for simulation: “The use of a mathematical/logical model

as an experimental vehicle to answer questions about a referent system”. This

definition does not specify computer based simulation. Essentially, simulation

provides the basis for making some decision about a system in real life based on

answers provided by the simulation. This decision taken based on some simulation

can be of extreme importance importance. Not just the decision alone, but also

the subsequent actions that follow up. A real system may be built on the basis of a

wrong decision based on bad simulation. Often, simulation provides an assessment

of some system which is not readily amenable to other types of analysis; thus the
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simulation provides the only means by which to assess a given situation. The

overriding objective of simulation is arriving at the correct decision. Simulation

may also be desired to provide a variety of behaviors and capture a multitude of

characteristics, but none of these should be achieved at the expense of a correct

decision.

Computer simulation is the discipline that allows the study of the complex dy-

namics of a physical system by designing a model of the system, executing the

model on a computer and analysing the execution output. A computer simulation

or a computer model is a computer program which attempts to simulate an ab-

stract model of a particular system. Computer simulations have become a useful

part of modelling many systems to gain insight into the operation of those sys-

tems. Traditionally, the formal modelling of systems has been via a mathematical

model, which attempts to find analytical solutions to problems which enables the

prediction of the behaviour of the system from a set of parameters and initial

conditions. Computer simulations build on, and are a useful adjunct to purely

mathematical models.

According to Shannon (1975), digital computer simulation is the process of de-

signing a model of a real system and conducting experiments with this model on

a digital computer for the specific purpose of experimentation.

Conducting a performance evaluation of a system to establish which approach,

which method or which design is best, can be a difficult task. The following three

evaluation techniques are available:

1. Analytical evaluation: The analytical evaluation is based on representing

the system in mathematical equations and functions. This mathematical

representation can often be used to analytically predict the exact behaviour

of the system. This method can be very accurate in small systems. As the

system gets more complicated, this approach becomes very difficult, hard to

comprehend and requires large amounts of computational resources.

2. Real world evaluation: This approach requires executing the system in

the real world environment, and performing the necessary evaluation. This

is almost impractical in many cases due to the time cost involved. In other

cases, testing may not be permitted in the real world environment.

3. Simulation: Allows evaluation through experiments with a model of the

system which allows observation of behaviour. Simulation in general is the
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imitation of the operation of a real system. With reference to computers, a

computer simulation is the execution of a model, represented by a computer

program that gives information about the simulated system.

3.2.1 Advantages of Simulation

Simulation allows measurements and evaluation of a system at a suitable pace.

In many cases simulation is less time consuming than real world measurement

while in other cases it may suit to simulate things at a slower pace. Performance

analysis of modern communication systems is a complex task, and one problem is

that the time scales can differ by several orders of magnitude, further increasing

the model complexity. However, given that one can reduce model complexity, it

is still often the case that a precise and accurate model with known analytical

results poses difficult problems in terms of the computability of the performance

measures of interest (Lassila, 2001). Thus, approximative models or methods,

such as simulation methods, need to be developed to obtain approximations or

estimates of performance measures.

One of the key strengths of simulation is that it enables the study of a system

over time. An approach for controlling the time advance in a simulation is to step

the model into the future only at discrete, possibly random points in time when

an event that could change the state of the system occurs.

In the field of simulation, the concept of “principle of computational equivalence”

has beneficial implications for the decision-maker. Simulated experimentation

accelerates and replaces effectively the “wait and see” anxieties in discovering

new insights and explanations of future behavior of the real system.

Simulation is a powerful tool for evaluating and understanding the performance

of existing and proposed systems. It is more desirable in many situations to use

simulation. The following are general reasons why simulation may be a more

desirable approach to adopt when developing or evaluating a system:

1. Where work on the real system is or is almost impossible due to either one

or more of the following:

• if there is a high level of danger involved,

• when a high level of cost is involved,
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• when the timespan is too short or too long to observe the real system.

2. Where simulation can be used as a tool to better understand and analyse

systems. Non-experts in the topic of system analysis and users can model

and analyse the operation of real systems using readily available simulation

software. Such users might find the mathematical models built by experts

difficult to comprehend. The simulation approach of analysing a model gives

the analyst the advantage of visualising and understanding the system. The

analytical approach for a system representation and a system analysis is

purely theoretical, where as simulation can be used as a tool to optimise

performance and/or the reliability of systems at very low costs.

3. Simulation is extensively used to verify the correctness of a design.

4. System modelling and simulation is helpful for designing and engineering

real world jobs. Most digital integrated circuits manufactured today are first

extensively simulated before they are manufactured to identify and correct

design errors. Simulation early in the design cycle is important because the

cost repairing mistakes increases dramatically the later in the product life

cycle that the error is detected (Arsham, 1996).

5. Simulation is also used in developing “virtual environments” for training,

with which a user can interact with some system simulating reality, like

training of military personnel for battlefield situations at a fraction of the

cost of running exercises involving real military equipment.

6. In cases where real system behaviour cannot be repeatedly observed due to

the difficulty of establishing the exact environment, simulation can be used

to repeat execution of a model in the exact environment. This makes it

possible to observe and study the effect of individual factors.

7. In many cases, where a model is a good representation of the system under

investigation, the simulation approach provides higher reliability, more flex-

ibility and convenience than other methods in analysing and understanding

the real system.

3.2.2 Types of Simulation

Based on the definitions given by Nance (1993), digital computer simulation may

be divided into three categories:
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1. Monte Carlo: Monte Carlo simulation is a method by which an inherently

non-probabilistic problem is solved by a stochastic process; the explicit rep-

resentation of time is not required.

2. Discrete Event: A discrete event simulation refers to where system

changes are modelled to occur at discrete points in time. If changes to

program variables occur at precise points in simulation time, the simulation

is a discrete event.

3. Continuous Time: In a continuous time simulation, the variables within

the simulation are continuous functions, e.g. a system of differential equa-

tions. The state of the system changes all the time, not just at the time of

some discrete event. An example is the change of the height of liquid in a

filling tank.

Nance (1993) notes that three further related forms of simulation are commonly

used in the literature. A combined simulation refers generally to a simulation

that has both discrete event and continuous components. Hybrid simulation

refers to the use of an analytical sub-model within a discrete event model. Fi-

nally, gaming can have discrete event, continuous, and/or Monte Carlo modelling

components.

3.3 Discrete Event Simulation (DES)

A discrete simulation, or stochastic simulation, manages only events and time. In

this type of simulation, the simulator maintains a queue of events sorted by the

simulated time they should occur. The simulator reads the queue and triggers new

events as each event is processed. It is not important to execute the simulation

in real time. It is often more important to be able to access the data produced

by the simulation and, to discover logic defects in the design or in the sequence

of events.

The physical system being modelled consists of a set of physical processes which

are interacting in some way. If these interactions occur at discrete points in time

then the system can be modelled as a discrete event system. The interactions

change the state of the physical process and may cause further interactions. The

simulation of such a system models the interactions between physical processes

as events that carry information that changes the system state; processing events
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can generate new events. These events occurs at discrete points in time and are

processed in the same order as they would the real system. The DES system

maintains a list of events sorted according to the event time-stamp. The time-

stamp on the event is generated by the clock. The clock, which is a real value, gives

the time at which the system is being simulated. The DES algorithm performs

the following operation on the event-list with the clock initially set to zero.

1. Select the element with the minimum time-stamp from the event-list and

remove it.

2. Update the clock’s value to the time-stamp on the event.

3. Process the event and change the state if needed.

4. If the previous step generated new events then they are inserted into the

event-list.

5. If there are more events to process then goto step 1, else stop.

Discrete event simulation is one which employs a next-event technique to control

the behaviour of the model. Many applications of discrete simulation involve

queuing systems of one kind or another. In the simplest case, the queue would

operate with a first-in first-out (FIFO) discipline.

Discrete event simulation (DES) enables a model to be evaluated faster since

only the significant points in time when something happens in the system are

considered. DES is used in solving problems in a variety of domains such as

service industries, manufacturing and telecommunications. Computer simulations

of such applications are becoming larger and more complicated as people need to

model more complex systems. Although computer power continually increases,

simulations of such large systems are still time consuming.

Parallel discrete event simulation (PDES) has as its main goal the reduction of

execution time of a DES application by executing it concurrently on multiproces-

sor computers. A large body of research has been conducted in this area and a

number of approaches for solving the main issues related to PDES, such as syn-

chronisation, scheduling, memory management, partitioning and load balancing,

have been proposed. Although encouraging results have been obtained with dif-

ferent approaches, they are highly dependent on the application characteristics

and none proves to be a universal solution that can be successfully applied to any

type of simulation problem. Carrying out a DES experiment on a computer can
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be done in different ways: using an available simulator or implementing the model

using a special simulation language or general purpose programming language.

Within a discrete event simulation, the two concepts of time and state are of

paramount importance. Nance (1981) identifies the following primitives which

permit a precise definition of the relationship between these fundamental concepts:

• An instant is a value of system time at which the value of at least one

attribute of an object can be altered.

• An interval is the duration between two successive instants.

• A span is the contiguous succession of one or more intervals.

• The state of an object is the enumeration of all attribute values of that

object at a particular instant.

These definitions provide the basis for some widely used (and, historically, just as

widely misused) simulation concepts:

• An activity is the state of an object over an interval.

• An event is a change in an object state, occurring at an instant, and initiates

an activity precluded prior to that instant. An event is said to be determined

if the only condition on event occurrence can be expressed strictly as a

function of time. Otherwise, the event is contingent.

• An object activity is the state of an object between two events describing

successive state changes for that object.

• A process is the succession of states of an object over a span (or the con-

tiguous succession of one or more activities).

These concepts may be viewed as illustrated in Figure 3.1, keeping in mind that an

activity for an object is bounded by two successive events for that object (Nance,

1981).

To briefly summarize, modelling is the process of describing a system (producing

a model of that system) with the goal of experimenting with that model to gain

some insight into the behavior of the system. The model itself is a collection of

interacting objects, these objects being described by attributes. An object-based

view of a model is not the only possible description of a system. For example,

a system may be modelled as a set of functions that acts on streams of input to
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Figure 3.1: Illustration of Event, Activity and Process.

produce output (e.g. Hatley and Pirbhai (1987)), or as a set of data structures

(e.g. Jackson (1983)) with some prescribed behavior.

There are three major conceptual approaches (world views) within discrete simula-

tion. These are event scheduling, activity scanning, and process orientation (Der-

rick, 1992). Each approach is adopted by some programming language, and, more

importantly, offers a different way to look at a simulation problem. Each, in its

own way, suggests mechanisms to model real situations.

• In an event-scheduling world view, the modeler identifies when actions are

to occur in a model. Event scheduling was one of the first simulation ap-

proaches to be developed. An event is anything that changes the state of

the system other than the mere passage of time. The essential idea of event

scheduling is to move along the time scale until an event occurs and then,

depending on the event, modify the system state and possibly schedule new

events.

• In an activity-scanning world view, the model designer identifies why actions

are to occur in a model.

• In a process-interaction world view, the model designer identifies the com-

ponents of a model and describes the sequence of actions of each one.

In general, a basic system consists of a number of entities. An entity is one or

more objects which randomly enter the system and move through it and even-

tually depart. These entities get serviced and may be made to wait. Events are
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occurrences within the system, at different points in time which can cause amongst

other things, the state of the system to change. When events occur at distinct

points of time then the state of the system changes at distinct points of time.

If the events are finite, then the simulation is called a discrete event simulation.

“Discrete-event” means that the system is viewed as progressing through time

from one important event to another, rather than changing continuously.

Figure 3.2 represents the basic flow diagram of a simulation application on a com-

puter. This is assuming a discrete simulation of a very simple system consisting

of a single queue and a single server. Objects arriving into the system may be

packets arriving at random time intervals. An arriving packet may be placed in

the queue waiting to be assigned the server if there are other packets waiting in

the queue and/or the server is busy serving another packet. The queue may be

skipped if the server is free, and the arriving packet may be assigned the server

immediately. A number of properties or characteristics are associated with each

packet which distinguish one packet from another. These properties are created

by the currently arriving packet. Packets waiting in the queue will be moved to

the server by the packet departing the server. The simulation time shall start

normally from time zero and shall be incremented by one unit of time. Each unit

can represent a millisecond, microsecond or any other suitable real time unit.

In this basic system arriving objects may be treated similarly. In more sophis-

ticated systems, many properties may be associated with these objects to allow

different handling of differing objects. Examples of such properties are that the

priority of each arriving object which may cause it to jump to the front of the

queue; a type of object may need longer or shorter service time. A large number

of different properties may be associated with objects to facilitate flexible and

more realistic simulation.

The system may have multiple queues or multiple servers arranged in sequence or

in parallel. When queues and servers are arranged in consecutive sequence, the

layout is known as a network layout. Queues may also have a number of properties

indicating how the system should operate or in someway affecting its operation.

Examples of such properties are if the queue has a limited or limitless size, or a

priority level of the queue if queue priority is to be implemented in a number of

queues. Similarly, the servers may be assigned a number of properties such as the

length of service time of the server and any other relevant properties.
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Figure 3.2: Basic logic of discrete event simulation

3.3.1 Parallel Simulation

Parallel simulation is the process of using multiple processors simultaneously

for executing a single simulation, with the goal of reducing the total execution

time (Bhatt et al., 1998). Here, simulation execution time is reduced to tolerable

levels, such as from several days down to a few hours. A parallel discrete event

simulation program can be viewed as a collection of interacting sequential simu-

lators, called logical processes (LPs). The computation performed by each logical

process (LP) is a sequence of event computations, where each event represents

some interesting action in the model e.g. the arrival of a new packet. Each event

contains a time-stamp indicating when that event occurs. Logical processes (LPs)

interact by scheduling events for each other. Ensuring time-stamp ordered pro-

cessing of events is a fundamental problem in parallel discrete event simulation

requiring complex techniques (Bhatt et al., 1998).
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3.4 System Modelling

A simulation involves modelling a system. Delta project report (Holbaek-Hanssen

et al., 1977) defines a system as: “A system is a part of the world which we choose

to regard as a whole, separated from the rest of the world for some period of

consideration, a whole which we choose to consider as containing a collection of

components, each characterized by a selected set of data items and patterns, and

by actions which may involve itself [a component] and other components. The

system may be real or imagined and may receive input from, and/or produce

output for, its environment”.

A model is an abstraction of a system intended to replicate some properties of

that system (Overstreet, 1982). The collection of properties the model is intended

to replicate for the purpose of providing answers to specific questions about the

system must include the modelling objective. The importance of the modelling

objective cannot be overstated; a proper formulation of the objective is essential

for any successful simulation study. Only through the objective can meaning

be assigned to any given simulation program. Since by definition a model is an

abstraction, details exist in the system that do not have representation in the

model. In order to justify the level of abstraction, the model assumptions must

be reconciled with the modelling objective.

According to Nance (1981), a model is comprised of objects and the relationships

among objects. An object is anything characterised by one or more attributes to

which values are assigned. The values assigned to attributes may conform to an

attribute typing similar to that of conventional high level programming languages.

Studying an existing or a new system using simulation involves three steps:

1. Creating a system model: Those features within the system, which are

deemed significant in determining its performance, are determined. These

features are abstractly defined. This abstraction is called the system model.

2. Model implementation: A computer program is written; the execution of

which mimics the behaviour of the model.

3. Performance estimation: An estimate of the performance of the original

system is computed using the data collected during the simulation model

execution. The accuracy of such estimates depends on the fidelity of the
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model and the way in which the measurements are taken from the simulation

execution.

The general role of system simulation in system design is depicted in Figure 3.3.

The designer relies on the simulation model to provide guidance in choosing among

alternative design choices, to detect bottlenecks in the system performance, or to

support cost/benefit analysis. As part of this process, the designer may use the

simulation output to modify the system model as opposed to the system itself, in

order to include details that may have been omitted in the previous abstraction,

or to change the implementation for example to collect additional or alternative

types of data. Simulation may be used as a tool to help validate an analytic

approach to performance evaluation.

Figure 3.3: The role of simulation in design

Theoretically and ideally, outputs from a simulation should provide an indication

about the behaviour of the real system being simulated. More precisely, the

simulation outputs provide indication about the behaviour of the model. It is the

task of the model designer to ensure that the model is sufficiently close to the

system being modelled that the results obtained from the model can be applied to

the system. That is why it is of the utmost importance to ensure that the model

is a very close representation of the real system.

On the other hand, each output produced by a simulation of a model can be

thought of as a measurement of its behaviour. It is from such output that the

performance metrics of interest are generated.

Simulation models, in general, will produce random or stochastic output data. A

major element of simulation analysis is the analysis of such output data, which

controls the execution of simulation models, in order to obtain statistical data

of acceptable quality. Parameters of the model are estimated by analysing the
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output produced. From a statistical point of view, it is necessary to have both

point and interval estimates of these parameters.

System Simulation is the mimicking of the operation of a real system in a com-

puter, such as the day-to-day operation of a bank, or the value of a stock portfolio

over a time period, or the running of an assembly line in a factory, or the staff

assignment of a hospital or a security company. Instead of building extensive

mathematical models by experts, readily available simulation software has made

it possible to model and analyze the operation of a real system by non-experts.

A simulation is the execution of a model, represented by a computer program that

gives information about the system being investigated. The simulation approach

of analysing a model is different to the analytical approach, where the method of

analyzing the system is purely theoretical. The simulation approach gives more

flexibility and convenience. The activities of the model consist of events, which

are activated at certain points in time and in this way affect the overall state of

the system. The points in time that an event is activated are randomized, so that

no input from outside the system is required. Events exist autonomously and are

discrete, so between the execution of two events nothing happens. SIMSCRIPT

provides a process-based approach of writing a simulation program. With this ap-

proach, the components of the program consist of entities, which combine several

related events into one process.

There are many situations and scenarios where computer simulation can be ef-

fectively used. In addition to its use as a tool to better understand and optimize

performance and/or reliability of systems, simulation is also extensively used to

verify the correctness of designs. Digital integrated circuits manufactured today

are first extensively simulated before they are manufactured to identify and cor-

rect design errors. Simulation early in the design cycle is important because the

cost to repair mistakes increases dramatically the later in the product life cycle

that the error is detected. Another important application of simulation is in de-

veloping virtual environments, simulations generate dynamic environments with

which users can interact as if they were really there. Such simulations are used ex-

tensively today to train military personnel for battlefield situations, at a fraction

of the cost of running exercises involving real tanks, aircraft, etc.

Dynamic modelling in organizations is the collective ability to understand the

implications of change over time. This skill lies at the heart of a successful strategic

decision process. The availability of effective visual modelling and simulation
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enables the analyst and the decision-maker to boost their dynamic decision by

making rehearsing strategies to avoid hidden pitfalls.

3.5 Model Validation and Verification

Simulation models are increasingly being used in problem solving and decision

making. Decisions based on information derived from the results of models are

used by many people developing new models and systems or for other purposes.

It is a concern shared by all those affected by decisions based on such models

whether those models and their results are “correct”. Model validation is defined

to mean “substantiation that a computerised model within its domain of appli-

cability possesses a satisfactory range of accuracy consistent with the intended

application of the model” (Schlesinger et al., 1979). Model verification is often

defined as “ensuring that the computer program of the computerised model and

its implementation are correct”. Model credibility is concerned with developing

the confidence needed by potential users in a model that they are willing to use

the model and the derived information (Sargent, 1998).

A model should be developed for a specific purpose or application and its validity

determined with respect to that purpose. If the purpose of a model is to answer a

variety of questions, the validity of the model needs to be determined with respect

to each question. Numerous sets of experimental conditions are usually required

to define the domain of a model’s set of experimental conditions.

A model is considered valid for a set of experimental conditions if its accuracy

is within its acceptable range, which is the amount of accuracy required for the

model’s intended purpose (Sargent, 1998). This usually requires that the model’s

variables of interest be identified and that their required amount of accuracy be

specified. The amount of accuracy required should be specified prior to starting

the development process. Several versions of a model are usually developed prior

to obtaining a satisfactory valid model. The substantiation that a model is valid

(model verification and validation) is generally considered to be a process and is

usually part of the model development process.

It is often too costly and time consuming to determine that a model is absolutely

valid over the complete domain of its intended applicability. Instead, test and
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evaluations are conducted until sufficient confidence is obtained that a model can

be considered valid for its intended application (Sargent, 1982; Shannon, 1975).

Deciding whether a simulation model is valid or invalid can follow either of the

following approaches (Sargent, 1998):

1. The development team makes the decision as to whether the model is valid.

This is a subjective decision based on the result of various test and evalua-

tions conducted as part of the model development process. This is the most

common approach.

2. Independent verification and validation (IV&V). A third independent party

is used to decided whether the model is valid. The third party is independent

of the both the model development team and the model sponsor or user. The

third party conducts an evaluation to determine the model’s validity. Wood

(1986) makes the conclusion that a complete IV&V evaluation is extremely

costly and time consuming for what is obtained.

3. Scoring model. Scores or weights are determined subjectively when conduct-

ing various aspects of the validation process and then combined to determine

category scores and an overall score for the simulation model (Gass, 1993).

A simulation model is considered valid if its overall and category scores are

greater than some passing scores. This approach is infrequently used in

practice. Sargent (1998) does not believe in the use of a scoring model for

determining validity, for the following reasons:

(a) the subjectiveness of this approach tends to be hidden and it thus

appears merely to be objective,

(b) the passing scores must be decided in some usually subjective way,

(c) a model may receive a passing score and yet have a defect that needs

correction,

(d) the score(s) may cause overconfidence in a model or be used to argue

falsly that one model is better than another.

3.6 Random Number Generation

A distinguishing feature of stochastic discrete-event simulation is the need to pro-

duce random values from one or more probability distributions. The algorithms
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used to produce these values are called random number generators. Software ran-

dom number generators are somewhat inappropriately named. A software random

number generator is a numerical algorithm; and so the numbers it produces are

completely deterministic, not random. For this reason, the algorithms are some-

times referred to as pseudo-random number generators. These pseudo-random

typically start with a seed quantity and use numeric or logical operations to pro-

duce a sequence of values. In fact, statistical analyses of stochastic simulations are

based on the assumption that the software can generate streams of independent

random variables with specified distributions. But how is it possible to know that

the random number generator is acceptable enough to provide reliable results for

a given number of problems? The answer is that it is not possible to know (Page

et al., 1999). The quality of the random number generator may be measured

through analysing the generator with respect to certain criteria. Building a ran-

dom number generator that passes all statistical tests (or that gives the correct

output distribution for all simulation problems, which is equivalent) is known to

be impossible (Page et al., 1999).

Since random number generators do not produce truly random sequences, it is

possible that the produced results may be affected by the generator used. Many

widely used random number generators have been shown to have quite poor ran-

domness properties that lead to incorrect results in certain applications. It is

therefore crucial to use a random number generator that has been thoroughly

tested and recommended. Even then, it is still possible that generators that have

passed standard tests may not be adequate for a particular application. It is there-

fore recommended that application programs be run using at least two different

random number generators to check that the results are consistent.

True random numbers can only be produced through hardware. A hardware (true)

random number generator is an electronic device that produces genuine random

numbers as opposed to the pseudo-random numbers produced by a computer pro-

gram. The usual method is to amplify noise generated by a resistor (Johnson

noise) or a semi-conductor diode and feed this to a comparator or Schmitt trig-

ger. If the output is sampled a series of bits are obtained which are statistically

independent. These can be assembled into random numbers.

There exists a number of tests which can be used to test a list of random numbers

generated by a hardware or pseudo-random number generator to verify that they

are random with some degree of confidence.
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3.7 Summary

This chapter discussed simulation and modelling. It outlined the different types of

simulation relating to this research. The advantages of simulation were discussed.

The steps of building a model of a system were outlined, pointing out problems

found through other research work in the area. A brief study of random number

generators and their effect on simulations was conducted. The next chapter anal-

ysis access lists and packet filtering and will outline the requirements and provides

a specification for the model to be created.
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Chapter 4

Requirements Analysis

4.1 Introduction

This chapter investigates evaluation techniques and specifies performance criteria.

The chapter also describes the analysis of access lists, outlines existing problems

and describes suggested solutions. Finally, detailed requirements specifications

are defined.

4.2 Evaluation and Performance Criteria

To evaluate how well a system meets its specified requirements it will be neces-

sary to measure, or at least estimate, the performance of the system. Performance

evaluation is also an integral part of supporting an iterative design process. Opti-

misation of design cannot proceed without suitable techniques for evaluating the

effects of design changes on system performance.

Performance evaluation of access list packet filtering devices is difficult due to

their online operations and changeable nature as well as involvement in complex

internet communication. Performance evaluation of packet filtering systems under

a controlled simulation environment is a good option. Simulation is considered to

be an effective tool for the performance evaluation of access list packet filtering.

Simulation ensures that more tests can be performed rapidly than otherwise would
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be possible. Repeated tests can be carried out under exact conditions allowing

comparisons of different approaches.

Simulation requires the use of models of the real systems being simulated. In fact,

the evaluation due to a simulation is only meaningful and realistic depending on

how representative the model is of the real system. On the other hand, simula-

tion can provide valuable analysis during the development phase of the simulated

system. To obtain acceptable results from a simulation of the packet filter, packet

streams to be filtered, and access lists as the classifiers, models must be designed

and developed.

In order for a system to be developed and evaluated, certain levels of performance

must be identified and used as measures of acceptance. Such performance criteria

should be identified at an early stage of the system development. Such criteria

may differ according to the motivations and objectives.

A rearranged access list will be evaluated with respect to how well it meets its

requirements. These requirements will be specified later in this Chapter. Some of

these requirements will be performance related. Such requirements may include

the ability to process specified packet streams through some order of the access

list. Evaluation includes processing different levels of loads and the ability to

perform filtering within a specified time frame. The main performance measure

in this work is the total processing time for a given packet stream to be processed

through a given order of a given access list. This is how one access list can be

compared to another access list from a performance point of view. Instead of the

total processing time, performance is measured by the average processing time

per packet.

The following variables have been identified to have a possible influence on per-

formance of packet filtering:

• The number of rules in an access list and the number of classes into which

rules are classified.

• The number of rules in each class and the length of time needed for each

rule to process or inspect a packet.

• The characteristics of the packet stream, i.e. number of packets, average

time between packet arrivals, number of classes and number of packets in

each class.
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• The consistency of the results returned by the simulation executions.

• The average processing time per packet when a packet stream is filtered by

a given access list.

4.3 TCP/IP Packet Filtering

TCP/IP (Transmission Control Protocol/Internet Protocol) is actually a suite

of protocols which work together in a consistent fashion and which has become

the standard networking protocol used for Internet communications and network-

ing (Dunkels, 2002). Services residing on network servers can be accessed using

the TCP/IP protocol suite (Feit and Sidnie, 1993). Figure 4.1 shows the lay-

ered architecture of the TCP/IP suite. Distinct functions are implemented using

protocols in different layers. The layered structure reflects the many different pro-

cedures which must be carried out to achieve end-to-end communication across a

network.

At the Internet layer a number of protocols are used such as routing proto-

cols Inter-Gateway Routing Protocol (IGRP) and the Open Shortest Path First

(OSPF). Also the Internet Control Message Protocol (ICMP) is used to notify

the presence of errors on the network. The main communication protocol is the

Internet Protocol (IP). The IP protocol is a connectionless protocol and therefore

does not guarantee the safe delivery of packets transmitted.

IP is the primary layer 3 protocol in the Internet suite. In addition to internetwork

routing, IP provides error reporting, fragmentation and reassembly of information

units called datagrams for transmission over networks with different maximum

data unit sizes.

IP addresses are globally unique, 32-bit numbers assigned by the Network In-

formation Center. Globally unique addresses permit IP networks anywhere in

the world to communicate with each other. An IP address is divided into three

parts. The first part designates the network address, the second part designates

the subnet address, and the third part designates the host address (IETF, 1996).

IP addressing supports five different network classes A to E. Classes D and E are

not available to the public. Class A networks are intended mainly for use with a
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Figure 4.1: The TCP/IP Protocol suite

few very large networks, because they provide only 8 bits for the network address

field. Class B networks allocate 16 bits, and Class C networks allocate 24 bits for

the network address field. Class C networks only provide 8 bits for the host field,

however, so the number of hosts per network may be a limiting factor. In all three

cases, the leftmost bit(s) indicate the network class. IP addresses are written in

dotted decimal format; for example, 34.0.0.1.

The mask is bit combination used to describe which portion of the address iden-

tifies the network and which portion of the address identifies the node. Class A,

B, and C networks have default masks, also known as natural masks, as shown

below.

Class A: 255.0.0.0

Class B: 255.255.0.0

Class C: 255.255.255.0

TCP/IP (Transmission Control Protocol/Internet Protocol) filtering is achieved

by examining the Network and Transport layer packet headers depending on the

protocol suite. The information in the packet header inspected by the access list
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rules set may include the following:

1. the physical network interface that the packet arrives on,

2. the packet source IP address,

3. the packet destination IP address,

4. the protocol of the packet, type of transport layer (e.g. UDP, TCP etc.),

5. the transport layer source port (TCP/UDP),

6. the transport layer destination port (TCP/UDP),

7. some flags (e.g. a TCP packet contains connection status flags).

A rule set contains a list of rules, each of which is logically in the format: If (con-

dition) then (action) where the action is either a packet acceptance or rejection.

An example of a rule for a Cisco router (Cheswick and Bellovin, 1994) is as follows:

Access-list 101 permit TCP 20.9.17.8 0.0.0.0 121.11.127.20 0.0.0.0 range 23 27

The rule indicates that any TCP protocol packet with an IP source address

20.9.17.8 and destination IP address 121.11.127.20 is to be accepted provided

the destination port is in the range 23 to 27.

The mask part of the address determines which part of the address is masked or

ignored when the address is being processed. All zero as in the above example,

indicates to ignore none of the address parts, which normally identifies a specific

single computer. Masking is further discussed in section 4.3.3.

4.3.1 Firewall Approaches

Firewalls use one or more of three methods to control traffic flowing in and out of

the network:

1. Access list packet filtering: Used in the Internet and Transport layers.

This approach is based on using access lists or classifiers to block or to allow

packets to pass. The access list consists of a number of rules designed to

inspect the fields in the packet headers.
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2. Hiding local addresses: Used by what is known as Proxies, where the

the proxy uses its own address and hides the local machines’ addresses when

communicating through the Internet. Proxy servers are closely associated

with, and are often combined with a firewall. The proxy server is used to

access Web pages requested by other computers. When another computer

requests a Web page, it is retrieved by the proxy server and then sent to the

requesting computer. The net effect of this action is that the remote com-

puter hosting the Web page never comes into direct contact with anything

on a private network, other than the proxy server.

Proxy servers can also make an Internet access work more efficiently. If a

particular page is accessed on a Web site, it is cached (stored) on the proxy

server. The next time the same page needs to be accessed, it is loaded from

the cache from the server cache instead of the remote Web site.

3. Stateful inspection: In brief, a table is maintained of the state of all estab-

lished communication connections. A packet must have the correct details

for the specific state of communication to be allowed through, otherwise it

is discarded. In most implementations, packet filtering using an access list

only follows a successful packet state inspection.

Packet stateful filtering can be used for any TCP flow to short-cut later

filtering. For TCP flows, the filter will follow the ack/sequence numbers of

exchanged packets and this information is maintained in a table. The “short-

cuts” are extra tests performed on a packet. No alterations are done to the

access list rules. Stateful filtering will inspect the packet’s ack/sequence

numbers and only allow through packets which fall inside the correct win-

dow. If a matching packet is found in the table, it is not passed through to

the access list.

For UDP packets, packet exchanges are effectively stateless. However, if a

packet is first sent out from a given port, a reply is usually expected as a

response, in the opposite direction.

4.3.2 TCP/IP Packets’ Structures

Besides firewalls, packet filters are implemented in many other devices such as

routers and gateways. Basically, packet filtering restricts traffic of packets flowing

between the different networks. The restriction of packets is based on inspecting
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the packet header against a number of rules found in an access list. Access lists

contain rules that specify which packets should be allowed to pass through and

which should not. The rules are individually inspected until one is found which

determines the acceptance or refusal of the packet; or until the end of the list is

reached.

Traditionally, routers have forwarded packets based only on the destination ad-

dress in the packet. Increasingly, however, users are demanding, and some router

vendors are providing, a more discriminating form of router forwarding known as

service differentiation. This process involves mapping different packets to different

service classes.

Table 4.1 shows the Internet Protocol (IP) packet header structure. It contains

the following fields:

1. Version [VR] (4 bits): it contains the value 4 for IP version 4, and 6 for the

more recent version.

2. IP Header Length [HL] (4 bits): indicates the number of 32-bit words form-

ing the header, usually five.

3. Type of Service, [TS] (8 bits): now known as Differentiated Services Code

Point (DSCP). Usually set to 0, but may indicate a particular Quality of

Service needed from the network, the DSCP defines one of a set of class of

services.

4. Size of Datagram [SD](16 bits): contains the total size in bytes, this is the

combined length of the header and the data.

5. Identification [ID] (16 bits): contains a 16-bit number which together with

the source address uniquely identifies this packet. Used during reassembly

of fragmented datagrams.

6. Flags [FLG](4 bits -1): a sequence of three flags (one of the 4 bits is unused).

Used to control whether routers are allowed to fragment a packet (i.e. the

Don’t Fragment, [DF], flag).

7. Fragmentation Offset [FO] (12 bits): contains a count in bytes from the

start of the original sent packet, set by any router which performs IP router

fragmentation.
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Bits
Octet 0 1 2 3 4 5 6 7

1 Version Header length
2 Type of service
3 Total length
4
5 Identification
6
7 N/A DF MF Fragment offset
8
9 Time to live

10 Protocol
11 Header checksum
12
13 Source IP address
14
15
16
17 Destination IP address
18
19
20
21 Options(0 or more of 32 bits words)
22
23
24 padding

Table 4.1: The Internet Protocol (IP) header structure.

8. Time To Live [TTL] (8 bits): indicates number of hops /links which the

packet may be routed over, decremented by most routers. Used to prevent

accidental routing loops.

9. Protocol [PTL] (8 bits): Service Access Point (SAP) which indicates the

type of transport packet being carried (e.g. 1 = ICMP; 2= IGMP; 6 =

TCP; 17= UDP).

10. Header Checksum [HC] (16 bits): a 2’s complement checksum inserted by

the sender and updated whenever the packet header is modified by a router.

Used to detect processing errors introduced into the packet inside a router

or bridge where the packet is not protected by a link layer cyclic redundancy

check. Packets with an invalid checksum are discarded by all nodes in an

IP network.

11. Source Address [SAD] (32 bits): the IP address of the original sender of the

packet.
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12. Destination Address [DAD] (32 bits): the IP address of the final destination

of the packet.

13. Options [OP] (0 or more of 32-bits words): not normally used, but when

used the IP header length will be greater than five 32-bit words to indicate

the size of the options field.

Table 4.2 shows the Transmission Control Protocol (TCP) packet header struc-

ture. It contains contains the following fields:

1. Source Port [SP] (16 bits): when a connection is attempted, or being con-

ducted, this specifies what port the local machine is waiting to listen for

responses from the destination machine.

2. Destination Port [DP] (16 bits): when a user desires to connect to a service

on a remote machine, the Application Layer program specifies what port ini-

tial connections should use. When not used as part of an initial connection,

this specifies what port number is going to be used for the remote machine

as a packet is being sent out to its destination.

3. Sequence Number [SN] (32 bits): in a sliding window protocol like TCP, the

sequence number allows both TCP stacks to know what packets have been

received and which ones have not.

4. Acknowledgment Number [TL] (32 bits): this works by acknowledging the

sequence number as sent by the remote host. The local host’s Acknowl-

edgement Number is a reference to the remote machine’s Sequence number,

and the local machine’s sequence number is related to the remote machine’s

acknowledgement number.

5. Header Length [HL] (4 bits): just as for the TCP Header Length, this also

is a measure of the length of the header in 32-bit sized words.

6. Reserved (6 bits)

7. Urgent flag [URG] (1 bit): this specifies that the Urgent point included in

this packet is valid.

8. Acknowledgement flag [ACK] (1 bit): this specifies that the portion of the

header that has the acknowledgement number is is valid.

9. Push flag [PSH] (1 bit): this tells the TCP/IP stack that this should be

pushed up to the Application Layer program that needs, or requires it as

soon as time allows.
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Bits
Octet 0 1 2 3 4 5 6 7

1 Source port
2
3 Destination port
4
5 Sequence number
6
7
8
9 Acknowledgement

10
11
12
13 Header length reserved
14 reserved URG ACK PSH RST SYN FIN
15 Window
16
17 Checksum
18
19 Urgent pointer
20
21 Options (0 or more of 32 bits words)
22
23
24 padding

Table 4.2: The Transmission Control Protocol (TCP) header structure.

10. Reset flag [RST] (1 bit): this is used to reset the connection.

11. Synthesis flag [SYN] (1 bit): this is more commonly used to synchronise se-

quence numbers with acknowledgement numbers for both hosts. Sometimes

it is referred to as the synthesis of a connection.

12. Finish Flag [FIN] (1 bit): this is to specify that a connection is finished

according to the side that sent the packet with the FIN flag set.

13. Window size [WS] (16 bits): this specifies how many bytes may be received

on the receiving side before being halted from sliding any further and re-

ceiving any more bytes as a result of a packet at the beginning of the sliding

window not having been acknowledged or received.

14. TCP Checksum [TCPCS] (16 bits): this is a checksum that covers the header

and data portion of a TCP packet to allow the receiving host to verify the
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integrity of an incoming TCP packet.

15. Urgent Pointer [UP] (16 bits): this allows for a section of data as specified

by the Urgent pointer to be passed up by the receiving host quickly. It

points to the first urgent data byte in the packet.

16. Options [OP] (0 or more of 32-bits words): this specifies various TCP options

that are not regularly used.

17. Data (Variable bits): this is the payload, or data portion of an TCP packet.

The payload may be any number of application layer protocols. The most

common are HTTP, Telnet, SSH, FTP, but other popular protocols also use

TCP.

4.3.3 Filtering Mechanism

TCP/IP filtering means filtering using information found in the packet headers.

An access list called the classifier is used and contains a list of rules. Filtering

rules come in several formats, typically these are proprietary formats. While

the expressiveness and syntax of the formats differ, the following is a generic

description of how and what functions the rules do. A rule set consists of a list

of rules each with a potential action to either accept or reject a packet. The

rules are searched one by one to see whether the condition in the rule matches

the incoming packet: if it does, the packet is accepted or rejected depending on

the action specified, if the condition does not match the packet then the search

continues with the remaining rules. If none of the rules match, then the packet is

either accepted or rejected depending on the security policy being implemented,

that is, to accept or reject all packets not identified by the rule set.

Here are some of the keywords used in some of the different applications for their

rules’ specifications:

• accept, allow, pass to accept a packet.

• block, deny, reject, drop, refuse to block a packet.

• in, out referring to the incoming and outgoing traffic

• all, *, any to indicate all packets matching the condition.
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• from, to used to denote: from a source IP address or to a destination IP

address.

• between, .. used to indicate a range for example in a port number. Also,

a comma can be used. In some implementations the boolean operators or

their textual equivalence are used.

• short, frag to indicated fragmentation of packets.

• opts, ipoptions to indicate a packet using the IP optional fields.

• quick used in filters where the entire list must be checked as the normal

procedure. quick is used to instruct to terminate processing of subsequent

rules if the condition in the current rule matches the packet.

In general, a rule can contain any number of keywords and any combination of

some number of fields. However, in most implementations, there is a limit of eight

fields. Some implementations offer the boolean or conditional operators for use:

(<, >, <=, =, >=, <>, !).

Potentially any of the fields can be used, but the most commonly used fields are:

<Protocol>, <source IP address>, <destination IP address>, <source IP port>,

<destination IP port> and <TCP or ICMP flags>.

host names are used in some implementations instead of the source or destina-

tion address. The following is a brief description of some of the fields, purpose

for using them and alias words used to identify them. There are also examples of

actual values used or some key words regularly found as values:

1. Protocol:

This is used to specify the protocol in a filter rule. Packets belonging to a

particular protocol can be blocked or permitted. The name of the protocol

can be any valid name or number. For example, to block all incoming

ICMP packets:

block in proto icmp

or to allow all incoming IP packets which are of protocol IP version 4

pass in proto 4

Some computers might be set to handle a specific protocol and ban that

protocol on all other machines.

Some common protocols that firewall filters can be set for include:
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(a) IP (Internet Protocol) - the main delivery system over the Internet,

(b) TCP (Transmission Control Protocol) - used to split and rebuild

transmitted information,

(c) HTTP (Hyper Text Transfer Protocol) - used for Web pages,

(d) FTP (File Transfer Protocol) - used to download and upload files,

(e) UDP (User Datagram Protocol) - used for information that re-

quires no response, such as streaming audio and video,

(f) ICMP (Internet Control Message Protocol) - used by a router

to exchange the information with other routers,

(g) SMTP (Simple Mail Transport Protocol) - used to send text-

based information (e-mail),

(h) SNMP (Simple Network Management Protocol) - used to collect

system information from a remote computer,

(i) Telnet - used to perform commands on a remote computer,

2. IP addresses and Masking:

Each machine on the Internet is assigned a unique address called an IP

address. IP addresses in Version 4 are 32-bit numbers and 128 bits in Version

6. Many applications are now available for handling IP V6. Extended access

lists which allows address fields and header format handling. Our research

interest will apply similarly to both versions of the protocol. The 32-bit

number in Version 4, is normally expressed as four “octets” in a “dotted

decimal number”. A typical IP address is: 216.27.61.137. For example, if a

certain IP address outside the organisation is reading too many files from a

server, the firewall can be used to block all traffic to or from that IP address.

The mask is bit combination used to describe which portion of an address

refers to the subnet and which part refers to the host. It is also used in

filtering as a mechanism to refer to (accept of deny) receiving or sending

packets to or from a single computer node or a group of computers. A rule

can specify a range of addresses by using masking for both the source and

destination addresses. The mask 0.0.0.0, means no masking of any part of

the address given. An address is actually a 32 bit number (in IP version

4), which is expressed in the quad notation (four numbers each in the range

0..255). A mask is expressed similarly. It is the decimal representation of

the a four 8-bit binary numbers. When expressed in binary format, if a “1”
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appears in the mask, then the value of the corresponding bit in the address

is ignored when performing the matching.

For example, with the address 20.9.17.8 and mask 0.0.0.0, the address must

match exactly. While, with the address 20.9.17.8 and mask 0.0.0.255, is an

indication that any address with 20.9.17 as a prefix would match.

The mask is not always expressed in the same format. Many implementa-

tions use the long or short format. The short format specifies the number of

bits that must match. Other implementations use the hexadecimal form of

expressing the mask. The following is an example of three ways of expressing

the same mask for the same address:

(a) 20.9.17.8 mask 0.0.0.255

(b) 20.9.17.8/24

(c) 20.9.17.8 mask 0x000000ff

In some implementations, it is possible to use in a rule the domain name of

a server instead its IP source or destination address. It is possible in filters

to block or accept packets based on the domain name.

3. Network Interfaces:

This is used to identify the interface that the packet is coming from or going

to. For example, to drop all inbound packets from a local host coming from

the Ethernet interface with the name et10 :

block in on et10 from localhost to any

4. IP Fragments:

IP fragments in general are difficult to handle. Recent studies have shown

that IP fragments can pose a large threat to Internet firewalls, if there are

rules used which rely on data which may be distributed across fragments.

Fragments can be non-malicious and normal. Some forms of attack produce

large numbers of short fragmented packets. Fragments are indicated by the

TCP flags field of the TCP packet. It is possible to filter out all fragmented

packets or block only the short fragments. To block all incoming packets

that are fragments:

block in all with frag

To block all incoming packets using protocol TCP that are fragments:

block in proto tcp all with short

58



5. IP Options:

IP options are potential risks from a security point of view. Some applica-

tions can block packets based on individual options and some collectively

block on IP options. For example to block packets that have the “options”

set; or to pass packets that do not have the “options” set:

block in log all with ipopts

pass in proto tcp from any to any port = 23 with no ipopts

6. Filtering by Ports:

Any server machine makes its services available to the Internet using num-

bered ports, one for each service that is available on the server. Filtering by

port number only works with the TCP and UDP IP protocols. Usually it is

used in conjunction with the Protocol field in a filter rule. When using the

port number, it is used with a logical comparison operator or with a range

indicator.

To accept incoming packets using protocol TCP with a destination address

and mask 10.1.1.2/32 using port number 66667:

pass in proto tcp to 10.1.1.2/32 port = 6667

To block incoming packets using protocol TCP from any source address to

any destination address using port number 2049:

block in proto tcp from any to any port = 2049

To accept incoming packets using protocol UDP with a from source address

and mask 10.1.1.2/32 using port number not equal to 53:

pass in proto udp from 10.1.1.2/32 port != 53 to localhost

To block incoming packets using protocol TCP with any source addrss and

any destination address as long as the port number is greater than 5999 and

less than 6010:

block in proto tcp from any to any port 5999 >< 6010

block in proto tcp from any to any port 5999 .. 6010

To pass incoming packets using protocol TCP and UDP on port number is

greater than 512 and less than 515:
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pass in proto tcp/udp port 512 <> 515

7. TCP Flags:

It is possible with some implementations to compare the flags present in

each TCP packet header. It is also possible to inspect individual flags. The

flags are represented in the rule by a specific character for each flag. “A”

for ACK and “S” for SYN etc. Some applications allow a TCP flag masks

to be specified after a “/” character.

The ACK flag allows filtering out of TCP packets which belong to an

established connection. This is filtering on packets which have the ACK bit

set. The ACK bit is only set in packets transmitted during the life cycle of

a TCP connection. It is necessary for this flag to be present from either end

for data to be transferred. When the “A” is present in the rule, then it is

required to inspecting if the ACK bit to see if it is set, for example to allow

incoming (or outgoing in the second example) packets to pass as long as the

packet uses the protocol TCP, has the source address and mask 10.1.0.0/16

the port number 23 and the destination address and mask 10.2.0.0/16 and

as long as the ACK flag bit and the ACK mask bit are both set:

pass in proto tcp 10.1.0.0/16 port = 23 10.2.0.0/16 flags A/A

pass out proto tcp 10.1.0.0/16 port = 23 10.2.0.0/16 flags A/A

The SYN flag is only set during the initial stages of connection negotiation,

and for the very first packet of a new TCP connection, it is the only flag

set. At all other times, an ACK or an URG/PUSH flag may be set to stop

connections being made through incoming requests to the internal network

(10.1.0.0) from any where outside network, the rule will be something like:

(two flags are to be inspected are: Syn and Ack)

To block incoming packets on interface le0 using proctocol TCP using any

source address with a destination address and mask 10.1.0.0/16 as long as

the SYN flag and it mask are set, and the ACK mask bit is set.

block in on le0 proto tcp from any to 10.1.0.0/16 flags S/SA

To block the replies to this request (the SYN-ACK’s), the rule can be as

follows (notice all SYN and ACK flags and masks are set):

block out on le0 proto tcp from 10.1.0.0 to any flags SA/SA
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4.4 Previous Work

This part looks at work done by others in the same field. A lot of work was done

aiming at improving performance of packet filters. This section shall be more

specific to access list packet filters.

In Denial of Service attacks (DoS), the victim machine is bombarded with packets

causing other packets belonging to normal communiation to obey the congestion

control algorithms to hold back and eventually starve. Large-scale DoS attacks

also interferes with other traffic in that part of the network that is being heav-

ily congested. Mahajan et al. (2001) introduced a network-based solution, called

Pushback, to defend against Distributed DoS attacks. Ioannidis and Bellovin

(2002) presented an implementation of the push-back concept and the mecha-

nisms involved. The push-back concept treats DDoS attacks as a congestion con-

trol problem and involves identifying and preferentially dropping traffic aggregates

responsible for the caused congestions.

With multiple levels of fire walling it is possible to increase the level of protection

or to provide more protection at different layers (Habtamu, 2000). In fact, dis-

tributed firewalls based on Network Interface Cards (NIC) have been proposed,

that support the same functions as a centralised firewall (Friedman and Nagle,

2001). This can eliminate the problem of bypassing the firewall in single point of

access or centralised implementations. It also eliminates the problem of the single

point of failure of protection leaving the entire system exposed.

Packet classification using ad hoc mechanisms like a linear search through an

entire list of filtering rules is too slow in practice and a significant source of bot-

tlenecks. In recent years the problem has been receiving some attention. In

particular, in the tuple space framework proposed by Srinivasan (1999), the as-

sociated simulation results suggest that a significant reduction in search space is

achieved, while keeping memory requirements almost linear. The existing schemes

for packet classification either have bad worst-case lookup times, or suffer from

memory explosion (Warkhede, 2001). Moreover there is evidence to suggest that

the time-space trade off for the general packet classification problem is hard to

overcome (Warkhede, 2001).

Many of the algorithms which provide fast lookup performance require O(nk)

memory in the worst case, where n is the number of rules and k is the number of
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fields in the packet header to be inspected. The following is a list of a number of

approaches:

• The simplest approach to packet classification is to perform a linear search

through all the filters. This requires O(n) memory, but also takes O(n)

lookup time, which can be unacceptably large even for modestly sized filter

sets. Caching is a technique that aims at improving the performance of

linear search. The idea is that if packets from the same flow have identical

headers and a corresponding classification solution, then they can be cached.

However, performance is dependant upon how large the number of packets in

each flow is. The higher the number of packets, the better the performance

becomes. If the number of simultaneous flows becomes larger than the cache

size, then performance degrades sharply.

• Some solutions are hardware-based. A large degree of parallelism can be

implemented in hardware to gain a speed advantage. Content Addressable

Memories (CAMs) can be used very effectively for filter lookup (Lakshman

and Stidialis, 1998). However, it is difficult to manufacture CAMs with a

wide enough word to contain all of the bits in a filter. Many hardware-

oriented schemes rely on heavy parallelism, and represent significant hard-

ware constraints. The flexibility and scalability of hardware solutions is very

limited (Warkhede, 2001).

• Srinivasan (1999) presented the Tuple Space Search algorithm and described

a heuristic called “tuple space pruning” which performs best matching prefix

lookups on individual fields to eliminate prefix length combinations that

cannot match the query. This heuristic is expected to reduce search space

on average, but does not provide any improvement in the worst case.

• Several existing firewall implementations do a linear search of the database

of rules, and keep track of the best matching filter. Some implementations

use caching of the full packet header to speed up the process of future

lookups (Srinivasan, 2001). The cache hit rate is between 80 and 90 percent,

and is likely to be much worse for caching full headers. Incurring a linear

search cost to search through 10,000 filters is a bottleneck even if it occurs

for only 10 to 20% of the packets (Srinivasan, 2001).

• Binary decision diagrams are another way of implementing packet filtering

to solve a number of the problems. A decision diagram is a method of

representing a Boolean expression. Each bit in the packet header is rep-

resented as a Boolean variable. The groups of bits are represented by a
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group of Boolean expressions over these variables. Each rule in the list is

represented as a condition on the bits in the packet header. The rule will

indicate acceptance if the expression evaluates to true. Dynamic access lists

have been proposed by Hazelhurst et al. (1998) to increase flexibility and

security (Wulf, 1997).

Bryant (1992) introduced the concept of a reduced, ordered binary decision

diagram that can reduce the decision diagram to represent the Boolean

expression ((x1∪x2)∩x3) from the diagram in Figure 4.2 to that in Figure 4.3.

The dashed and solid lines in the diagrams indicate the branch when the

decision variable is 0 (No) or 1 (Yes).

x1

x2

x3x3x3x3

0 10 00 1 10

Yes

Yes YesYes Yes

Yes Yes

No

No

No

No

No

x2

NoNo

Figure 4.2: Binary Decision Diagrams representation for ((x1 ∪ x2) ∩ x3)

Algorithms for converting rule sets into Boolean formula have been produced

and tested. Binary decision diagrams produce encouraging results (Hazel-

hurst, 1999).

0 1

x1

x2

x3

YesNo

Yes

Yes

No

No

Figure 4.3: The reduced ordered Binary Decision Diagrams for ((x1 ∪ x2) ∩ x3)

Binary decision diagrams solve a number of the problems in packet filtering

but there are other problems that need to be investigated. The problems
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relate to the effect of the ordering of variables on the size of the diagram

produced, the effect on the overall lookup performance, and on memory

requirements.

4.5 Proposed Approach

All implementations of access list firewalls comprise a list of rules that are applied

to inspect the incoming or outgoing packets. Most implementations of packet

filtering incur a lookup latency linear in the number of rules in the access list.

A linked list structure is used to store the access list rules. Searching is performed

sequentially through the list. This has the advantage of using a small amount of

memory for storing the list, but the lookup time is linear in the size of the list.

Access list rules operate by inspecting packets against each rule in the access list

until a clear accept or reject rule is met which applies to the packet. Otherwise,

all rules in the list are checked. From a performance point of view, it is desirable

that each packet meets that critical (accept or refuse) rule at or near the start

of the list. This will reduce the time required for the packet to be inspected and

consequently improve performance. If the critical rule for a packet is met at or

near the end of the list, or the rule is never met, the processing time for the packet

will be very high and performance will degrade.

It is feasible to classify access list rules into different classes based on what fields

they inspect. Rules in an access list are classified into different classes and are

then ordered according to the class. In this research, the performance of different

orders or classes filtering the same packet stream were tested.

It is also assumed that packets flowing into a network device can be monitored

through a log over a period of time. It is possible to predict the numbers and

classes of arriving packets and develop a packet stream profile. If it is assumed

that most of the packets in a packet stream are of class “x”, then placing all class

“x” rules in the access list on the top, in such a way that they are the first rules

to filter an incoming packet will improve performance, see Figure 4.4. All or most

packets would therefore need only a few rules to be checked at the start of the list

before a critical rule for acceptance or refusal is reached. While, if the list was

ordered in such a way that class “x” rules are placed at the end of the list, then
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for each packet arriving, most of the rules in the list have to be checked before

eventually reaching the needed class “x” rule at the end of the list. The more

rules in an access list that are checked, the higher the processing cost for a given

packet.

Arriving packets 
requiring decisions 

by rule class X

•

class x rules
class x rules

class b rules
class e rules
class a rules

•

•
•

class e rules

class d rules

•
•

class x rules
class x rules

A list with class-x
 rules at the top

A list with class-x
 rules at the end

decision point

decision point

class b rules

class a rules

class x rules class d rules

class x rules

Figure 4.4: Effects of rules list type ordering on arriving packets

The researcher is suggesting that if a profile of arriving packets can be developed

for a network device then it will be possible to determine the pattern of these

packets (Gupta and McKeown, 2001). Classification of packets arriving in the

past can determine the types and numbers of packets arriving. This pattern can

periodically be inspected to determine the most effective ordering of the rules list.

4.5.1 Rules Reordering

An assumption is made here that access lists can relatively easily be reordered to

facilitate better performance for a particular pattern of arriving packets. However,

that is not the case, as changing the order of the rules within the list can in fact

change the acceptance or refusal of a packet (Hazelhurst et al., 1998). Reordering

access rules can be a difficult and dangerous operation. The real difficulty is in

ensuring that the list is or remains an accurate translation of the security policy

in as far as permitting those packets intended to pass and blocking those intended
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to be blocked. Ordered lists require some form of validation to ensure truthful

adherence to the security policy. Part of the problem is the time constraints on

actually reordering and verifying. This problem of the effects of ordering the list

on the security policy is not the subject under research in this thesis. One way

of eliminating this time constraint problem is to have a number of versions of the

access list pre-ordered and verified (Hazelhurst, 2001), so in real time no actual

ordering takes place, only a selection of the most suitable access lists is made.

4.5.2 Internet Survey

The following details were collated after considering results collected from over

793 packet classifiers from 101 ISPs (Internet Service Providers), with a total of

41,505 rules (Stoica, 2001). The following are some of the characteristics extracted

from those surveys which will be referenced throughout the simulation:

• The mean number of rules in an access list is 50 rules.

• The maximum number of rules in an access list is 2734.

• Only 0.7% of the access lists contained over 1000 rules.

• Many fields are specified by ranges, i.e. port numbers.

• Rules in the same classifier tend to share the same fields.

• 8% of the rules are redundant, i.e. they can be eliminated without changing

the behaviour of the access list.

• Rules with one field per rule form 17% of all rules.

• Rules with three fields combinations in a single rule form 23% of all rules.

• Rules with four fields combinations in a single rule form 60% of all rules.

• The maximum number of fields that can be specified in a single rule is limited

to eight, though there are a lot more fields that can be tested (Gupta and

McKeown, 1999):

1. Source address field (Network-Layer) (32-bits).

2. Destination address field (Network-Layer) (32-bits).

3. Source port number field (Transport-Layer) (16-bits).
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4. Destination port number field (Transport-Layer) (16-bits).

5. Type-Of-Service field (8-bits).

6. Protocol field (8-bits).

7. Flags (Transport-Layer) protocol flags (8-bits).

8. Fragmentation ID (16-bit).

9. Interface used.

Consider an access list of 1000 rules, with only one rule in the list which can

determine the fate of an incoming packet. If this rule is at the beginning of the

list and happens to be the first rule the incoming packet meets, then processing

is very fast. If this rule is last in the list and happens to be the last rule the

packet meets, then processing will take the maximum possible processing time. If

this particular rule can be identified out of all the other rules through some form

of classification of rules, then it can easily be placed at the beginning of the list.

Similar rules classified in a similar class can all be moved up to the top of the list.

Grouping of rules is best based on what inspection the rules perform. Rules that

perform similar inspections may be classified into the same group or class. The

number of classes may vary from one network device to another as inspections

performed by different devices may differ. The difference depends on the nature,

function and location of the device in a communication system. The number of

classes can take any value between two extremes, that is one class or as many

classes as the number of rules. In other words, all the rules are classified into a

single class or many classes with each class containing one rule only.

The optimum number of classes is difficult to define, and will vary from one

network device to another. But the general guideline is that classification is based

upon the fields inspected in the particular list at the particular device.

This maximum number of classes in an access list will be the sum of all the unique

combinations of every number of fields taken 1, 2, 3, etc. at a time.

4.5.3 Packet Frequency

The frequency of packet arrivals should reflect the ongoing operational network

device, a device that can usually handle the traffic it is receiving. The processing
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ability of the device must be more than the processing required by the arriving

packets or else the device will not be a practically operational device in a network.

The simulation system must cater for the queueing of arriving packets that arrive

into a busy device. Queued packets wait until they can be handled without any

loss of packets. Such a situation may occur with high surge of communication

activities. The total processing time for a packet is the time between packet

arrival to the device and the packet departure including waiting time:

Processing time = waiting time + servicing time.

The frequency of arrival can dramatically change the performance values. One

must be careful when measuring average processing time per packet for a num-

ber of packets that arrive in a burst and other packets that arrive well dispersed.

Consider the following example depicting two different groups with extreme fre-

quencies of arrival. In one group, a packet arrives at or after the previous packets

finishes processing, packets never have to wait. With the second group all packets

arrive at very short time intervals. Except for the first packet in group 2, all other

packets are forced to wait.

Figure 4.5: Effects of rate of arrival of packets on average processing time
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Assume the time is measured in one µs (1/1,000,000 of a second) and that all

packets will need exactly the same processing time of 5 µs per packet. The Gant

charts in Figure 4.5 show the arrival, waiting, service and departure times of each

packet. In group 1, the chart reflects servicing time only and none of the packets

are forced to wait. Every packet spends 5 µs in the system from its time of arrival

to its time of departure.

However, in group 2, the chart reflects a waiting time and a servicing time. The

waiting time is 0, 4, 8, 12 and 16 µs for packets 1 to 5 consecutively. Table 4.3

shows the details of waiting, service times and their sum, represented by the total

processing time column. It also shows the arrival and departure times for each

packet also add to its total processing time. The total processing time for all five

packets is 65 µs.

Packet arrival waiting service departure total processing time
number time time time time (depart time - arrive time)

or (wait+service times)
Packet 1 0 0 5 5 5
Packet 2 1 4 5 10 9
Packet 3 2 8 5 15 13
Packet 4 3 12 5 20 17
Packet 5 4 16 5 25 21
Totals 65

Table 4.3: Effects of frequency of arrival of packets on average processing time.

After processing the five packets in both cases, a large difference in the average

processing time is noticed between the two groups:

Group 1, average processing time per packet = (5+5+5+5)
5

= 5µs.

Group 2, average processing time per packet = (5+9+13+17+21)
5

= 65
5

= 13µs.

When all other variables unchanged, this difference in performance is attributed

solely to the different rate of arrival of packets in the two groups. This must be

taken into consideration in our simulation to ensure that any changes in perfor-

mance that are due to different rates of arrival are not attributed to the rear-

rangement of access lists.
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4.6 Problem Definition

Access list packet filters can be fast, efficient and effective. That does not mean

they are free of problems. On the other hand, simulation is an extremely useful

means of developing and testing systems and concepts. It is not free from prob-

lems. Also a number of problems were identified with both simulation and access

list packet filtering. Some of the problems identified which relate to access lists

are:

1. As access lists grow in size their level of complexity increases and the task

of modifying them becomes difficult.

2. One difficulty is in ensuring that the list is an accurate translation of the

security policy, permitting those packets intended to pass and blocking those

intended to be blocked.

3. Access lists may last for several years and so may be changed from time to

time (rules may be added or deleted, old rules changed, or the order of the

rules change). Nevertheless, an access list is relatively static. The problem

with a static access list is that the level of security is relatively static also

(Hazelhurst, 2001).

4. Since the rules are checked in order, the order in which they are specified is

critical. Changing the order of the rules could result in some packets that

were previously rejected being accepted (or vice-versa).

5. Large access lists also suffer from the length of time required to inspect

each packet against all the rules in the list. Filtering becomes a potential

bottleneck for communication. This is the problem the research work is

concerned to address.

There are a number of problems with simulation and simulation models:

1. Complexity of the model representing the real system. One problem with

network models can be due to the large number of parameters (Jobin et al.,

2001). Another problem is that realistic values for such parameters are

not always obvious. Further more, the sensitivity of the results to these

parameters is not well established. These issues and the cumbersome number

of parameters makes it difficult to compare different models against each

other. Ideally, it is desirable to have as few parameters and metrics in the

model as possible. It is of the utmost importance to maintain the model in
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the simplest representation possible and yet still emulate the real system it

is meant to represent.

2. Difficulty in interpreting and analysing the results obtained using the model.

Simulation can produce large amounts of data. The data often includes

many different values for many different variables or parameters. Know-

ing that a change in the data produced is due to changes in some group

of variables and not due to changes in another group of variables can be

difficult.

3. Model and simulation abstraction. The idea of simulation abstraction has

been discussed in Huang et al. (1998). Attempts were made to abstract

unnecessary details from a simulation. Fall (1997) suggests decreasing the

number of objects in a simulation by aggregating some of them, without

loosing the integrity of the model and as long as it remains a true represen-

tation of the system it simulates.

4. Model Conformity. The correctness of the results obtained from a simulation

execution of a model will depend on the validity of the model itself. The

validity of a model depends on how much it conforms with the real system

it intends to represent. Obtained results can be misleading if the model is

not a true representation of the system.

The task at hand in this research work can be specified by a number of steps.

The first is the creation of a correct model for a network device which performs

packet filtering. This is followed by execution of a number of experiments as

simulations of incoming packet streams being filtered by different access lists.

Those access lists are arranged differently based on the rules’ classes. The results

of these simulations are anlaysed to confirm or otherwise that better performance

for access list filters can be obtained through some specific order of the access

list classes. The next step is attempting to obtain an algorithm that will give

the arrangement which will produce the best performance possible. Finally, if

possible, seek more efficient methods of the algorithm itself.

4.7 Requirements Specifications

The requirement specifications is divided into three parts. The Simulation model

requirements, the System requirements and the Interface requirements.
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4.7.1 Simulation and Model Requirements

This lists requirements which must be implemented as a minimum standard for

the model design and the simulation operation. This includes the following:

1. The model must include the packet streams, access lists and the actual

simulation of the filtering operation.

2. Packet streams used must include small and large numbers of packets.

3. The average time between arrivals of packets in any packet stream must be

larger than the time taken by any single packet to be filtered by all rules in an

access list. This ensures that the queuing of packets waiting to be serviced

only happens in normal packet arriving bursts. Consequently, unnecessary

queuing will not influence performance. Elimination of all waiting time

from calculations must be tested, so pure filtering service time is taken into

consideration.

4. The number of packet classes in packet streams as well as the number of

packets in each class must test as wide a range of values as possible.

5. In packet streams there should be some packets which may not be identifiable

by the access list in use.

6. The access lists used must include a wide variety of access list specifications

including total number of rules, each to include a variety of number of classes;

with different numbers of rules, and different average processing times for

rules in each class. For each access list produced, there should be many

copies which only differ in the way rules are arranged based on their class.

7. The access list model must allow for equal processing time of all rules in the

list; to allow for some appropriate tests to be done.

8. All of the access list rules and packet streams must be saved to allow for

inspection, reuse of combinations and repeating or re-execution of the same

simulation.

4.7.2 User Interface Requirements

This lists requirements which must be implemented as a minimum standard for

the simulation interface. This includes the following:
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1. The user interface to the system must be simple, clear, easy to use and

functional.

2. The Interface must allow for easy creation of single or multiple access lists.

It must also allow for the display and re-organisation of any access list based

on the classes, in any order.

3. The interface must allow the user to create, display, edit and store the

average processing times for rules in each class of the different access lists.

4. The interface must allow the user to create a single packet stream, to create

many packet streams and to display any packet stream.

5. The interface must allow for the execution of a single simulation or a multiple

number of simulations. It also must allow the user to display the simulation

results for a single simulation or a summary of a number of simulations.

4.7.3 Functional Requirements

This lists the requirements of the functions which must be implemented as a

minimum standard for the system. This includes the following:

1. The system must allow for model evaluation and verification through testing

and modifying the model.

2. The system must be able to compute the total processing time for any given

packet stream when filtered by any specific arrangement of any given access

list.

3. The system must be able to compute the permutation for any given access

list which will yield the lowest processing time when filtering any specific

packet stream.

4. The system must produce the permutation for any given access list which

will yield the lowest processing time when filtering any specific packet stream

in ways other than through exhaustive cost calculations for all permutations.

5. The system must be able to perform the simulation operation of packet

filtering for a given access list and a given packet stream.

73



6. The system must be able to produce a summary of a simulation execution

results containing at least the average processing time per packet for any

given simulation.

7. The system must be capable of performing the needed simulations and pro-

viding the results in order to reach definite conclusions with regard to the

effects of rearranged classes in an access lists.

4.8 Summary

This chapter provided a detailed analysis of access lists and packet filtering.

TCP/IP protocols were described and evaluation criteria were considered. Con-

siderations were given to what other research has been carried out and looked

at, and identified potential problem areas. The proposed approach was outlined

and the requirements for the simulation, interface and system functionality were

listed. The next chapter will outline the design of the system model.
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Chapter 5

Design

5.1 Introduction

The previous chapter presented an analysis of packet filtering on the Internet. It

outlined some problems and potential improvements. It stated the requirements

for an improved packet classifier. This chapter starts by describing the design

related aspects of packet filtering. It continues by describing the models created

to perform the simulation of the proposed access list filtering. Detailed algorithms

and flowcharts are presented. The design also outlines the test specification for

the created model and the new implemented method.

5.2 Access List Filtering

The way access list rules operate is that a packet is inspected against each rule

in the access list until a clear accept or reject rule is met which applies to the

packet. Otherwise, all rules in the list are checked. From a performance point of

view, it is desirable that each packet meets that critical (accept or refuse) rule at

or near the start of the list. This would reduce the time required for the packet

inspection and consequently improve performance. If the critical rule for a packet

is met at or near the end of the list, or the rule is never met, the processing time

for the packet will relatively be very high and performance will degrade.

An access list consists of a number of rules. The number of rules varies from one
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implementation to another. The sophistication level of the security required to be

achieved also determines the number of rules in the access list. Unsophisticated

security is considered very simple security. Such simple security is that which can

be expressed with very few rules. Extreme cases such as “Allow access to all” or

“Block all” will require no rules or one rule at the most. Another example that

may require a single rule is allowing only packets from one particular network

or blocking only packets from one particular network. As security becomes more

sophisticated, more rules are needed: for example, if a number of different groups

or different individuals from the same network need to be allowed or to be blocked.

The level of sophistication may also increase when more conditions are required:

for example if the same groups or individuals are only allowed or blocked when

using specific port numbers or a certain service.

5.3 Solution Design Overview

Rearrangement of an access list based on the classes will suit an arriving packet by

reducing the processing time for such a packet. Ideally, for each arriving packet,

if its filtering rule requirement is known, then those rules are used first to inspect

the packet. If every time a packet arrives it is possible to recognise the class of

rules it requires, and if the list of rules then can be rearranged accordingly to suit

the packet requirement before the filtering operation for the packet starts, then

packets will meet their critical rules in the list early on at the start of the list.

But, there are a number of problems with this approach:

1. In order to identify the class which a packet belongs to, it is necessary first

for the packet to go through the list. After all, the list is the classifier. To

overcome this problem it is suggested to resort to packet flow profiling for

packets arriving into a network device based on observations of past packet

classifications. This packet flow profile will for an individual network device

provide some idea of the expected numbers and classes of packets. When

a packet flow profile is developed or can be identified, some arrangement of

the rules is selected to suit this profile. The arrangement will need to be

changed when the packet flow profile changes.

2. The second problem is that once a packet flow profile for a device is identi-

fied, it is difficult to predict the best way to arrange the classes in the list

to produce the best performance possible for such a pattern. This is one of
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the main objectives of this thesis, i.e. to find out what is considered to be

the most efficient arrangement as far as performance is concerned.

3. The third problem is that even if a packet profile requirement becomes

known, the difficulty is in the time constraints on actually reordering and

verifying the validity of the new order in its truthful adherence with the

security policy. One way of dealing with this is to have a few versions of

the access list pre-ordered and verified to suit the expected few packet flow

profiles. A similar approach was suggested by Hazelhurst (2001). So, in real

time neither actual arrangement nor verification takes place; only a selection

of the most suitable arrangement of the access list is made.

Reordering access rules can be a difficult and dangerous operation. The real

difficulty is in ensuring that the list is or remains an accurate translation of the

security policy in permitting those packets intended to pass and blocking those

intended to be blocked. This problem is minimized by the fact that access list

rules are not ordered in their entirety. The rearranging of the list is based on the

rules’ classes. That is, all the rules belonging to one class are moved up or down

in the list as a unit. This means that rules of the same class retain their order

relative to the rules of the same class. This will have fewer negative consequences

on security than a full reordering of the rules in the list. Rules in separate classes

are expected to be independent of one another and mostly are expected to have

no effect on each other. There may be cases where rules in different classes can

change the security policy if their order is changed. Such cases need to be included

in the same class or such rules are broken into more basic rules. More investigation

will be needed with regard to the effects of reordering. The topic of verification of

access list adherence to the security policy is a separate issue and is outside the

scope of this thesis.

One way of benefiting from the rearranged rules of an access list is in a system

which experiences regular profile changes of the incoming packet stream. Fig-

ure 5.1 represents a block diagram of how rearranged access lists can be incorpo-

rated in a system. An example is a network device receiving a stream of packets

with the numbers of packets in the different classes fluctuate, while the same se-

curity policy is used. In such a system, based upon this given security policy an

access list is created. Multiple versions of the same list are created, verified and

stored. During normal operation, classifications of incoming packets are analysed.

When a profile change is sensed in the incoming packet stream, the most suitable

list organisation is selected to be used as the classifier. Such a system consists
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of two main parts. One part performs the packet classification and the second

maintains logs of classifications of arriving packets, performs profile analyses and

determines the best access list arrangement to be used by the classifier.
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Figure 5.1: Outline of the proposed ordered access list filtering system

In this system, the security policy is translated into a list of rules called an access

list. Many copies of this access list are made in different arrangements. The access

list rules verifier compares two access lists and verifies that they implement the

same security policy. Basically, it verifies that a particular change in organisation

does not alter the security functionality of a particular access list. Accepted lists

made up of the same rules but in different organisations are saved by the verifier

for future use by the packet classifier. The packet log analyser can be a real-

time analyser of packet classifications. The packet log analyser determines the

best version of the access list to use based on the results of the analysis of the

packets logs. This selected order of the access list rules remains in operation for a

period until the next analysis is performed. This period of time can be different

depending on the profile stability of arriving packets arriving into an individual

network device and is expected to vary from one network to another, or from

one filtering device to another on the same network. The packet classifier starts

using the selected version of the list to classify packets arriving from the Internet.

The rules organiser produces different lists with different class rules placed at the

top of the list in each of the lists. It is possible to implement this system in an
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effort to produce a faster classifier provided that rearranging the rules based on

their classes will actually produce faster processing time. The rest of this thesis

describes the work done to test if organizing access list rules in such a way can

produce lower average processing time per packet for a given packet stream and

outlines the actual outcome.

One of the objectives of this research work is to find out if changing the order of

the rules in an access list based on their class will change the performance of packet

filtering. A second objective is to find out the best arrangement of the classes of

the rules of a particular access list to filter a particular stream of packets, i.e. the

arrangement which will give the least average processing time per packet for a

particular packet stream. This work is done through a simulation of the filtering

operation. It simulates the filtering of a stream of packets through a list of rules

in an access list. The performance is observed, then the simulation is repeated

using the same stream of packets being filtered by different arrangements of the

same access list. The more different arrangements created of the same access list

and used to filter same stream of packets, the more comprehensive the test.

This approach is based on the assumption that it is feasible to classify access list

rules into different classes. This classification will be based on real classifications

observed on real classifiers on the Internet. The approach is also based on two

points with regard to packets. The first is that packets can be classified into

classes, and the second is that a profile of a packet stream arriving into a network

device can be identified.

So, it is proposed for the purpose of this work to first classify rules in an access

list into different classes. Secondly, a number of access lists are generated, and

each is reproduced in as many different organisations as possible based on the

rules classes. Also a number of packet streams are generated with many different

profiles. All those generated access lists and packet streams are saved so either

can be reused to perform any filtering simulation.

Simulation runs are then carried out to test the performance of different arrange-

ments of access lists. Results are saved, and performance as well as the different

configurations of the access lists and packet streams are analysed. Conclusions are

drawn, and when necessary, more access lists and packet streams are generated

and more simulation runs are executed to verify or refute such conclusions.
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5.4 Modelling the Filtering System

The simulation consisted of three main integrated models namely, the access list,

the packet streams and the filtering and reporting models. One other part was

specifically introduced for analysing the results of the simulation. The three mod-

els are integrated to reflect the operation of a network device performing access

list based packet filtering on received packet streams. The models allow specific

streams of arriving packets to be checked against specific lists of access list rules.

Figure 5.2 shows the general structure of the models and how they relate but each

model will be described in detail in the next three sections. The operation of the

different models can be summarised by the following steps:

1. The generation, classification and reorganistion of access list rules.

2. Classification and generation of arriving packets and the creation of different

packet flow patterns.

3. Provision of some performance measuring parameters to determine the ef-

fects of changes in access lists.

4. Investigation of problems and solutions for arranging access lists.

5. Analysis of results achieved and the determination of the validity of the

hypothesis of improved performance due to the change in arrangement of

access list rules.

The models are formulated based on detailed surveys of studies conducted

by Gupta and McKeown (1999). The details of the findings were described in

the previous Chapter. Below are some of the more relevant findings:

• The mean number of rules is 50.

• Only 0.7% of the access lists (classifiers) contained over 1000 rules.

• Rules in the same classifier tend to share the same fields.

• 8% of the rules are redundant, i.e. they can be eliminated without changing

the behaviour of the access list.

• Rules with one field per rule form 17% of all rules.

• Rules with three-field combinations in a single rule form 23% of all rules.

• Rules with four-field combinations in a single rule form 60% of all rules.
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Figure 5.2: Block diagram of the system’s simulation model

• The maximum number of fields that can be specified in a single rule is

limited by eight.

The survey showed that rules were generally divided into groups of 17%, 23%

and 60% based on the number of fields they inspected, one, three or four fields

respectively. Apparently, there were no rules; or very few indeed; that had two or

five fields.

5.5 The Access List Rules Model

The access list rules model is concerned with the generation of a number of lists

each containing a number of rules specifications. This involves the classification,

organisation (or ordering), the generation and storage of the rules. The rules

model is specified by the following:

1. Rules classification

2. Access list rules specifications
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This is defined by a number of parameters the values for which can be

specified during the generation operation. The parameters that determine

the specifications for a set of rules are:

(a) Total number of rules in the list.

(b) Number of classes within the list.

(c) Number of rules in each class.

(d) Average processing time for rules in each class.

3. Access list rules organisation.

4. Rules definition specifications.

5. Access list files specifications.

5.5.1 Rules Classification

Classifying the rules is based on what inspection the rules perform. Rules per-

forming similar inspections on the same packet fields may be classified into the

same class. In the real world, the number of classes will vary from one network

device to another. The difference will be due to the nature, function and loca-

tion of the device. The number of classes can vary between two extreme values,

One-class and as many classes as there are rules. That is when all the rules are

grouped into one class, or many classes with each class containing only one rule.

Neither of these two extreme cases is useful for our study. In the first example all

the rules perform the same type of inspection, i.e. all rules check a port number.

In such cases, it is possible to classify rules based on something else, like different

ranges of the port number. The other extreme case is where the number of classes

approaches the number of rules. Such cases defeat the purpose of classification.

The optimum number of classes is difficult to define, and may differ from one

device to another.

Rules classification is really based on the packet header fields that are inspected

by the rules in a particular list in a particular device. Some rules will inspect one

field, others will inspect two fields and so on. Some fields are more common than

others. The survey showed that rules were generally divided into three groups

based on the number of fields they inspected, one, three or four fields. These

three groups made 17%, 23% and 60% of the total number of rules respectively.
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It is worth pointing out that this 3-field rules that makes up 23% of rules refers to

a list that may contain many different 3-fields classes, not the same 3 fields. The

number of classes containing three fields will depend on the number of different

combinations (or permutations) of three fields that can be made up of eight or

more fields. The numbers of classes will be discussed later.

5.5.2 Access List Specifications

1. Total number of rules:

Based on the survey results carried out by Gupta and McKeown (1999), the

maximum number of rules in an access list found was a rare 2734, with an

average of 50 and very few indeed (0.7%) over 1000 rules. If the number of

rules is very small, as in 2 or 3 rules, then the savings in processing time

will not warrant the cost of classification and organising. Only sizes of 20

rules or higher will be considered.

The main reason for keeping a low number of rules (an average of 50) is

thought to be the difficulty of maintaining and formulating a large list. The

need for larger lists is expected to increase in the future, as higher levels of

security will be needed. On the other hand, it is expected that better systems

will be developed for simplifying the task of creating and maintaining long

access lists. For the purpose of our simulation, larger list sizes are considered

up to a size of 2500 rules. Therefore, list sizes included vary between 20 and

2500. Other values in between reflect the average or the expected increase

in the average number of rules to be somewhere between 50 and 100 rules.

Thus, starting with 20, multiples of 5 will provide close enough values to

test making the values to be tested as follows: 20, 100, 500 and 2500 rules

in access lists.

2. Number of classes:

The number of rules depends on the amount of security checks that need

to be carried out, but the maximum number of classes the rules are divided

into is determined by the maximum number of different combinations of the

packet fields that can exist. That can be easily calculated as the sum of

all the unique combinations of all the fields, given by: 2n − 1 where n is

the available number of fields to select from. For example, with four fields

to select from, the formula will calculate how many unique combinations
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can be obtained from a total of four fields when one field is picked, two

fields, three fields and four fields are picked at a time. In this example, the

combinations would be: 24− 1 = 15 combinations (1, 2, 3, 4, 12, 13, 14, 23,

24, 34, 123, 124, 134, 234, 1234), as shown in Table 5.1. Also notice that

it is not a permutation needed here, it is a combination, for the selection

of the two fields: field-1 followed by field-2, (1,2) is the same as selecting

field-2 followed by field-1 (2,1). This formula is helpful in computing all the

possible combinations for a given number of fields.

It is rather more relevant to find the combinations when an individual num-

ber of fields (k) are picked at a given time from a total n number of fields.

In the example above, the number of combinations when only two fields are

picked from the available four fields, were 6 combinations. For this reason

the formula is reconsidered in a different format:

n∑

k=1

ck
n

Where n is the entire number of fields to select from at any time, c is the

unique combination of n fields taken k fields at a time.

The maximum number of unique combinations for one given number of

fields (k) selected from any one given available number of fields (n) can be

calculated as:

The number of unique combinations for any single number of fields

ck
n =

n!

k! (n− k)!

Where: c is the maximum number of combinations, n is the number of fields

to select from, k is the size of each combination.

Table 5.1 shows the maximum number of possible combinations, which can

be obtained from (n) number of available fields for different combinations

taken (k) fields at a time. Note that the number of different combinations

found in a single access list is not necessarily equal to the maximum possible.

It is also impossible for some access lists to have the maximum possible

combinations used, as the number of rules in an access list (average 50) is

much less than the maximum number of combinations for 6 fields. It is

logical for the maximum number of classifications of rules to be less than

the number of rules, to avoid the extreme case of having one rule per class.

In fact, because a class may contain a number of rules, that will leave many
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other classes with zero rules. Even in a case of say 100 rules divided into

3 classes, it is possible for one class to have 98 rules, and the other two

classes have one rule each. In such cases, reorganising the list will have a

very minor effect. Though it may be normal to have some classes with only

one rule in each, it is not desirable to have one overwhelming class with a

relatively very large number of the rules. The author is suggesting that no

single class will make up more than 75% of the rules, and therefore, in any

list the number of classes should not exceed one quarter of the number of

rules in that list.

Based on this maximum value for the number of classes in an access list,

(that is not being more than 25% of the number of rules in the list) and also,

based on the fact that most access lists on the Web have a number of rules

of 50 (being the average according to the survey) one would conclude that

in fact they would have had rules classes of between 2 and 13. The value

two is the minimum number of classes. The value 13 is approximately 25%

of the average number of rules in the Web, 50. Most likely the number of

classes is some number between 2 and 13; averaging around (2 + 13)/2 = 6

or 7 classes.

The survey (Gupta and McKeown, 1999) indicated two important points.

First is that almost all combinations of fields used in rules are made up

of one-field, three-field and four-field. The second is that the maximum

number of fields that can be specified in a rule is limited to 8. This was

due to syntax limitations in the specifications of the rules analysed. It is

unlikely that more than 4 fields are used in many rules.

Considerations is given to the maximum number of combinations of one-

field, three-field and four-field picked from any number of fields. Looking

at Table 5.1, it is found that the maximum number of combinations when

7 fields are available to select from is 77. This represents a maximum value

of the combinations, while the average value will most likely be a lot less.

To summarise, the following points are considered when determining the

number of classes present in an access list:

(a) that the average number of classes in an access list on the Web is 6 or

7.

(b) that the maximum number of classes in an access list is to be no more

than 0.25 of the total number of rules in the list.
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n Maximum
(number k(fields combined in a rule) Combinations
of fields Using all 1,3 or 4

available) 1 2 3 4 5 6 7 8 fields fields
1 1 n/a 1 1
2 2 1 n/a 3 2
3 3 3 1 n/a 7 4
4 4 6 4 1 n/a 15 9
5 5 10 10 5 1 n/a 31 20
6 6 15 20 15 6 1 n/a 63 41
7 7 21 35 35 21 7 1 n/a 127 77
8 8 28 56 70 56 28 8 1 255 134

Table 5.1: Maximum number of combinations of fields.

(c) that too many classes in an access list defeats the purpose of classifi-

cation.

(d) that too few classes in an access list (as in one class) eliminates advan-

tages of classification.

The values for classes found to be adequate to perform the simulation meet

the following conditions:

• The numbers of classes to be considered in any list are: 2, 4, 8, 16,

32, 64 and 128. These values are good samples to test and also cover

the values shown in the “Maximum Combinations for 1,3 and 4 fields”

column in Table 5.1.

• To include only those values for classes which are less than 0.25 of the

total number of rules in a list.

3. Number of rules in each class:

It has already been said above that the total number of rules to be considered

will vary between 20 and 2500, while the number of classes for each of those

will vary between 2 and 128 (provided it does not exceed 0.25 of the number

of rules within the list). The problem now is to determine how many of the

rules in a list will be classified into each of the classes. For example, consider

an access list of 100 rules to be distributed into 4 classes. The problem is

to determine how many of these 100 rules will be classified into each of the

4 classes. It is suggested to perform the following repeatedly as many times

as there are classes to calculate the number of rules for each class based on

the results of the previous calculation. Table 5.2 shows the full steps of the

example.
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Starting with the first class, the minimum number of rules to have is one

rule per class. Considering the example of 100 rules and 4 classes, placing 1

rule in each of 3 classes leaves one class with the remaining rules (97 rules).

This defines the minimum number of rules as 1 and the maximum as 97. In

other words, the maximum number of rules in any given class can be defined

as follows:

Max rules in a class = r − (c− 1), (5.1)

where r is the number of rules to distribute, c is the number of classes to

consider.

Class no. Rules to Classes left Max rules Rules
distribute assign assigned

r c r-(c-1)
1 100 4 97 66
2 44 3 40 7
3 37 2 36 25
4 12 1 – 12

Table 5.2: Distribution of rules between classes.

In this case, the number of rules to be assigned to class 1 will be a random

number between 1 and 97. According to the example in Table 5.2, this

random number is 66. If out of 100 rules, 66 are assigned to class 1, then

that leaves 44 rules to distribute between the other three classes. Therefore,

class 2 can have a maximum value of 42. If the maximum is assigned for

class two, that would still leave classes three and four with one rule each.

But the number of rules assigned to class two can be a value generated

randomly between 1 and 42 (Minimum and maximum). In the example in

Table 5.2, this value is 7 rules. The steps are repeated until it is time to

deal with the last class. In the case of the last class, the remaining rules

left are assigned instead of using a random number. This entire operation

can be repeated to generate other access lists distributions of 100 rules for

4 classes.

The actual number of rules for each class is generated randomly. The random

number must be checked in such a way that it is not too large so that the

remaining classes are left with no rules. Algorithm 5.1 shows how values

were assigned to classes for any number of classes. The different numbers

of the rules assigned to each class are placed in an array of a size equal to

the number of classes, (class array[number of classes]). Two parameters are

needed, the total number of rules to distribute and the number of classes.
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let rules left = total rules to distribute
let c = total number of classes
let classes left = c
let class array[c] // define an array of size equal to number of classes
for all (i = 1toc) do

if (i == c) then
/* the last class to be assigned a number? assign all remaining rules.
class array[i] = rules left;

else
{
/* if there are as many classes as there are rules
/* to distribute, then every class will have one rule
if (rules left == classes left) then
{
class array[i] = 1;
rules left --;
classes left --;
}

else
{
x = (rules left− classes left+1) /* maximum number of rules in a class
r = random(x) /* generate a random number equal to or less than x
/* this ensures that at least one rule will be left for each class remaining
class array[i] = r;
rules left = rules left− r;
classes left --;
}

end if
}

end if
end for

Algorithm 5.1: Distributing the number of rules into the classes
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4. Average processing time for rules in each class:

When a packet is being inspected by a rule, all its header fields are available

for inspection. Each particular rule will perform some inspection on one or

more of the fields. Depending on which field and on the number of fields,

the processing time required for inspection will differ between one rule and

another. Values assigned as the processing time for a rule will represent a

relative time compared with the processing time for other rules. For example

if the values 100 and 200 are assigned as processing times for rules A and

B, then rule B will take twice as much processing time as that of rule A.

Let us initially assume that it is possible to state that the processing time

taken by a rule to inspect a packet depends on the fields that need to be

inspected. Then it can also be stated that all rules inspecting the same field

or fields on different packets will require exactly the same processing time.

Rules have already been divided into classes based on the fields in packets

they inspect. Therefore, rules within the same class are inspecting the same

fields and will take the same processing time for all packets. This statement

is not entirely true, and it will be seen why in a moment.

The actual value assigned as the processing time for each class of rules is

based on the number of bits in a packet that normally need to be inspected

by a rule of this class. This is a very good estimation of the processing

time suggested by Hazelhurst (1999). But, even if the estimation is not

an accurate reflection of the actual processing time, it will still provide a

good way to compare the performance of the same rules when organised

differently, for rules of the same list inspecting the same stream of packets.

For the purpose of this simulation, the application allows for a configuration

file to be created, edited and saved which contains different average process-

ing times for each class. This helps in reducing the effort required in the

generation of access lists’ rules having different average processing times. It

also allows using other numbers not directly related to the bits in packets.

Sometimes equal processing time for rules was required for simulations to

make other comparisons.

The statement made earlier that within the same class, the rules would need

the same processing time to inspect all packets, may best be rephrased to,

almost the same processing time. For example, consider a rule inspecting

the source or target address field on an IP packet header. The inspection

will require first inspecting the Mask part of the address to determine how

many bits of the address need to be inspected. The following two mask
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values: 0.255.255.255 and 0.0.0.255, will in the first case check one part of

the address while in the second case it will check three parts of it. This leads

to slightly different processing time when different packets are inspected,

according to Hazelhurst (1999). It is clear that processing times will be

different for rules of different classes. But, even for those rules in the same

class inspecting the same fields, processing time will be slightly different

from one packet to another. Therefore, the processing time for each classes

rules will be based on a value for that particular class with a smaller random

value added to allow for differences.

Processing time is assigned to each class of rules. For each particular rule

within each class the same assigned value is used with a plus or minus

randomly generated value. For example, suppose the processing time for

class x is 100, with a possibility of variation of up to ± 25% between different

rules in that class. That is indicating that the minimum and maximum

values rules can assume are 75 and 125. The processing time for any rule

in this class is calculated to be equal to be 75 + (a random value between

0 and 50).

5.5.3 Organisation of Access List Rules

It is obvious that the location of rules within the list will have an effect on the total

processing time for each packet to pass through the list. The earlier the critical

rule for a packet is executed to inspect the packet the shorter the processing time

will be for that packet. There is only one case where the organisation or order

of the rules within the list will have no effect on the processing time of a packet.

That is the case where there is no rule within the list that will determine the

fate of the packet. In such a case, the packet will have to traverse through the

entire list of rules. No matter what order the rules are in, there will still not be

a rule that will recognise the packet. Unfortunately, it can never be known for

sure if there will or will not be a rule in the list which will be the critical rule for

a particular packet until the packet goes through the list. The other unfortunate

consequence of such packets is that the processing time for such packets is going

to be the maximum of that for any packet. If these packets make up the majority

of a packet stream, it is going to increase the average processing time per packet

dramatically. The solution to such problems may come in two ways. The first is

to have a better analysis of the packet stream flow and making a better prediction

of future packet streams. The second is to add new classes of rules to include
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(accept or refuse) such packets or most of those packets, even if such classes of

rules have little or no security significance.

To help establish if the organisation of the classes of rules makes any significant

difference on the performance, and more specifically on the average processing

time per packet for a packet stream, it is necessary for each and the same packet

stream to be tested many times using the same particular list of rules but in

a different organisation each time. That is the same list is used once with no

particular order or organisation. Rules belonging to one particular class are picked

out and placed at the top of the list one at a time in new versions of the same

list. Other versions should place all rules of the same class at the bottom of the

list. Such organisations should not change the order of any rules belonging to the

same class. During the initial research experiments considered organisations are

such that the entire set of rules belonging to one class are moved to the top or

bottom of the list without any change in the order of its rules or the rule order of

other classes. For example, for a single 4-classes list of rules, 4 versions of the list

will be created with classes A, B , C and D placed on top in each list respectively.

Then 4 more versions will be created with classes A, B , C and D placed at the

bottom of each list. That is a total of 8 versions of the same list; plus the original

randomly organised list. In this example this indicates that for a c number of

classes in a single access list, the minimum number of versions created for that

access list is 2c + 1. For an individual say 2500 rules access list, with 16 classes,

there will be 33 versions created. To start with, there may be 10 or more different

original randomly organised access lists, each having 16 classes of rules, with 33

versions made for each.

The application is implemented in such a way that a list of rules may be taken in

as input, and output can be produced for that list but in any given sequence of

arrangement of its classes. All access lists in all organisations produced must be

saved for future reference and reuse.

5.5.4 Rules Definition Specifications

This refers to actual individual rules in the access list. Each rule used for the

simulation is specified through three parameters. Every rule in the list is defined

by the following:

1. Rule class:
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Every rule is assigned to a class represented by a number between 1 and the

maximum number of classes allowed for this access list. The parameter is

randomly generated for each rule and assigned to it during the generation

process. This rule class is based on two values, namely the maximum number

of classes allowed for this access list and the number of rules of this class

in relation with the total rules in the list. Both those values are part of

the access list definition and are requested when the access list is being

generated.

2. Rule processing time:

This is a random number generated based on a mean processing time as-

signed to the class. Every class is assigned such a value during the creation

of the access list. When rules are generated, every rule is assigned a class

to which it belongs. Processing time for the rule is computed based on two

values, the first is the average processing time for rules in that class, the sec-

ond is the ±value attached with the average processing time. This ±value

is what gives uniqueness to processing time for individual rules within the

same class. Details of processing time computation were discussed under

Item 4 (Average processing time for rules in each class) on page 89

in subsection 5.5.2.

3. Rule decision to Accept or Deny:

Every rule that identifies a packet into some packet flow will do so by decid-

ing to accept or deny the packet based on some conditional comparison of

some fields. Normally, the decision to accept or deny is a part of the syntax

of every rule in the list. During this simulation the decision to accept or

deny is made to be an integral part of the rule. This parameter is randomly

generated for each rule during the generation of the access list. When an

access list is being created, a value is accepted as the percentage of rules

that will be assigned the value “accept”. Based on that value, some of the

rules created in that particular access list are assigned an “accept” decision

and the rest are assigned a “deny” decision.

The values for the decisions “accept” and “deny” are represented by the 1

and 0 respectively. In fact, for the purpose of this simulation, these values to

accept or deny will have no consequence on performance. Once, a packet is

accepted or denied, processing is finished. This field is maintained because

it formed part of the model verification experiments through monitoring the

number of accepted and denied packets.
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5.5.5 Access Lists File Specifications

The actual rules’ definitions of a list are kept in a file as part of the access list

definitions, which allows the simulation application to read these rules’ details.

The file’s header provides details about the entire access list like the total number

of rules and number of classes in the list. An access list specifications file consists

of a header and a number of records. The header provides details about the

entire access list like the total number of rules and the number of classes used etc.

The rest of the records provide information about each rule in the list. The file

structure as well as some example values are shown in Table 5.3, while the header

and record have the following syntax:

1. The access list specifications file header:

(a) Total number of rules in the access stream.

(b) Number of classes used for rules.

(c) Details of each class of rules: (This record is repeated a number of

times as indicated by the field “Number of classes used for rules”).

i. Number of rules in this class.

ii. Mean Processing Time of rules in this class.

iii. Percentage of “Accept” rules in this class.

(d) Order of classes (This field is repeated a number of times as indicated

by the field “Number of classes used for packets”).

2. The file records, one record per rule in the list:

(a) Accept or Deny rule.

(b) Rule class.

(c) Processing time for this rule.

For every access list generated, a number of different organisations are generated

that differ only in having the rules of different classes moved up towards the top

or bottom of the list in relation with other classes. In other words, the access list

is ordered based on the class of the rules, while the rules belonging to one class

maintain their original order in the list. Two types of files are required in the

access list model.

The first file is used to hold details of an access list and its rules. All those lists

are saved individually in separate files with file names which are descriptive of
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The field explanation Example values
The total number of rules in the list 100
The number of classes in the list 4
Details about every class in the list Class Num of Process. % of
(These three fields are repeated for each class) rules time accept
. Number of rules in this class 1 24 120 99%
. Mean processing time for rules in this class 2 59 100 19%
. Percentage of “accept” decision in this class 3 16 80 87%

4 1 70 55%
Class organisation:(0 to indicate randomness) Class 2 rules on top of list
. Class placed as first in list 2
. Class placed as second in list 4
. Class place as second-last in list 1
. Class placed as last in list 3
Specifications of each rule in the list: Accept Rule Processing
(these three fields are repeated for each rule) or deny class rule time
. Accept or deny decision. 1 2 76
. The class or this rule 1 1 111
. Processing time. 0 2 118

1 3 63

Table 5.3: File structure containing the randomly generated rules of an access list.

the access list contained within. For example: al 100 8 1 indicates that the file

contains an (al) access list of a total of (100) rules, containing (8) different classes

of rules. This is followed by a serial number to identify the different access lists

with 100 rules and 8 classes.

When an access list is class organised, more files are generated. All the generated

files contain the same list but in different organisations. Consequently, all files

will share the file name as the original access list file after appending another

serial number. This number will identify each individual organisation of the same

access list. The syntax for the access list file will be as follows:

al <number of rules> <number of classes> <serial number of access

list>[ <serial number of organisation>]

Example of access list files names are:

al\_100\_8\_1000

al\_100\_8\_1000\_1

al\_100\_8\_1000\_2

al\_100\_8\_1000\_2\_2001
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al\_100\_8\_1000\_2\_2002

al\_50\_4\_2000

al\_50\_4\_2000\_505

al\_50\_4\_2000\_506

The second file is the processing time configuration file for an access list. This

file is used to save the mean processing time of each class in an access list. This

file must be generated prior to the generation of the access list specification file

described above. All or some of the 256 values contained in this file are used to

calculate the processing time of each individual rule in the list based on the class

of the rule.

5.6 The Packet Stream Model

The packet stream model is concerned with the generation of lists to represent

the packets arriving into a network device. For the purpose of this simulation

each list represents a stream of packets from a realistic environment. Each list

contains the specification for a packet stream. The packet stream model involves

the classification and generation of packet streams, and includes the following:

1. Packet classification.

2. Packet streams specifications. This is defined by a number of parameters,

the values for which can be specified during the generation operation. The

parameters that determine the specifications for a packet stream are:

(a) Total number of packets.

(b) Number of classes within the packet stream.

(c) Number of packets in each class.

(d) Mean time between arrivals.

3. Organisation of packets within a packet stream.

4. Packet definition specifications.
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5.6.1 Packet Classification

In communication systems, classifiers classify packets into different packet flows.

The classifiers are the access lists that determine what class a packet will belong

to. No matter what size a packet stream is, or what types of packets it is made

up of, it is still the access list rules which ultimately will decide how many classes

the packets in a packet stream will be divided into. The same packet flow when

filtered by two different access lists will result in two different classifications. But

for the purpose of this simulation, it is rather important to know in advance the

class of each and every packet in the packet stream. It is important to control

the pattern of packets to enable the testing of different aspects and behaviour of

access lists. The number of classes defined for packets is the same as that defined

for access list rules based on observations of the survey outlined above. In fact, it

is worth pointing out that to simplify matters, packet classes and access list rules

classes will use a similar numbering to identify them. In other words, a packet

identified by a class A access list rule will also be called a class A packet.

5.6.2 Stream Specifications

Every packet stream is defined and identified for the purpose of this simulation

study by the following four definitions:

1. Total number of packets:

The packet streams should contain as many packets as possible. The more

packets in a packet stream the more comprehensive the simulation. On the

other hand, the more packets in a stream, the longer the simulation time

becomes, especially when tested against a very large access list. To allow

for more comprehensive analysis of simulation results, it is best to have as

many simulations performed as possible. Packet stream sizes of 1,000, 10000

and 1,000,000 packets are thought to be sufficient to reflect the performance

of access lists because larger size packet streams increased simulation times

to unreasonable limits with no further benefits.

2. Number of classes in the packet stream:

The main purpose of this simulation analysis is to study the performance of

different organisations of access lists on classifying packets. For that purpose

many different packet streams must be tested. In fact the more varied the
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packet streams tested, the more comprehensive the results. In as far as

classifications of packets are concerned, all possible packet classifications in

all possible combinations must be used. The maximum number of classes

for access lists was determined as seen earlier to be 128. That will be the

same for the packet streams. Packet streams containing 2, 4, 8, 16, 32, 64

and 128 packet classes must be generated. In fact a number of streams must

be generated containing each of those number of classes.

3. Number of packets in each class:

The different packet streams generated must have many different mixtures of

packets within them. The different packet classes within each packet stream

will each have a number of packets other than zero assigned to them. With

the same number of packets, many packet streams with different numbers

of classes must be generated. Also for streams with the same number of

classes, many streams must be produced with different numbers of packets

in each of these classes. Number of packets are supplied to the application

during the generation of packet streams. The different packet streams to

be generated are to reflect the different possible packet streams that can be

received by a network device of a real live connection. More importantly, it

is important to be able to identify a particular packet stream to be mostly of

a particular class. For example, if a packet stream consists mostly of class C

packets, then it is possible to perform specific tests by using access lists with

for example, class C rules at the top or bottom of the list, or access lists

with more or less class C rules. It is also important to be able to identify a

stream by the number of packets in each of its classes.

4. Mean time between arrivals:

This indicates the value from which each arriving packet time is based upon.

This can be different from one network device to another. If the time be-

tween arrivals is a small value compared with the average processing time of

a packet by the access list, this will allow more packets arrive than can be

handled immediately. This means that very many packets will be queued on

arrival to wait for their turn to be processed. This increases the overall time

a packet spends in a classifier from the time it arrives until it leaves. Even

though some waiting time may be acceptable and can be seen as normal

for the operation of packet filters, excessive waiting time in the simulation

can produce misleading results. Long average processing time produced in a

simulation can be attributed to long waiting times due to a very short time
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between arrival of packets, rather than to the performance of the access list

itself.

To eliminate such problems, two solutions are available, the first is to ignore

all waiting times and use pure processing time. This concept will ignore

the fact that in real life, packets can actually arrive in close sequences and

will have to wait in the device. The processing speed of the access list can

make the time for the waiting packets short or long. This solution is not

used. The second solution is that it is best to select a (relatively) large

mean time between arrivals for packet streams. This value should be higher

than the average time for processing a packet for a given access list, because

the average processing time for a packet through an access list is difficult

to predict due to the fact that it depends on the packet flow and differs

from one flow to another. It is possible instead to make the mean time

between arrivals for packets in a packet stream to be higher than that of

the total processing time required by an access list. That is the processing

time required for a packet from a class that does not exist in the list. Such

a packet will have to be examined by every rule in the list. In our system,

such a value is displayed as part of an access list definition when an access

list is being viewed. It was necessary to use the mean time between arrivals

to allow for those packets that arrive in real life at very short time intervals.

5.6.3 Organisation of a Packet Stream

Packets in most real communication systems do not arrive in any particular order.

Packet streams are left in random order as they are randomly generated.

5.6.4 Packet Definition Specifications

The actual packets that are used for the simulation are specified through three

parameters per packet. Every packet in a packet stream is defined by the following:

1. Time since last arrival:

This is a random number generated based on the mean time between arrivals

assigned as part of the definition of the packet stream. Every packet stream

class is assigned such a value randomly during the creation of the packet
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stream. The arrival time of the packet in the simulation is calculated from

this value and the actual clock time of the simulation.

2. Packet class:

Every packet is assigned a class represented by a number between one and

the maximum number of classes allowed for this packet stream. This pa-

rameter is randomly generated for each packet during the generation of the

packet stream and it is based on two values, namely, the number of packets

in the packet stream and the number of packets in each class. Both of those

two values are part of the packet stream definition and are both accepted

when the packet stream is being generated. In the simulation, it is impor-

tant to ensure that packets that get accepted are always the same packets

when the same packet stream is filtered by any arrangement of the same

access list. In other words, changing the arrangement of an access list will

not change the output when filtering the same packet stream. This is of

greater importance when investigating the effects of changing the order on

the security implementation.

3. Percentage of rules in the class to be processed:

This is a random number generated to indicate how many rules of the rel-

evant class (represented as a percentage) need to be inspected before the

critical rule for this packet is reached. This parameter ensures that the

same packet will be identified by the same rule regardless of the organisa-

tion of an access list. The reason is that the order of rules within a particular

class does not change. This value has no effect on whether the packet gets

accepted or not, that is a function for the the packet class parameter and

access list.

This parameter (Percentage of rules in the class) for a packet mainly ensures

that any changes in processing time of a packet by different copies of the

same access list are due to the organisation alone. A value of 1% will ensure

on all versions of the same access list, this packet will be processed at very

early on when meeting rules similar to its class. A value of 100 % or over

will indicate that no critical rule is ever found and ensures all the rules in

the list are involved in processing this packet.

The parameter serves two other purposes. First, it allows for situations of

packets which are not recognised and traverse through the entire list of rules.

For example, a packet with an unrecognised class. The second, is that for

those packets that traverse the entire list of rules to be accepted (or refused)
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at the end, it might be worth inserting a rule to actually accepts (or refuses)

them earlier on in the list. From a security point of view, the same packets

will still be accepted (or refused) with or without the rule. This makes the

rule of no value from a security prospective, but from a performance point

of view it can make a difference.

5.6.5 Packet Stream File Specifications

The actual packets’ definitions for a packet stream are kept in a file as part of the

packet stream definitions, which allow the simulation application to read these

details. A packet stream specifications file consists of a header and a number

of records. The header provides details about the entire packet stream like the

total number of packets and the mean time between arrival of packets etc. The

rest of the records provide information about each packet in the stream. The file

structure as well as some example values are shown in Table 5.4, while the header

and record have the following syntax:

1. The file header:

(a) Total number of packets in the packet stream.

(b) Mean Time Between Arrivals.

(c) Number of classes used for packets.

(d) Number of packets in each class ((This field will be repeated a number

of times as that indicated by the previous field “Number of classes used

for packets”.

2. The file records, one record per packet in the file:

(a) Time since last packet arrival.

(b) Packet class.

(c) Percentage of rules to be inspected in the relevant class of rules.

For every packet stream generated with a particular number of classes, a number

of similar streams are generated that have the same number of classes but differ in

the number of packets that make up the classes. Packets are generated randomly

and are kept at that organisation. All packet streams are saved in files with file

names, which are descriptive of the packet streams contained within. For example:

pk 1000000 10000 8 1 indicates that the file contains a (pk) packet stream of a

100



total of (1000,000) packets, with a mean time between arrival of 10,000 time units,

and there are (8) different classes of packets. This is followed by a serial number to

identify the different packet streams with 1000,000 and 10,000 mean time between

arrivals and 8 classes. The syntax for the packet stream file will be as follows:

pk <number of packets> <Mean Time Between Arrivals> <number of

classes> <serial number of packet strems>

Example of packet stream files names are:

pk_1000000_10000_8_555

pk_1000000_10000_8_556

pk_1000000_10000_8_557

pk_100000_20000_64_707

pk_100000_20000_64_708

The field explanation Example values
Total number of packets in the stream 10,000
Mean time between arrivals of packets 9,000
Number of packet classes in the stream 4
Details about every class in the packet stream Number of
(This field is repeated for each class) packets

Class 1 packets 2500
• Number of packets in each class Class 2 packets 1600

Class 3 packets 4000
Class 4 packets 1900

Specifications of each packet in the stream: TSLPA Packet % rules to
(The three fields are repeated for each packet) class be checked

13,203 2 76 %
• Time since last packet arrival (TSLPA) 2,479 3 12 %
• Packet class (1 to maximum classes in stream) 10,547 3 103 %
• Percent of rules in access list to be checked 6,000 1 25 %

Table 5.4: File structure of packet stream definitions,and example data.

5.7 The Filtering and Reporting Model

The Filtering model is that part of the system which performs the actual sim-

ulation of the filtering operation. This part of the system is the mechanism of

inspecting arriving packets against rules in a list. It must also be clear that in an
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access list filtering system, this part of the system does not have an effect on the

result if a packet is to be accepted or refused, even though, it is the module that

does the actual filtering. The outcome will in depend on the inspected packet and

the list of rules used to inspect the packet.

The reporting part of the model is concerned with capturing the information

about every simulation run and the results produced. This model is configured

so it can be used to capture a minimum amount of information in the form of a

one line summary about each simulation run. It can also be configured to capture

a maximum amount of details about a single simulation in the form of a line

summary about each individual packet.

Single access list 
file

multi-access-list-
files-names 

file

Multiple Access list 
files

Multiple packet 
streams files

Single packet
stream file

multi-packet-stream-
files-names 

file

Simulation summary 
report file

(Multiple simulations)

Simulation details 
report file

(Single simulation)

Access list
classifier

Multiple 
packet streams 

files handler

Multiple 
access list 

files handler

an operation

data source or destination

Figure 5.3: The Filtering and Reporting Model input and output files

The mechanism in filtering and reporting model will accept as input one or more

stream of packet to be filtered and one or more access list to use as the classifier.

The model will produce detail or summary information about the simulation.

Figure 5.3 shows the filtering and reporting model with its input and output files.

Two input files are required to perform any simulation, a file containing the packet
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stream to be filtered, and a file containing the specific access list in its specific

order to be used for filtering the packets in the incoming stream. The packet

stream to be filtered can be freshly generated during the simulation itself, and in

such a case a previously saved file will not be needed. An option is made available

to save a freshly generated stream packet used in the simulation run for future

reuse.

In the case of multiple simulations, the names of the access lists files can be placed

in a single text file. Similarly, the names of all the packet stream files can be placed

in a single text file. These two files are generated automatically when multiple

simulation is selected.

Two output files are also produced. The first contains a summary of the simulation

run. This contains the following information about each individual simulation of

a single packet stream filtered by a single arrangement of an access list:

Simulation Summary file

Details about the access list:

• Serial number of the simulation operation.

• Number of rules in the access list.

• Number of classes in the access list.

• Number of rules in each class.

• Class order in the access list.

Details about the packet stream:

• Number of packets in the packet stream.

• Mean time between arrivals of packets in the stream.

• Number of classes in the packet stream.

• Number of packets in each class.

• Total service time of all packets in the stream by all rules in the list.

• Average processing time per packet.
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The second output file is optional. It contains all the details of the processing

of each packet in the stream. It contains the following information about each

individual packet: The name of the file contains the names of both the packet

stream and the access list files. ie: sim al 20 2 2 pk 1000 600 2 707 This file will

contain the following details report in text format: Simulation details file:

1. Report header:

• File name of access list used.

• Number of rules in the list.

• Number of classes in the list.

• Specifications of each class (number of rules, Mean processing time and

percentage of the “Accept” rules).

• Order of classes in the access list.

• File name of packet stream used.

• Number of packets in packet stream.

• Mean time between arrival in packet stream.

• Number of classes in packet stream.

• Number of packets in each class.

2. Report main body:

• For each packet arrival, the following information is kept:

(a) serial number of arriving packet.

(b) packet arrival time

(c) time since last arrival

(d) packet class

(e) number of rules in the critical class to reach critical rule.

(f) packet service time

(g) packet departure time

(h) accumulated service time for all packets

3. Report footer:

• Total number of packets received.

• Total number of packets served.
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• Total service time.

• Maximum size of the Wait-Queue.

• Packets still remaining in the Wait-Queue.

• Packets still remaining in the Server.

• Total service time for all packets.

• Average service time per packet.

5.8 System Parameters

The following is a reduced list of the parameters found to be the minimum which

will define the required model and help interpret its behaviour. Parameters in-

cluded also allow the redefinition of the model characteristics for two purposes:

1. to control the behaviour of the model through selecting the required config-

uration dictating its affect on the operation,

2. to observe the behaviour of the model as a response to changes during op-

eration.

The performance of the models’ operation is measured by recording a number of

the following parameters through a simulation:

1. Maximum Packets: indicates the number of packets arriving to the sys-

tem. This controls the length of the the simulation run.

2. Server Free: the server is represented by the process that performs the

actual inspection of packet against the access list rules. This variable will

indicate “busy” if the process is actually busy inspecting a packet. Any

arriving packets must enter the waiting queue.

3. Time of Arrival: for each packet indicates the time the packet has arrived

in the system.

4. Time to Next Arrival: this is calculated at the time of arrival of every

packet. It is used to decide at what time the next packet will arrive. This is

a random number generated based upon the rate of arrival for packets into

the system.
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5. Time in Queue: if a packet can not be handled immediately upon arrival

it is queued in a queue waiting to be served.

6. Time in Service: this is the actual processing time taken by the server

to determine the fate of a packet. This represents the time taken for a

packet to be checked against the rules in an access list. This is calculated

for each packet depending on the packet class and some of the access list

specifications. The access list specifications which can influence the time

in service are the number of classes, whether or not the same packet class

exists in the list and if so, its position within the list.

7. Time of Departure: the time a packet leaves the system after waiting in

the queue, if so needed and after being checked through an access list.

8. Total Packets Arrived: represents the total number of packets that have

arrived in the system.

9. Total Packets Served: represents the total number of packets that were

served by the server. It may be less than the total packets arrived in the

system, if by the end of the simulation there were still packets in the queue

waiting to be served.

10. Total Queuing Time: total time spent in the queue waiting to be served

by all packets that had to wait in the queue.

11. Total Service Time: time required for service by all packet that receive

service. This will not include packets that are still remaining in the queue

waiting to be served.

12. Max waiting queue: Indicates the maximum number allowed of packets

waiting for to be served.

5.9 Model Conformance

In order to ensure that simulation provides meaningful results, it is vital to en-

sure that the model does behave like the real system for the purpose it was built.

The model must be a correct representation of the real system in the filtering

operations on incoming packets. A number of tests must be carried out to ensure

the correct behavior of the model. The tests must include the separate testing of
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each individual part or model of the system, as in the access list model, packet

stream model and the packet filtering model in their individual operations. The

tests must ensure that their cooperative operation is also correct. Conformance

tests are done by executing the testing module and comparing the results it pro-

duces against a previously calculated and expected result. Some of the tests are

performed directly with no previous calculations, for example, to check for a com-

putation result of an expected single value, or testing the model by requesting it to

generate one ten packets, and actually counting the number of packets produced.

For testing to be done and results to be verified, it is necessary to include other

functions in the system for displaying and browsing in all modules. As an example

the access list model provides facilities to display the actual details for an access

list and all the values for all its rules, with counters and totals. This is important

to verify that the access list model performed the requested operations generating

a single or multiple access list or the rearrangement of an access list. The tests

include the following:

1. Access list generation: Single and multiple access lists generation of

predefined specifications. This ensures the access list model produces the

correct access list based on some given specification. Those specifications

include:

(a) access lists containing different number of rules.

(b) access lists with different number of classes.

(c) access lists with different number of rules in the different classes.

(d) access lists with the same processing time for all its classes and also

lists with different values of processing times for each of the classes of

rules.

2. Rearrangement of an access list: The model must be able to produce

the same access list in any arrangement based on the classes of the rules

within the list. Both operations, the single and multiple rearrangement of

access list is verified.

3. Access list processing time for each class: For ease of use and efficiency

of the model, the processing time of each of the classes of rules in multi-

access list generation is taken from file rather than being entered manually.

Many different values of processing time for different classes of rules must

be specified in the file. The generated access lists must be checked for

adherence.
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4. Packet stream generation: Single and multiple packet stream generation

of predefined specifications. This ensures the packet stream model produces

the correct packet stream based on some given specification. Those specifi-

cations include:

(a) Packet streams containing different number of packets.

(b) Packet streams with different average time between arrival for packets.

(c) Packet streams with different number of classes.

(d) Packet streams with different number of packets in the different classes.

5. Packet filtering: simulation executions of single and multiple packet fil-

tering operations. Different packet streams are tested by filtering through

different access lists and different arrangements of the same access list.

5.10 Summary

This chapter discussed the design issues of the simulation model for the filtering

system. It included the model for access lists and the packet streams. This design

was based on the requirements specified in the previous chapter. The next chapter

discusses the implementation of this design and the results obtained.
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Chapter 6

Implementation

6.1 Introduction

This chapter presents the implementation of both the simulation model and the

actual filtering. It describes how the simulation model of the filtering system was

implemented and how it was validated. It then discusses how the simulation is

used to implement the filtering operation of the different arrangements of access

lists.

6.2 Implementation Environment

The implementation involved two separate stages: the first was implementing the

simulation model of the system, and the second was using the model to implement

the simulation of the packet filtering operation. The first step of the implementa-

tion was to build a simulation model of a packet filtering device. The simulation

model must emulate the performance of a device connected to the internet, and

be capable of receiving a flow of packets for the purpose of classifying them. The

implementation builds the full model including the packet flow and the access lists

used for filtering.

The purpose of the implementation is to build the model and perform simulation

executions of the model in order to:
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• determine the feasibility of the model development for the proposed system.

• enable the execution of test filtering operations for the purpose of model

verification and if required modification.

• produce and allow manipulation of execution results in order to determine

the validity of the model.

• use the developed model for the simulation executions using packet streams

and access lists based on the models.

• produce and allow manipulation of simulation results in order to study and

analyse such results for the purpose of making conclusions about perfor-

mance of different arrangements of access lists.

The steps involved in developing, testing and verifying the model were based on

the idea of continual verification during development. Each and every part of the

model was tested and verified for correct operation while being developed and

as its development was completed. Those parts included access list generation,

rearrangement and packet stream generation; as well as the filtering part of the

model. Predetermined input was supplied and the results were compared with

precalculated results. Every part of the model was verified for conformance with

the relevant part of the system for as much conformance as can be achieved on

individual bases. Then, related parts of the model were tested to ensure correct

cooperation and finally the full model was validated.

The steps involved in using the model for testing the effects of arranging the lists

can be summarised as follows:

1. Generation of access lists based on the access list model, and the production

of different copies of each of the lists in different ordering based on the classes

of rules.

2. Generation and storage of a number of streams of packets based on the

patterns according to the packet stream model. This will enable the same

patterns to be used with different orders of the same access list.

3. Extensive simulation executions of a variety of access lists and packet

streams. The results of simulation executions were analysed and conclu-

sions drawn.
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6.3 Model Creation and Validation

The initial part of the implementation focused on the creation and validation of

the access list, packet stream and filtering models in the packet filtering simulation

system. The model creation for the packet filtering system involved the logic of the

simulation itself, and the inputs required (the packet stream and the access list).

The algorithm used for the actual simulation is the Discrete Event Simulation

(DES) standard algorithm (Banks and Carson, 1996) discussed on page 32 in

section 3.3. In its simplest form, it involves setting a simulation system clock,

which is incremented in every loop. Every time the clock is incremented, the

system is checked to see whether a packet is due to arrive at that point in time,

or whether a packet is due to depart the system. Those are the two major events

that would cause the system to change its state; or they may cause other events.

The arrival time of the next packet is available in a file which contains details of

all packets in a packet stream. In cases where packets are freshly generated, the

time of the next arriving packet is available as it is generated when the previous

packet arrived. Whether the packet stream is freshly generated or a previously

saved packet stream is used, every time a packet arrives, the value for the arrival

time of the next packet is freshly generated or taken from the saved packet stream.
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arr. time
serv. time

Wait-Queue

Server

arr. time
serv time
wait time
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Figure 6.1: Discrete event logic for packet filtering simulation

If the server is free an arriving packet will be placed into the server to start the

service. It will remain in the server a length of time equivalent to the time taken
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for this particular packet to be classified by the access list in use at the time. If

the server is busy serving another packet then an arriving packet is placed in a

waiting queue, see Figure 6.1. The waiting queue is operated on a First-In-First-

Out (FIFO) basis. Packets are removed from the queue and are placed in the

server as the server becomes available. The length of time a packet remains in

the server is based on the length of service time for that packet determined by

the access list currently being used. The service time indicating the time a packet

requires to be filtered by the access list is calculated once the packet has arrived,

and is stamped on the packet, taking into consideration the packet class and the

class arrangements in the access list. Once a packet is placed in the server to be

served, its departure time becomes known (time of starting of service + length

of service time for this packet). Therefore at any time during a simulation, two

pieces of information are always available, namely: the arrival time of the next

packet, and the departure time of the packet that is currently being served. In

such a system, the system will remain idle until one of those two events occurs.

In such a system, incrementing the system clock in steps until the time of one

of those events occurs is somehow inefficient. The system clock is advanced in

one operation to the lower value of either of those two events, that is provided

the server is currently serving a packet, and provided that some packet is still

expected to arrive, i.e. the end of the packet stream has not yet been reached.

6.4 Simulation Executions of Packet Filtering

Once the model’s validity was established, then the other part of the implemen-

tation could start, i.e. performing the simulation executions to study the effect

of rearrangement of access lists on their performance when filtering. To perform

the simulation a number of access lists of varying sizes, number of classes and

mixture of contents of classes were generated. For each of the lists a number of

copies were regenerated in different orders based on the classes of rules.

A number of packet streams representing arriving packets were also generated,

each stream resembling a different pattern of packets arriving into a network

device. The patterns were characterised by the different numbers of packets in

each packet stream, mean time between arrivals, number of classes and number

of packets in each class depending on the packet classification. In this sense a

packet classification reflects the class of rule that will decide the fate of the packet

(accept or reject).
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For the same access list, all copies of its individually rearranged lists were used in

simulation executions to filter each of the packet patterns. In other words, for a

large number of possible patterns of packet streams, all available different orders

of the same access list were used for a simulated execution. The main factor

deciding the performance in this case was the length of time taken to process all

packets in a stream, and therefore, the average processing time for each packet.

All other variables and conditions that may influence the results were kept un-

changed in all simulations where appropriate. For the same packet pattern the

variables are the total number of packets, the number of classes in a packet stream,

the number of packets in each class and the frequency of packets arriving (time

between arrivals). While for access lists the total number of rules, the number

of classes, the number of rules in each class, also the processing time for rules of

similar class and for rules in different classes.

A simulation unit of time was used because the performance comparison is made

by checking average processing time per packet. This reduces complications of

differing real life data observed from different sources due to different performance

speeds.

For the purpose of all our simulations, two main inputs are needed, a list of

access list rules and a list of arriving packets. The rules list, referred to as an

access list contains rules that are first classified according to what inspection

the rule performs. This list of rules is ordered in such a way that all rules of a

particular class are placed at the top of the list. On the other hand, the list of

packets representing a particular pattern based on past real live Internet analysis

is referred to as a packet stream. Packets can also be classified by classifiers based

on one or more of the values in the fields in the packet headers. A few different

patterns are needed, and therefore, a few different lists of packets are generated

which only differ in the number of packets in each of the classes.

Table 6.1 shows the results of six simulation executions performed. Two packet

streams were generated both having 1,000 packets with 4 classes in each (A,

B, C and D) and an average time between arrivals of 3,000 units. One packet

stream is mostly a class A stream containing 80% class A packets. The second is

mostly a class D stream containing 80% class D packets. The other 20% of the

packets contained all other classes of packets that require other classes of rules,

the percentages for the remaining classes in both packet streams were 5%, 7% and

8%. The files specifications for the packet streams were:
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pk 1000 3000 4 001 where 80% of the packets are class A packets.

pk 1000 3000 4 002 where 80% of the packets are class D packets.

An access list was generated which contained 200 rules in 4 classes. Class A, B ,

C and D dividing the rules into 60, 40, 40 and 60 consecutively. Five copies of

the list were made available. one where all the rules were randomly organised.

Rules of class A were placed at the top in the second list; and at the bottom in

the third list. Rules of class D were placed at the top in the second list; and at

the bottom in the third list. The files specifications for the access lists were:

al 200 4 001 with randomly arranged rules

al 200 4 100 1001 arranged with class A rules on top

al 200 4 100 1002 arranged with class A rules at end

al 200 4 100 1003 arranged with class D rules on top

al 200 4 100 1004 arranged with class D rules at end

It is expected that the access list with class A on top would give better performance

than the same list with class A at the bottom when filtering a mostly class A packet

stream. Similarly, better results are expected when class D is on top of the list

during filtering a mostly class D packet stream.

80% class A 80% class D
Access list packet pattern Packet Pattern
(200 rules) (mostly Class A) (mostly Class D)

Average processing time per packet
Randomly arranged rules 2633 2465
Arranged with class A on top 1054
Arranged with class A at bottom 4338
Arranged with Class D on top 1461
Arranged with Class D at bottom 3881

Table 6.1: Effects of class position in an access list.

Similar results in line with these results in Table 6.1 were observed on many

other executions with varying other values such as the number of packets, other

classifications of packets on one hand, and the varying numbers and types of access

list rules on the other.

In Table 6.1, the two best performances are represented by the lowest average pro-

cessing time per packet in each column. The better performances were obtained

when the class of rules in the access list placed on top of the list matched that

of the class which is predominant in the packet stream. The worst situation is
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where the class placed at the bottom of the access list is the class that matches

the predominant class of packets in the stream. The unsorted access list perfor-

mance falls between the other two best and worst order scenarios. The unsorted

list performance is near the average performance of the other two arrangements of

the list. In fact, in some of the cases it is actually slightly worse than the average

of all the different orders used.

Extreme domination of a single class packet in a packet stream is not the norm.

This simulation was used to show the idea that better performance is expected to

be achieved by placing on top of the list the class that matches the dominant class

in the packet stream. But, in most cases, the dominance of the class in the packet

stream is not as high. Examples are where three or more classes dominate the

packet stream at round 30% each. Also, the cost of each of the rules within a class

can fluctuate to the point where one class can have more effect on performance

than another class with a higher number of rules but of less computing cost. In

fact, more simulation experiments showed different behaviour that was explained

by considering a class by other than just the number of rules it contains. The

term rule-weight was used to better reflect the effect of rules in a class taking in

consideration their number and computing cost on a single packet.

6.5 Packet-Rules Cost Weight Method (PRCW)

Consider a packet arriving into an access list. It is not entirely true to say that

the total processing time for such a packet is dependent on the number of rules

alone. The processing time of each rule must be taken into consideration for a

more accurate calculation. An arriving packet getting filtered by 5 rules, which

require 1 microsecond each, will have the same processing time if it was being

filtered by 10 rules requiring 0.5 microsecond each. Therefore, it can be stated

that the processing time of a packet depends on the number of rules as well as

the processing time of each rule.

Consider a packet passing through a list of rules. If there were m rules of one

class in the list with a processing time (or an average processing time) r for each

rule, then the total cost of processing C, for a single packet passing through the

rules of a particular class in the list would be calculated as: C = m × r. If the

packet has to pass through more rules belonging to different classes s then the
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total cost can be expressed as:

Ctotal =
n∑

s=1

ms × rs,

where n is the number of classes.

But, for the class that contains the critical rule for the packet, processing is

different. That is where the rules’ class is the same as the packet’s class. The

critical rule may be located as the first rule in the class, last or somewhere in the

middle. Let us assume that on average the critical rule will be in the middle of

the class’s rules. This means that on average processing time for the class, which

will accept or refuse the packet, will be presented as: C = 0.5mr.

Let us consider an example of a packet stream and an access list both having only

two classes A and B . The packet stream consists of only 10 packets dominated

by class A. It contained 6 packets of class A and 4 packets of class B . For the

access list, the number of rules and processing time of each has been taken into

consideration to produce a total cost (ms × rs) for each of the classes A and B .

The left-hand side of Figure 6.2 shows the list with the cost for classes A and

B as 100 and 500 units of time respectively, while on the right-hand side of the

figure, the cost for classes A and B is reversed to 500 and 100 respectively. In

the case of the access list, the cost 100 units of time can refer to 20 rules with an

average processing time of 5 units each; 50 rules with an average processing time

of 2 units each; or 100 rules with an average processing time of 1 unit each (As

long as it takes a single packet of 100 units of time to pass through). To simplify

this example, consider the 100 and 500 in the case of the access list to refer to the

number of rules each with a processing time of 1 unit.

Based on what has previously been seen, to obtain the better performance it

would be recommended to place rules of class A on top of the list because there

are more class A packets in the packet stream. With class A rules on top of the

list, remember that class A packets passing through the list will only go through

class A rules and will not get to class B rules, while class B packets will be

processed by class A rules followed by class B rules. In other words, every packet

will continue processing until it is processed by a rules of its class. The example

on the left–hand side; shows that the total cost is less if class A rules are placed

on top of the list (C=1700). While on the right–hand side of Figure 6.2, the total

116



processing cost is less when class A rules are placed at the bottom of the list

(C=2300).

It has been established that the amount of processing did not depend on the

number of rules alone. It has also been established that the amount of processing

did not depend on the costing weight of the rules alone. The number and class of

packets need also to be considered in any particular situation. The term Packet-

Rule Cost Weight became the factor for determining the cost in a particular packet

stream filtered by a particular permutation of an access list.
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Figure 6.2: Calculating processing cost for different organisations or different lists.

6.5.1 Total Cost Calculation

It is possible to calculate the total cost for all the different possibilities of rules’

classes combinations of an access list for a given packet stream. Combinations

of the rules classes in this sense are best referred to as the permutations of the

access list classes. Consider a packet stream made up of 3 classes of packets (p1,

p2 and p3) and an access list of 3 classes of rules with a calculated cost of (r1, r2

and r3). Notice that rx now refers to the cost for all the rules in a class rather

than the cost of a single rule. The maximum number of permutations for the 3

access list classes would be 3! = 6 different possibilities. The best permutation for

our purpose; is the one that produces the lowest processing time (or least cost)

for a given packet stream. The cost for each permutation is the sum of the cost
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for every class of packets passing through the list, as was seen in Figure 6.2. The

cost can be calculated as follows with reference to Figure 6.3 and the following

formulae. Remember a p1 class packet is processed through the rules and will stop

at rule class r1. Similarly, a p2 packet will stop processing at r2 and a p3 will stop

at r3. Also, C(r1, r2, r3) refers to the cost when the access list rules classes are

arranged with r1 class on top, followed by r2 and then r3.

C(r1,r2,r3) = p1
1

2
r1 + p2r1 + p2

1

2
r2 + p3r1 + p3r2 + p3
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2
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Figure 6.3: Calculation of cost for all different permutations.

The above formulae can be simplified to extract a general format that calculates

the cost for any single permutation by subtracting the cost values appearing in

all of them: p1
1
2
r1, p2

1
2
r2 and p3

1
2
r3. As the same value will be taken from every

formula, it will have no effect on the final comparison to find the formula with the

smallest value. Now, the general formula to calculate the cost for any number of

classes of rules and packet streams can be expressed as follows:

The time cost for a permutation t of rules classes =
n−1∑
j=1

[rtj .
n∑

z=j+1

pz]
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Where:

t is the permutation used i.e. (r2, r1, r3)

n is the number of classes

rtj is the cost of r rule class in position j in the permutation t

pz is the number of packets of class z

The PRCW algorithm for calculating the cost of each permutation of an access

list classes for a given packet stream may be expressed in two parts. The first part

produces all the different permutations possible for the access list classes. This is

done by recursively shifting the numbers that make up the classes. For example

from the 4 classes: 1, 2, 3 and 4; the permutations in the left column in Figure 6.4

are extracted. From each one of those permutations, a further 3 permutations

are extracted (middle column) by shifting only the right 3 elements. From each

of those, two more permutations are extracted (right column) by shifting only

the right 2 elements. A total of 24 different permutations are extracted from 4

numbers. In other words, the first part of the algorithm can be described by the

recursive function shown in Algorithm 6.1 on page 121.

The second part of the algorithm actually calculates the total cost of processing the

packets through the access list using each of those permutations. For this purpose

two more lists of information are needed, the first is the number of packets in each

class in the tested packet stream. The second is the total processing cost of rules

for each class in the list. This processing cost is a simplification of two values

namely the number of rules in the class multiplied by the average processing cost

of the rules in that class.

Algorithm 6.2 shows the algorithm for calculating the processing cost for packets

filtered by one permutation of an access list. The algorithm uses the arrays: pkt[ ]

to hold the number of packets of each class in the packet stream, al class cost[ ]

to hold the processing cost of each class of rules and permutation array[ ] to hold

the classes’ permutation of the access list for which cost is being calculated.

This algorithm works well in producing the permutation of classes in an access

list which yields the lowest processing cost for a given packet stream. In fact, this

algorithm computes the processing cost for each and every permutation of a given

access list classes for a given packet stream.

Figure 6.5 shows the results of simulations for a packet stream containing 10000
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Figure 6.4: Extracting all possible permutations for numbers 1 to 4.

packets with 8 classes, class A making up most of the packets (91%), class B

makes 3%, the rest of the 6 classes make up 1% of the packets each. The access

list has 500 rules, classified into 8 classes (class A to H ) having the following

percentages and in the same order: 23%, 48%, 12%, 10%, 3%, 2%, 1% and 1%.

Figure 6.5 shows the performance curve of the access list with the described packet

stream in many different organisations of the access list classes. Execution run

number 10 (on the x-axis) represents the organisation of the classes when class A

rules are at the top of the list, with the rest of the classes in the list in random

order. Because the packet stream is mostly a class A packet, the performance is

very good.

The second last point (run 21) shows the performance when the all rules classes in

the access list are organised based on the numbers of packet’s classes in the packet
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Assume initially:
n = number of classes /* is number of classes to get permutations for.
permutation array /* is the array holding first permutation, i.e. [1,2,3,4]

Func permutation(permutation array, n, number of classes)
{
if (n > 1) then
{ /* circular right-shift numbers in the array in indices < n
circular shift array(array, n)
Call permutation(permutation array, n− 1, number of classes);
}

else
{
return(permutation array); /* this is a permutation
}

end if
}

Algorithm 6.1: The recursive function for generating the permutations.

stream. The last point on the curve represent the best performance obtained by

the organisation based on the calculation for the lowest processing time using the

processing cost weight method described above.

6.6 The High-Cost Elimination (HCE)

The Packet-Rule Cost Weighing (PRCW) method was proposed and investigated

early on during the research work. It was implemented and was successful in

producing the best permutation. The PRCW method is particularly helpful for

automating the solution when considering that the number of possible permuta-

tions of the classes in the access list can be large.

The major problem with the PRCW algorithm described above is the amount of

processing time required. This is because computation is performed to calculate

the cost for every possible permutation. A 30-class access list will have over

2×1032 different permutations. A 16-class access list can have more than 2×1013

permutations. Each permutation contains 136 calculations (the sum of all the

numbers from 16 to 1). An access list with n-classes has n! different permutations;

each with a number of actual calculations equal to the sum of the numbers from
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// 3 arrays are assumed:
// permutation array[ ] holding class numbers in the permutation to test
// pkt[ ] numbers of packets in each class in a packet stream
// sl class cost[ ] holds cost of rules for each class in an access list
let minimum cost = max double; /* largest possible value
let cost =0
for (pk index = 1 to number of classes) do

/* repeat this for each packet class indicated by pk index in pkt[ ] array
al index = 1 /* start with first class in the given access list permutation
repeat

/* accumulated cost of packet passing through classes of an access list
actual index = permutation array[al index] /* take the class in list
if (pk index == permutation array[al index]) then

/* same packet class as access list class, half processing cost
cost = cost + (pkt[pk index]) ∗ al class cost[actual index]/2)

else
/* different classes, full cost

cost = cost + (pkt[pk index] ∗ al class cost[actual index])
end if
increment al index;

until (pk index == permutation array[al index])
/* stop when processed access list class is the same as the packet class

if (cost <= mimimum cost) then
{ print(“found a lower cost : ”, cost)

minimum cost = cost;
print(permutation array) }

end if
end for

Algorithm 6.2: Calculating the processing cost for one permutation.

1 to n.

Some approach must be found to reduce this enormous size of computation. The

PRCW algorithm is successful in getting the best permutation with the least pro-

cessing time, provided this processing is done off line and in advance for preparing

the permutation. The PRCW algorithm will not be successful for use in a dynamic

situation to calculate the best permutation due to changes in characteristics of

continually flowing packet stream. That is especially true in the case of access

lists with large number of classes. A number of algorithms were suggested, imple-

mented and tested. The following is a brief description of these algorithms:

1. Minimum Processing to Next Class: This is based on the idea of select-

ing the access list class that filters the packets at the minimum processing

cost at each stage. The cost for all different classes of packets is calculated

as if there was only one class in the access list. This is done for each class in

the access list and the class with the least processing time is selected to be on
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same access list in different organisations
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Figure 6.5: Different organisations of an access list with same packet stream.

top of the list. Packets in the packet stream and the access list rules for the

selected class are ignored in the next round of filtering. The class with the

minimum processing time is selected each time and dropped from the next

round until a single class is left. This algorithm performed well in a lot of

cases yet it did not produce the permutation with the minimum processing

time in other cases. This is a typical minimization problem, which suffered

from local minima, that is when the minimum value at a local point may

not be on the overall minimum route line. Solving the minimum cost for all

access lists and packets streams using this algorithm was not possible.

2. Minimum remaining processing algorithm: This looked at the filtering

operation in reverse, and starting to find out the last class in the filter.

The idea is that the worst case may be viewed when a large number of

packets pass through all the classes producing heavy cost. Those packets

that have not been filtered yet will reach as far as the last class and need

to be filtered. Logically, a good algorithm will have fewer packets reaching

this class and will have the least amount of useless processing done. It

would also mean that all other packets have already been filtered by their

corresponding access list classes. Only packets belonging to the last class

will reach the last class. Based on this, the question remained was, which

class of packets is preferred to have as last? The answer was; naturally: the
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one that would give the least amount of useless processing.

This algorithm starts by calculating the processing required for each class of

packets (knowing the number of packets) by the cost of rules for that class.

The processing cost is calculated for each class separately. The class with

the least amount of processing cost (packets and rules) is taken to be the

last class.

This class is eliminated from the list of classes and the operation is repeated

for the remaining classes to find out the last class in the remaining set.

When only one class is left, the order of sequence of classes it identified in

reverse. This method gave good results in many classes; but failed at further

tests and was not pursued (See results in the figures in appendix A).

3. The High-Cost Elimination (HCE): This algorithm is a new approach

and is based on the elimination of unnecessary processing of packet stream

classes with large numbers of packets by the access list classes with high

cost rules.

Consider having a packet stream with two classes of packets and an access

list with two classes of rules. Assuming the larger number of packets belong

to class B , and that the highest cost class of rules in the access list are of

class A. This means that of all the processing of the different classes, the

highest processing cost is done when packets of class B are processed by

rules of class A. It is also a fact that this processing is an extra cost of no

value to the filtering process; it is already known that class B packets are

only filtered by class B rules. Ideally, in this case it is not desirable for class

B packets to reach class A rules in the list. Therefore, class B rules must

be located before class A rules in the access list.

Where there are more classes of packets and access list rules, similar com-

parisons in cost between class A and each of the other classes are made.

That determines position of class A relative to each of the other classes.

The following algorithm implements the High-Cost Elimination (HCE):

(a) The classes in the packet stream are arranged in a descending order

based on the number of packets in each class.

(b) The access list classes are arranged in a descending order based on the

cost weight of the rules in each class.

(c) Each of the packet stream classes is checked by calculating the cost of

filtering with each of the classes in the access list. Two cost calculations
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are made for a given packet class number and a rule class number. In

other words, cost is calculated when packets of class A are filtered by

rules of class B . Then they are swapped so that packets of class B are

filtered by rules of class A and the cost is calculated.

(d) The number of times are noted when a higher cost value is calculated

for a class when it is used as a packet stream class than when it is an

access list class. The number of times will indicate how high up the

class will move in the desired access list class permutation.

To describe the High-Cost Elimination (HCE) algorithm using an example, assume

a 4-class packet stream containing the following number of packets: 10, 30, 40

and 10 for classes A, B , C and D . Also assume a 4-class access list containing the

following rules’ cost values: 8, 2, 4 and 10 for classes A, B , C and D consecutively.

Table 6.2 shows the packet stream classes ordered based on the number of packets

in each class; and also shows the access list classes ordered based on the costing

of rules in each class. This ordering is helpful in identifying the highest cost class

combination of packets and access list. But it is not a necessary step for the rest

of the algorithm implementation.

Packet stream Access list
Packet classes Number of packets Access list classes number of rules

C 40 D 10
B 30 A 8
A 10 C 4
D 10 B 2

Table 6.2: The ordered packet stream and access list classes.

Taking the packet stream classes one at a time and calculating the cost against

each of the access list classes, the left part of Table 6.3, shows the packet stream

classes and the cost calculations with each of the remaining classes of the access

list. In the right side of the table, the roles of packets and access list classes are

reversed. For example, class C packets filtered by class D rules become class D

packets filtered by class C rules, and the cost is calculated. When the two cost

columns in the Table 6.3 are compared; the higher values of the cost in the left

side of the table are noted and marked in the column [position in list ] with the

(*) sign. The number of (*) signs for a given class indicates the index of its place

in the list. The higher the index number is; the higher the position of the relevant

class in the list. A value of 0 indicates that the class is placed at the bottom of the

access list. The position refers to the class shown in the [Rules class ] column on
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the right side of the table. In the example in Table 6.3, the permutation obtained

for the access list class is: classes B, C, A, D. Class B being on top of the list and

class D at the bottom.

Packet class into access list class Reversed roles classes
Packet Rules Cost cost Position Rules Packet Cost cost
class class calculation in list class class calculation
C D 40 x 10 400 * C D 04 x 10 040
C A 40 x 08 320 * 2 C A 04 x 10 040
C B 40 x 02 080 C B 04 x 30 120
B D 30 x 10 300 * B D 02 x 10 020
B A 30 x 08 240 * 3 B A 02 x 10 020
B C 30 x 04 120 * B C 02 x 40 080
A D 10 x 10 100 * A D 08 x 10 080
A C 10 x 04 040 1 A C 08 x 40 320
A B 10 x 02 020 A B 08 x 30 240
D A 10 x 08 080 D A 10 x 10 100
D C 10 x 04 040 0 D C 10 x 40 400
D B 10 x 02 020 D B 10 x 30 300

Table 6.3: Cost calculations and defining the position in the access list order.

When performing the cost computations, no computation needs to be done if the

packet class and rules class are the same. On the other hand, classes of rules in

an access list for which there are no matching classes of packets in the packet

stream shall be ignored, for they will be placed at the bottom of the list. They

are an extra overhead on the access list, but will have no effect on the arriving

packets with one exception. The exception is those classes of packets, which do

not have matching classes in the list. Such class of packets will be ignored because

their cost is going to be constant for the same access list regardless of its class

permutation. A packet of such a class will simply pass through each and every

rule in the list all the time.

One more reduction is for the computations of processing time for any packet class

to be filtered by the same class rules in the list. This would be the same value for

all different permutations of the access list when filtering the same packet stream.

Eliminating that from all permutations will not affect the final output. This

High-Cost Elimination (HCE) algorithm produced the best permutation with the

minimum processing cost in all tested cases.
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6.7 Summary

This chapter described the model creation and validation implementation. The

simulation implementation was also discussed in detail showing the environment,

the problems and solutions. The chapter outlined the progress in performance

as it occurred during research work. The idea, development and implementation

of both algorithms the Packet-Rules Cost Weight (PRCW) and the High-Cost

Elimination (HCE) were described in detail. The The next chapter looks at the

evaluation of the simulation results. Conclusions are drawn as to the effects of

rearranged access list classes on performance.
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Chapter 7

Evaluation

7.1 Introduction

The previous chapter outlined the implementation of the packet filtering model

and its simulation. A discussion was presented of how the development progressed

through a number of stages.

This chapter presents the evaluation of the research work from the performance as-

pect of access lists. This is based on the results of simulation executions using the

model. This chapter outlines and analyses the results obtained. The performance

evaluation of different arrangements of access lists is analysed in detail.

7.2 Model Validation and Verification

More time was spent on the model design, development and verification than on all

other simulation experiments put together. It was absolutely vital to ensure that

the model was a correct reflection of a real network device performing access list

based packet filtering. The verification involved all the operations of the model;

including all access list operations, packet stream operations and the filtering

operations.

The access list operations included the creation, modification, reordering and

display of access lists. It included the verification of many possible numbers
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of classes, number of rules, processing time and distributions of rules into the

different classes. It included the saving of such access list specifications and the

reading and use of such lists.

The packet stream operations included the creation, modification display, saving,

reading and using in filtering operations or other wise. Also included in verification

were the numbers of packets in a stream, classification and the distribution of

packets into the different classes. Other validation was for the value indicating

the position of the critical rule for each packet in the relevant class in an access

list.

The verification of the correct operation of the simulation operation of the model

included the testing of a very large number of access lists using many packet

streams. Step-by-step verification was needed many times to verify some of the

results obtained. The simulation was verified for correct input and interpretations

of access lists and packet stream specifications, the logic of the simulation for

correctness then the relevant and correct results produced. Detailed reports of

simulation operations were developed specifically to show step-by-step progress of

a simulation per packet.

It was necessary to ensure the model was verified for correct operation and to

ensure it produced valid results. Once, this was achieved, then it was possible to

start simulations for actual performance measurement and analysis of access list.

The following are some of the tests carried out for the purpose of validation and

verification of the different models:

1. The Access List Rules Model:

(a) The processing time for rules in a given class is a random number based

on a mean processing value for each individual class in the access list.

It is one of the requirements that all classes can as an option have the

same mean processing time. The mean processing time for all classes

is created and kept in a file. Many files can be created any of which

can be used during the creation of a new access list. To ensure the

model produces the correct mean processing times, a number of files

are generated. Specifically, the files had different mean processing time

values. For some files the selection was for equal mean processing times,

while for others the selection was for different processing times. When

files were displayed, all files showed correct results.
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(b) The creation and re-ordering of an access list was tested to ensure

that the access list is created and the correct details is generated as

well as the correct arrangement is obtained. Thousands of access lists

were created in different sizes, specifications and arrangements. An

example is the creation of an access list with 20 rules and 4 classes.

The four classes (1, 2, 3 and 4) had each: 8, 1, 4 and 7 rules, and

a mean processing time of: 20, 35, 40 and 12 time units and finally,

a percentage of rules to have the value “Accept” represented by “1”

as follows: 50%, 100%, 75% and 0%. The access list is created and

saved and re-arranged using all possible permutations available. It

was possible to view an access list at every stage. In this example

this following report was produced when a request to display the final

version of the list after the reordering (The 9th out of 24 permutations):

Number of rules are: 20

Number of Classes are: 4

class Number mean time of accept

no of rules processing rate

-------------------------------------------------

1 8 20 50 %

2 1 35 100 %

3 4 40 75 %

4 7 12 0 %

The Rule’s classes are Organised as follows:

3 , 1 , 4 , 2 ,

The exact number of rules in each class are as follows:

Class No: 1 : 8 Rules.

Class No: 2 : 1 Rules.

Class No: 3 : 4 Rules.

Class No: 4 : 7 Rules.

With a total processing time of 400

S/no accept/deny class processing time

1 1 3 38

2 1 3 49

3 0 3 31

4 1 3 34

5 0 1 17

6 1 1 19
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7 1 1 18

8 0 1 19

9 1 1 16

10 0 1 15

11 0 1 16

12 1 1 23

13 0 4 9

14 0 4 11

15 0 4 12

16 0 4 12

17 0 4 10

18 0 4 12

19 0 4 9

20 1 2 30

2. The Packet stream Model:

(a) The creation of a packet stream was tested to ensure that it was created

and the correct details were generated. Thousands of packet streams

were created in different sizes and specifications. An example is the

creation of a packet stream with 20 packets, mean time between arrival

of 10,000 time units and 4 classes. The four classes (1, 2, 3 and 4) had

each: 2, 11, 3 and 4 packets. The maximum number of rules in an

appropriate class rules that can be checked when filtering a packet is

set at 100%. The packet stream is created and saved. In this example

this following report was produced when a request to display the packet

stream:

Number of packets: 20

Average time between arrivals: 10000

Number of packet classifications: 4

Number of packets meant to be in class 1 = 2

Number of packets meant to be in class 2 = 11

Number of packets meant to be in class 3 = 3

Number of packets meant to be in class 4 = 4

Exact number of packets in each class of packets in this packet

stream file:

Class No: 1 : 2 packets.

Class No: 2 : 11 packets.

Class No: 3 : 3 packets.
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Class No: 4 : 4 packets.

List of Packets:

pk Time since Packet Class % of rules

no last packet checked

=====================================================

1 212 3 84

2 8199 3 47

3 3047 3 84

4 11936 4 33

5 2545 1 44

6 9761 1 2

7 15323 2 64

8 4049 4 100

9 8599 4 88

10 13331 2 69

11 7590 4 81

12 1613 2 75

13 887 2 21

14 533 2 45

15 15470 2 17

16 18892 2 12

17 1417 2 2

18 19901 2 23

19 4516 2 93

20 5127 2 89

3. The Filtering and Reporting Model:

(a) The user interface is a menu driven interface which is relatively simple

to use, clear and functional.

(b) With the filtering model it was possible to manually compute the cost

of packet filtering operations of small packet streams filtered by small

access lists. The results were compared against those produced by

the model. The model also produces detailed account of a filtering

operation one packet at a time. The following is a sample result of the

detailed report of a simulation operation:

Access list used was from file name: al\_20\_4\_021\_88

Number of rules in access list: 20
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Number of Classes in list: 4

Class 1: makes: 8 , processing time: 20 , accept rate: 50 \%

Class 2: makes: 1 , processing time: 35 , accept rate: 100 \%

Class 3: makes: 4 , processing time: 40 , accept rate: 75 \%

Class 4: makes: 7 , processing time: 12 , accept rate: 10 \%

Class Order of the access list is :

4, 1, 3, 2,

There are exactly 8 rules of the Class 1

There are exactly 1 rules of the Class 2

There are exactly 4 rules of the Class 3

There are exactly 7 rules of the Class 4

Packet stream used was from file name: pk\_20\_10000\_277

Number of packets: 20

Mean time between arrivals: 10000

Number of packet classifications: 4

class 1, makes 2 of packet stream

class 2, makes 11 of the packet stream

class 3, makes 3 of the packet stream

class 4, makes 4 of the packet stream

List of Packets:

pk arr since Packet decide service deprt. accum.

no time last pkt Class rule time time serv time

=================================================================

1 212 212 3 3 336 548 336

2 8623 8411 3 1 256 8667 592

3 20081 11458 3 3 336 11794 928

4 43475 23394 4 2 20 23414 948

5 69414 25939 1 3 129 26068 1077

6 105114 35700 1 20 400 36100 1477

7 156137 51023 2 1 400 51423 1877

8 211209 55072 4 7 75 55147 1952

9 274880 63671 4 6 66 63737 2018

10 351882 77002 2 1 400 77402 2418

11 436474 84592 4 5 54 84646 2472

12 522679 86205 2 1 400 86605 2872

13 609771 87092 2 1 400 87492 3272

14 697396 87625 2 1 400 88025 3672

15 800491 103095 2 1 400 103495 4072

16 922478 121987 2 1 400 122387 4472

17 1045882 123404 2 1 400 123804 4872
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18 1189187 143305 2 1 400 143705 5272

19 1337008 147821 2 1 400 148221 5672

20 1489956 152948 2 1 400 153348 6072

Total number of packets received: 20

Total number of packets Served: 20

Total service time: 5672.000000

Maximum waiting Queue s ize: 0

Packets still in Waitin g Queue: 0

Packets still in the Server: 0

Actual average time between arrivals: 283.6000

Average service time (calculated): 303.6000061, 303.600000

7.3 Performance of Arranged Access Lists

The evaluation of the filtering operation covers both the functionality and perfor-

mance of the filtering system. Functionality refers to two aspects: the behaviour

of the service which the function (object, or application software) provides to

its user; and the action or set of actions completed by the function when it is

executed.

Performance refers in our case to the speed at which a function performs the

service at hand. Performance is inversely proportional to the time taken by a

function to perform a service in its entirety. The longer it takes to do the job, the

lower the performance. In our case, it is the average processing time per packet

when filtering a stream of packets by an access list.

Reorganising access lists based on rule classification is one way of improving per-

formance particularly where there are a large number of rules. A particular ar-

rangement of rules is only relevant to one particular characteristic of an incoming

stream of packets. The research work progressed so that ultimately, it is one par-

ticular arrangement or permutation that is sought after, the permutation which

yields the best performance. The first hypothesis (see Chapter 1) stated in the

research objectives to test if access list performance can be improved by rearrange-

ment of the access list. The second hypothesis relates to finding out the best way

to arrange an access list to achieve the lowest average processing time needed per
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packet.

The requirements specifications stated in Section 4.7 of chapter 4 was verified to

ensure all requirements were met. The following are some of the observations

worth mentioning:

1. Requirement number 3 in section 4.7.1, was about having an average time

between arrivals of packets in a given packet stream to be larger than the

time taken by a single packet to be filtered by all rules in a list. To ensure

that this was possible, it was made to be a standard to display either of

those two values whenever any access list or any packet stream is displayed.

The access list model was made to produce the total cost of processing a

single packet by all rules in the list under consideration. The Packet stream

displayed the mean time between arrivals.

2. Requirement number 4 in section 4.7.1, was to test as wide a range as

possible of number of packets in packet steams. Values were tested and

verified ranging from a few packets about 10, to a maximum tested value

of 10 million packets. All models were capable of handling such range of

values. It was required at some stage to change the type of the memory

storage variable holding the total cost of processing due to the size.

3. Requirement number 5 in section 4.7.1, was concerned with allowing some

packets to remain unidentifiable by the access list in use. For each packet

specification in a packet stream a value is assigned to the packet which states

the percentage of rules to be applied to the packet before the critical rule is

reached. This value only relates to the rules in the class which is the same

class as the packet. A value of 50% for packet class A means that packet A

will go through 50% of the rules in class A. This simulates that the critical

rule for the packet exists approximately half way through the list. A value

of 100% or higher, will make the packet go through the entire list of rules in

its class without finding the critical rule. This value for individual packets is

assigned randomly based on a value given as part of the stream specification

during creation. The higher the value above 100% given during creation the

more packets that will have to traverse the full length of their class.

It was found that the same effect can be obtained by specifying more classes

of packets in the packet stream than there are in the access list. A packet

of class “x” will traverse through the entire list if no rules of class “x” exist

in the access list.
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But, this value of percentage of rules to be checked was used for a different

purpose. It was used to specify for all packets in a particular class in a

packet stream to have values below a certain value, i.e. 70%. This means

that all packets will never go pass the rule marked as number 70% on the list.

This makes the other 30% of the rules in a redundant situation. They have

no effect on packets of similar class, but have a negative effect on all other

packets. It was possible to determine the percentage of redundant rules in

any given class in a given access list through controlling this variable in the

packet stream.

4. Requirement number 7 in section 4.7.1, was concerned with being able to

allow for equal processing time of rules in a list. This was achieved through

the ability to create and edit a separate file to hold the processing time for

each class (256 classes). These values can be selected to be equal or different.

Each individual value can be accessed and changed to allow for certain

requirement. When an access list is created, the file to use for assigning the

processing time for the rules must be specified. It is possible to create many

different files and use either when it suits.

5. Requirement number 2 in section 4.7.2, was concerned with the ease to

create, display and re-arrange access lists. It was possible to allow creation

and display much earlier on during the research work. With regard to the

re-arrangement of the access list it was difficult to determine the method

which would satisfy the requirements. Initially, the option was to arrange

a list into a specific single arrangement. It was possible to achieve that,

but was very impractical when having to deal with hundreds of re-arranged

access lists. So, the next method was developed to re-arrange a list in all its

possible permutations. That was successful with access lists of low number

of classes, but was impossible to finish the job in a reasonable time for access

lists with large number of classes. At the initial stages of the work lists were

arranged by placing each of the classes once at the top and once at the

bottom of the list. This was practical for initial experiments but of lesser

value at later stages. One of the most successful ways to organise access lists

with large number of classes was the random arrangement of the lists. The

developed algorithm requests for the number of required arrangements to

produce. The algorithm generates random numbers to represent the classes

in the list and determine their new arrangement. This was especially helpful

for example in producing 300 random different arrangements for an access

list with 64 classes and higher.
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7.4 Placing Class With Most Packets On Top

Figure 7.1 shows a typical observed result. This particular one involved the same

access list which has 100 rules in two classes, class A and class B , with 56% of

all the rules in the list belong to class B . Simulations were conducted once with

the classes being randomly arranged and once with class B rules placed on top of

the access list. The two access lists were used in the simulation to filter a number

of packet streams. These packet streams have the same number of classes and all

consist of mostly class B rules. They only differ in the number of class B packets

within the stream as shown on the x-axis.
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Figure 7.1: Access lists with class B rules on top or randomly mixed

The results indicate that when a packet stream is highly class B oriented, per-

formance improves when the access list has the class B on top of the list. This

improvement is indicated by the lower average processing time as depicted by the

middle and right parts of the curve in Figure 7.1.

Notice the performance deterioration for some access list with the class B rules

on top, see the left side of the Figure 7.1. The reason is that these packet streams

contain very low number of class B packets. In other words, they are no longer

class B oriented streams. In such cases, the randomly arranged class of the access

list provided better performance. In fact, placing class B rules on top of the access

list ceased to have an advantage when number of class B packets dropped below
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41%.

Figure 7.2 shows the same class B oriented packet stream being filtered by the

same access list. Simulations were conducted with class B rules once on top and

once at the bottom of the access list. The results indicated a larger difference in

performance was obtained in this access list when class B rules were placed at

the top and at the bottom. The better performance is attributed to the fact that

the packet stream is class B oriented, and likewise the access list. This result was

expected, but as will later be demonstrated, is not always the case.
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Figure 7.2: Access lists with class B rules on top or randomly mixed

Simulation experiments have shown that placing the class of rules which matches

the majority of packets in a packet stream seems to work in most cases. Figure 7.3

shows the performance of a number of simulations for the same incoming packet

stream having 10,000 packets and 8 classes of rules in an access list, being filtered

by different organisations of the same access list. Most of the packets in the packet

stream are class C packets. The access list has 500 rules and 8 classes of rules; it

also has more class C rules than any other. For each simulation, access list rules

belonging to a different class are placed on top of the access list as indicated on the

x-axis in Figure 7.3. In this particular experiment, two access list organizations

with class C rules on top gave different performance levels. Also some random

organizations of the access list had a high-level performance, see the left part of

Figure 7.3.
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same, mostly class-C packet stream arriving
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Figure 7.3: Access list of 500 rules with 8 classes in different access list organisations

Figure 7.4 represents the results of many packet streams each consisting of 10,000

packets in 64 classes, with varying percentages of class A rules; being filtered by a

two–class access list. Better performance is achieved in most cases when Class A

rules are placed on top of the access list as was expected. But, other varying levels

of performance was noticeable indicating that performance must be determined

by more than just placement on top of the access list the class that is dominant

in the packet stream.

7.5 Class Ordering According to Number of

Packets

Many of the results obtained did not support the hypothesis, i.e. having a par-

ticular class of rules on top of the list did not always produce the best results for

a particular pattern. It seemed that it was possible to obtain better performance

by placing some class rules on top of the access list, provided that the very same

class is also the most common class of packets in the packet stream. Looking at

the remaining rules in the access list, can they be arranged similarly to improve

139



16000

18000

20000

13 13 16 18 19 19 23 25 30 30 34 36
% of class-A  packets in 64-class packet streams

av
er

ag
e 

pr
oc

es
si

ng
 ti

m
e

Rule class-A on top    

Rule class-B on top

Figure 7.4: Packet streams of 64 classes and an access list in two organisations

performance? If the second most common class of packets in a packet stream can

be identified, then in the access list the rules of the same class can be placed next

to the previous class, and so on with the rest of the classes.

In other words, if the most common classes in a packet stream were B, C, A and

D and in this order, then the access list rules are arranged according to their

class to match the same order of the packets, B, C, A and D. When the lowest

processing time points were inspected, most of them turned out to belong to access

lists whose classes were arranged in the same organisation of those classes of the

packet stream being filtered, but not for all cases.

Figure 7.5 shows the performance obtained by an access list with its rules classes

arranged in the order B, C, A and D. The packet streams all had more packets

of class B. But, the lowest processing time was obtained by filtering the packet

stream with the classes percentages being: 16, 58, 21 and 5% for classes A, B, C

and D. According to the number of packets they would be arranged as: B, C, A

and D. Following closely behind is the stream with the class percentages: 17, 51,

19 and 13% whose classes can also be arranged as: B, C, A and D based on the

number of packets. In this experiment, this makes the access list classes ordered

to match the number of packets in the packet stream yield the best performance.

Here is an example where hypothesis 1 did not hold. Figure 7.6 shows a 10,000

packet stream of 4 classes mostly class B. The packets classes have the order: B,
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Figure 7.5: Access list class in order: B, C, A and D.

C, A and D when based on the number of packets in each class. That is, in the

packet stream there were more packets in class B then class A then C and finally

D . The packet stream is being filtered by an access list of four classes arranged

randomly, then with class B once at the top and once at the bottom and one

arrangement which matched the presence of packets in the stream that is (B, A,

C and D).

In this particular example, the permutation of the access list classes based on the

number of packets in the packet stream classes did not yield the lowest average

processing time per packet.

7.6 Packet-Rule Cost Weight (PRCW)

Ordering an access list classes to match the number of packets in the packet stream

was thought to produce the best results all the time, but that was not the case.

In many of the situations inspected, still lower values of processing time were

observed where the organisation did not exactly match the number of packets in
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Figure 7.6: Arranged classes based on the number of packets.

each class in the packet stream. Yet, it is clear that performance is affected by

rearrangement of access list rules based on their class.

The number of packets in a given class in a packet stream will have more relevance

when their processing time by the rules in the classes is taken into consideration.

Packet-Rule Cost Weight (PRCW) refers to the processing cost for a packet filtered

by rules in an list in a particular organisation.

Figure 7.7 shows results of simulations for the same packet stream containing

10,000 packets with 4 classes, class B making up most of the packets. This is the

same example as given in Figure 7.6. The PRCW method was used to calculate the

processing time for all the different permutations and to provide the permutation

yielding the lowest time for the given access list for a particular packet stream

specification. In this case, using 4 classes of rules, the processing time for 24

permutations (4!) were calculated. The PRCW method defined the permutation

for the shortest time was classes: A, B, C and D represented by the right column

in Figure 7.7.

Figure 7.8 provides a quick comparison for performance represented by the average

processing time per packet for a number of organisations. The packet stream

contains 8 classes and is made up of mostly class A packets. The access list is
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Figure 7.7: Access list with many arrangements including PRCW calculated

also an 8-class list, organised with class A rules at the bottom and at the top of

the list. Class A at the bottom of the list gave the worst performance. The best

performance obtained through the organisation based on the computation of the

processing time using the PRCW method according to the permutation with the

lowest cost.

The PRCW method was also used to compute the processing time for all the

different permutations and to provide the permutation yielding the lowest time

for the given access list for an access list with 8 classes of rules, the processing time

for 40320 permutations (8!) were calculated. The permutation for the shortest

time was classes: A, H, G, F, E, D, C, and B.

7.7 High-Cost Elimination (HCE)

The PRCW works everytime in producing the best permutation of classes for an

access list to filter a particular packet stream. Yet, the drawback with the PRCW

algorithm is in that it produces the cost for each and every permutation possible

for a particular packet stream. The High-Cost Elimination (HCE) algorithm

limits calculations to a fraction of that needed by the PRCW algorithm. The
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Figure 7.8: Performance comparison of different organisations of an 8-class list.

HCE algorithm has been tested and verified in tests against the original PRCW

algorithm.

The HCE algorithm was used in a large number of experiments to produce the

best permutation which will yield the best performance for a given access list

filtering a given packet stream. Appendix A shows a large number of charts rep-

resenting results obtained from simulation executions of different specifications of

access lists and packet filters. The outcome was always compared to the permu-

tation produced by the PRCW algorithm. The HCE was successful every time in

producing the correct permutation.

As an example of many of the test carried out, an access list is assumed to have

100 rules with 4 classes and it was a class C oriented. The rules in each of the

classes made 1%, 36%, 40% and 23% for classes A, B, C and D. The packet

stream contained 10,000 packets with the percentages of packets in each of the

classes A, B, C and D : 37%, 50%, 10% and 3%. The HCE algorithm produced the

permutation classes: A, B, C and D. Figure 7.9 shows the results of the filtering

processing cost of the packet stream by each and every permutation of the access

list using the PRCW algorithm. The lowest value of the “Average processing time

per packet” is that of the access list permutation classes: A, B, C and D which
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was the same produced by the HCE.
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Figure 7.9: Performance of all permutations of a 4-class access list.

7.8 Summary

This work involved the design and development of a simulation model for packet

filtering. More evaluation time was actually spent on verification of the model dur-

ing its implementation phase. Once correct operation of the model was verified,

the filtering simulation operations was carried out. In this chapter the results of

tests and evaluation were described. Sample results from thousands of simulation

executions of filtering operations were selected. They included many access lists

in many organisations filtering many streams of packets with different character-

istics. The results were outlined in the logical sequence in which the development

process progressed. The next chapter will discuss achievements and problems en-

countered during this research work. It will also discuss future work and possible

implementations.
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Chapter 8

Conclusion

8.1 Introduction

This chapter presents the overall conclusions from the work described in this

thesis. It outlines the objectives and aims of the research and discusses what was

achieved and what was learned during the research work. It also gives directions

for future work.

8.2 Aims of Research

As was outlined in Chapter 1, the main objectives of this research were summarised

in three hypotheses:

Hypothesis One:

“Performance of packet filtering using access lists is improved by the ordering or

by the re-arrangement of the rules in an access list based on their classes.”

Hypothesis Two:

“When filtering a specific stream of packets, if performance of an access list can

be improved by class reordering of the list, then a method can be devised which

will find the best order of the classes in an access list to give the best performance

possible.”
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Hypothesis Three:

“If a method can be devised which will find the order of the classes in an access

to give the best performance when filtering a packet stream, then an efficient way

must exist in finding that order.”

The first hypothesis states that improvement in performance is achieved by re-

ordering the access list bases on the classes. Observation and analysis of ex-

periments carried out did not fully support this hypothesis. The research work

established that improved performance depended on the re-arrangement of the ac-

cess list only when taken in relation with the characteristics of the packet stream

being filtered. The re-arrangement of access list alone may improve performance

for one packet stream, or may cause it to deteriorate for another.

If the hypothesis is rephrased such that reordering of an access list will improve

performance when the hypothesis applies to a single particular access list and a

single particular packet stream of specific characteristics, then the results obtained

can support such a hypothesis. The modified hypothesis can be stated as follows:

“Class re-ordering of the same access list when filtering the same packet stream will

effect performance”. Changing the order can improve or deteriorate performance.

In order to improve performance the ideal permutation of the classes in the list

must first be determined for the specific access list and packet stream.

Hypothesis two refers to finding an algorithm which computes the best order of

the classes in an access list which will give the best performance when filtering a

particular packet stream. After establishing that the cost of processing arriving

packets depended on the number of rules, the processing cost of the rules and

the number of packets, the Packet-Rule Cost Weighing (PRCW) algorithm was

developed. The PRCW made it possible to correctly calculate the cost for a packet

stream when passing through a specific permutation of an access list. The best

organisation of the access list to filter a specific packet stream is computed by

using the PRCW algorithm to compute the cost using every arrangement possible

for the access list. The best arrangement is the one that caused the lowest cost to

be computed. In thousands of experiments carried out, the PRCW produced the

best organisation. The development of the Packet-Rule Cost Weighing algorithm

supports the second hypothesis.

Hypothesis three refers to finding an efficient algorithm which can in a relative

short time find the best arrangement of an access list when filtering a specific

packet stream. It was established that efficiency here refers to performance of the
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algorithm. Here, it is taken as a measure of the length of time (or amount of

processing) needed for an algorithm to find the best arrangement for an access

list. While the best arrangement of an access list will refer to that arrangement

which when used to filter a specific packet stream, will give the lowest average

processing time per packet. In both cases, the lower the value, the more efficient

either the algorithm or the arrangement.

Both algorithms (PRCW and HCE) were based on establishing a measure for cost

that ties both packets and access list rules. The PRCW algorithm used the hard-

headed approach of computing the cost for each and every possible permutation

of the access list classes to find the best. This can take a long time when the

access list contains a large number of classes. To add efficiency to this algorithm

a way was needed to reduce the number of calculations required. The High-

Cost Elimination (HCE) algorithm was developed which reduced the number of

calculations to a fraction compared with the PRCE algorithm. The HCE is also

based on establishing a measure for cost that combines both packet streams and

access list rules. The High-Cost Elimination (HCE) algorithm supports the third

hypothesis.

Chapter 1 also outlined the following sub-objectives:

1. Full investigation and understanding of the topics of network security, net-

work communication including Internet protocols.

2. Investigation of existing methods and future expectations of packet filtering

in network devices such as firewalls, routers, bridges and gateways.

3. Design and develop a model of the operation of a network device that uses

access lists to filter a stream of packets.

4. Perform detailed simulation experiments using different combinations of

packets and filtering rules perform analyses of the experimental results and

draw the appropriate conclusions and recommendations.

5. Produce conclusions of the effect of reordering of access lists on performance

of packet filtering operations.

All other sub-objectives outlined above were achieved through the course of this

research work.
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8.3 Achievements

With respect to the aforementioned objectives, and the requirements stated in

Section 4.7, the achievements of this research are as follows:

• The current state of the art in access lists based packet filtering was ex-

amined in this thesis by analysing relevant work in the literature and by

analysing existing work described by other researchers. The work carried

out included the classification of packets, description of access list filtering

mechanisms as well as different approaches to filtering.

• The access list performance issues were discussed and the hypotheses were

stated in relation to the effects of class ordering of the access lists rules on

performance.

• A model of the operation of a network device that uses an access list based

packet filter was designed. This was based on the analysis of access lists,

and access list based filtering devices. The design included specifications

of simulation inputs and parameters. Also the specification requirements

of performance. The design included the different tests and verification

methods of results obtained.

• The model was verified for correctness and closeness to the real life system

through a number of experimental simulation executions. The results of

such experiments were compared to expected results and accordingly the

model was modified. The experimental executions were repeated until the

model was found to behave in a correct manner.

• The developed model was used to experiment and evaluate different access

list structures, types, sizes, contents, classifications and orders, with many

different packet streams. A very large number of simulation executions were

performed and the results were analysed.

• The evaluation results obtained have been discussed in detail and overall

conclusions regarding the obtained results were made.

• Progress by stages was a feature of this research work in the area of access

list performance. The work started with simple ordering and went on to

develop a costing method for filtering called the Packet-Rule Cost Weighing

(PRCW) method to find the best permutation. This progressed to formulate

the highly efficient and innovative High-Cost Elimination (HCE) algorithm.
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In this thesis it was possible to show the effects of ordering the rules in an access

list on the performance of access list based filtering communication devices. It was

possible to show this through simulation of the operation of such devices using

different possible packet patterns and large numbers of access lists. The results

of the simulation showed clearly that ordering the access list can have an effect

on performance when jointly considered with the pattern of the packet stream

arriving to the device. The results indicate that different patterns of packets

arriving into a network device will require a specific access list order to yield the

best performance. Performance in this case is measured by how long it takes a

packet to be filtered through the list of rules. When considering a number of

packets, then the measurement criteria used is the average time needed to process

each of the packets, which was referred to as the average processing time per

packet.

The pattern of the packet stream arriving to a communication device may be

difficult to predict and consequently the most suitable order of the access list can

not be determined. The decision must be made based upon a historical knowledge

of the packet patterns in the past. This accumulative historical knowledge can

be considered by performing the analysis (of the packets received) at suitable

intervals. This time span can vary from monthly, weekly, daily, hourly intervals

etc. The online continuous analysis of packets arriving is also possible. As long

as for the particular communication device it can be determined how often packet

patterns normally change then it the analyser can be invoked to determine the

best order of the access list for the existing (or most recently recognised) packet

pattern. The new innovative High-Cost Elimination (HCE) algorithm can allow

such an on line analyser to determine the new class order to suit changes in packet

stream characteristics

8.4 Future work

A number of points have been identified and are worth considering for future work.

The following is a brief discussion:

1. A natural step to follow this work is to have the implementation done on

real life network device that performs actual packet filtering. Prediction

of packet stream characteristics will be needed based on analysis of logs

of a real classifier. Then testing the performance obtained through the
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precalculated access list organisation based on the High-Cost Elimination

(HCE) algorithm must be carried out.

2. The development of an automatic analyser for packet streams arriving to

a network device. Such an application would be expected to produce the

specifications of the packet stream being analysed. Specifications may in-

clude, rate of arrival, number of classes and the distribution of packets into

the classes. Such an application will require the log of packets arriving to a

communication device to be kept for analysis.

3. Automatic ordering of an access list for a given access list can be performed

based on the packet stream specification produced by the stream anlyser.

The developed High-Cost Elimination (HCE) algorithm can be used as the

basis for selecting the most suitable class order of the access list. The HCE

algorithm is fast enough to be able to make the selection suitable for an

efficient operation. The HCE is suitable for both dynamic and less dynamic

network devices where changes in packet stream characteristics differ in how

long they remain unchanged.

4. The automatic generation of an access list based on some given security

policy. The task of manually generating an access list is a very difficult task

except for the simplest policies. It is thought that some syntax for specifying

security policies can be used as input to produce the required access list.

5. The verification of an access list from a security point of view. There is

a need for ensuring that a generated access list or a reordered access list

is adhering to the security policy for which it was created. The security

specification and the access list to be tested may be used to produce some

testing packet stream. This testing packet stream will include as many

packets with all the required values to test for all possible conditions in the

security policy.

6. Given two versions of two different orders of the same access list, there

should be an application which can verify that both copies will implement

the same security policy. This will help ensuring that a reordered list will not

deviate from the security policy its original list was hopefully successfully

implementing.

7. As a part of system management, an off line tool can easily be developed to

provide information of how to arrange an access list in order to achieve best

performance for a given specification of an access list.
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8.5 Summary

The work had two major parts, development of a model and the simulation ex-

ecutions of this model. The model was developed to reflect the operation of a

network device performing packet filtering operations. Validating the model for

correct operations was vital to accept results from further experiments that were

carried out. Model execution produced helpful results in formulating and verifying

both the Packet-Rule Cost Weighting algorithm and the High-Cost Elimination

algorithm.

This research succeeded in producing strong support for considering class reorder-

ing as a method of improving the performance for access list packet filtering. A

new algorithm for deciding the best order was also developed.

As far as access list-based filtering is concerned this research reflects how much

more effort is needed for improvements to packet filtering.
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Appendix A

Sample of Simulation Results

All the following charts show results of simulated filtering operations. They repre-

sent a sample of hundreds of thousands of simulation executions carried through

out the research. In each of the experiments both the Packet Rule Cost Weight

(PRCW) and the High Cost Elimination (HCE) algorithms were used to compute

the best possible permutation. In every case both algorithms predicted the best

permutation which on the chart showed the lowest average processing cost per

packet. On some of the charts, the number of permutations is too large to show

each individual one.

Figure A.1 shows an access list of 100 rules with 4 classes of rules made up of the

following number of rules: 33, 41, 11 and 15. The list was filtering a packet stream

of 10,000 packets with an mean time between arrival of 10,000 units of time. The

packet stream had 4 classes of packets made up of the following number of packets:

1495, 5544, 1024 and 1937. The best access list class permutation predicted was:

classes 4, 2, 1 and 3.

Figure A.2 shows an access list of 100 rules with 4 classes of rules made up of the

following number of rules: 33, 41, 11 and 15. The list was filtering a packet stream

of 10,000 packets with an mean time between arrival of 10,000 units of time. The

packet stream had 4 classes of packets made up of an extreme distribution of

packets where most packets belonged to class-1. The number of packets were:

9793, 115, 91 and 1 for classes 1,2,3 and 4. The best access list class permutation

predicted was: classes 1, 3, 2 and 4.

Figure A.3 shows an access list of 100 rules with 4 classes of rules made up of the
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Figure A.1: All permutations of 4-class access list filtering a 4-class stream.
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Figure A.2: All permutations of 4-class access list filtering a 4-class stream.
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Figure A.3: All permutations of 4-class access list filtering a 4-class stream.

following number of rules: 33, 41, 11 and 15. The list was filtering a packet stream

of 10,000 packets with an mean time between arrival of 10,000 units of time. The

packet stream had 4 classes of packets made up of the following number of packets:

5901, 1040, 2290 and 769. The best access list class permutation predicted was:

classes 1, 3, 4 and 2.

Figure A.4 shows an access list of 100 rules with 4 classes of rules made up of the

following number of rules: 15, 14, 4 and 67. The list was filtering a packet stream

of 10,000 packets with an mean time between arrival of 10,000 units of time. The

packet stream had 4 classes made up of the following number of packets: 5901,

1040, 2290 and 769. The best access list class permutation predicted was: classes

4, 1, 3 and 2.

Figure A.5 shows an access list of 100 rules with 8 classes of rules made up of

the number of rules: 12, 22, 5, 13, 13, 18, 8 and 9. This has 40,320 different

permutations. The list was filtering an 8-class packet stream of 10,000 packets

with an mean time between arrival of 10,000 units of time. The packets classes

had the following percentages: 130, 15, 140, 175, 264, 31, 58 and 118. The best

access list class permutation predicted was: classes 3, 4, 1, 5, 8, 7, 6 and 2, on the

chart it is the execution number 11569.

Figure A.6 shows an access list of 500 rules with 64 classes of rules made up of
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Figure A.4: Access list with 8 classes filtering an 8-class packet stream.
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Figure A.5: Access list with 8 classes filtering an 8-class packet stream.

163



4000

8000

12000

16000

1 31 61 91 121 151 181
Many permutations of a 64-class access list

av
er

ag
e 

pr
oc

es
si

ng
 ti

m
e 

/ p
ac

ke
t

Figure A.6: Access list with 8 classes filtering an 8-class packet stream.
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Figure A.7: Access list with 8 classes filtering an 8-class packet stream.
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Figure A.8: Access list with 4 classes filtering an 8-class 1,000,000 packet stream.

the following number of rules each: 173, 76, 99, 11, 19, 2, 12, 23, 22, 6, 1, 2, 1,

1, 1, 1 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1 1 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1 1 1 1 1 1, 1, 1 and 3. The list was filtering a 64-class

packet stream of 1,000 packets with an mean time between arrival of 50,000 units

of time. The packets classes had the following numbers of packets: 179, 234, 22,

63, 27, 58, 285, 50, 2, 2, 18, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1 and 3. The best access list class permutation predicted was classes: 7, 6, 11, 4,

12, 2, 24, 1, 13, 62, 44, 56, 34, 26, 25, 63, 31, 22, 40, 29, 8, 42, 50, 52, 45, 27, 59,

57, 35, 33, 5, 28, 55, 21, 60, 51, 32, 19, 61, 39, 23, 54, 47, 46, 64, 41, 36, 30, 15,

49, 48, 37, 20, 58, 43, 16, 14, 10, 53, 17, 18, 38, 3 and 9. On the chart this is at

point 172 on the X-axis with a value of 6289 unit time.

Figure A.7 shows an access list of 2500 rules with 16 classes of rules made up of

the following number of rules each: 593, 257, 1172, 106, 152, 65, 11, 6, 81, 18,

21, 11, 2, 1, 1 and 3. The list was filtering a 16-class packet stream of 10,000

packets with an mean time between arrival of 50,000 units of time. The packets

classes had the following numbers of packets: 1591, 7041, 336, 347, 369, 21, 196,

24, 22, 3, 38, 1, 5, 2, 1 and 3. The best access list class permutation predicted

was classes: 7, 2, 1, 13, 8, 4, 11, 5, 14, 16, 15, 10, 6, 3, 9 and 1. On the chart this

is at point 1 on the X-axis with a value of 16,900 unit time.
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Figure A.8 shows an access list of 50 rules with 4 classes of rules made up of

the following number of rules: 8, 12, 20 and 10. The list was filtering a packet

stream of 1000,000 packets with an mean time between arrival of 2,000 units

of time. The packet stream had 4 classes of packets made up of the following

number of packets: 400000, 250000, 150000 and 200000. The best access list class

permutation predicted was: classes 1, 2, 4 and 3.
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