
Advanced Job Control Language

What is JCL . 1

The Job Stream . 2

JCL Statements . 3

JCL Operations . 6
The JOB Statement . 7
The JOBPARM Statement . 9

EXERCISE 1 . 10
The EXEC Statement . 11

Dummy EXEC steps . 12

EXERCISE 2 . 13
Special DDnames . 14

The DD Statement . 15
Specifying an inline dataset . 16

Specifying a dataset on Disk . 16

EXERCISE 3 . 22
Specifying a dataset on tape . 23
Specifying Dummy datasets . 23
Disposition messages . 24
Sources of DCB Information . 25
Using the Output Writer . 26
Concatenating Datasets . 27
DD Statement Summary . 28

EXERCISE 4 . 29
The Output command . 30
The PROC and PEND statements . 31

Making JCL Execution Conditional . 34
Setting the Condition Code in a program . 36

Passing Information to Programs . 37

Backward Referencing . 39

Generation Data Groups . 40

Checking JCL . 41

Good JCL Style . 41

EXERCISE 5 . 42

Advanced Job Control Language

Information Systems Training

I S

Training

Advanced Job Control Language

Information Systems Training

IS

Training

What is J.C.L.?

Every batch job must be accompanied by instructions for the Operating System to ensure that it is
processed as required. These instructions are written in the JOB CONTROL LANGUAGE or
JCL.

The JCL informs the Operating System which programs are to be executed within the job and which
datasets are required for each program.

The JCL also uniquely identifies each job to the system through the JOB statement (see page 7).

Running several programs simultaneously is a more efficient use of hardware than running one at a
time but creates problems of resource allocation. The Operating System handles the allocation
problem by determining the resource needs of each job from the JCL.

Advanced Job Control Language

Information Systems Training Page 1

I S

Training

The Job Stream

A Job stream is the smallest unit of work that may be submitted in a batch environment. It is made
up of one or more job steps but only one job identifier.

Separate jobs are completely independent:

However, execution of a step may be dependant on the results of a preceding step in the same
job.

/ / JOB

// EXEC

// DD

// DD

// EXEC

// DD

/ /

Step

Step

J o b

One or more

steps in a job

/ / J O B

/ / EXEC

/ / D D

/ / D D

/ /

S t e pJ o b

Advanced Job Control Language

Page 2 Information Systems Training

IS

Training

JCL Statements

A job stream is made up of a series of statements. Each statement has the following format:

identifier name operation parameters comments

The identifier, name, operation, parameter and comment fields, if present, must be separated from
each other by one or more spaces. These fields are coded in columns 1 through 71. Generally
column 72 is not used. It can be used to indicate the continuation of a comment onto the next line.
Columns 73-80 may only be used for comments, though comments can begin before column 72.

The identifier field occupies columns one and two and identifies the line as a JCL statement. It
always contains //, except on a delimiter statement. Coding //* at the beginning of a line has the
effect of treating the whole line as a comment.

Example:

/ / D E V A D T R x Z 0 1 0 3 J J M , 0 0 0 , C L A S S = T , T I M E (0 , 1 0) A L ' S T E S T

n a m e

o p e r a t i o n
c o m m a s e p a r a t e d p a r a m e t e r s

c o m m e n t

J O B

The name field begins in column 3. A name can contain one to eight alphanumeric or national (#,
@, $) characters. The first position must be alphabetic or national.

The operation identifies the type of JCL control statement. The following options will be described
in more detail later in these notes: JOB, EXEC, DD, PROC, PEND and commands.

The parameter field consists of positional and keyword parameters separated by commas. No
blanks are permitted unless they are part of a value enclosed in apostrophes. This field must start
following the operation field or before column 16. It must be preceded and followed by at least one
blank and cannot extend beyond column 71.

Advanced Job Control Language

Information Systems Training Page 3

I S

Training

Positional parameters always come before keyword parameters and must always be in the same
sequence. The absence of a positional parameter must be denoted by a comma if any other
positional parameters follow.

Keyword parameters can appear anywhere within the parameter field and in any order, so long as
they follow the positional parameters. Keyword parameters are characterised by a keyword
followed by an equals sign (=) and variable information.

Example:

/ / D E V A D T R A J O B Z 0 1 0 3 J J M , ' A l e x C l a r k ' , C L A S S = T T I M E = (0 , 1 0)

k e y w o r d p a r a m e t e r s

p o s i t i o n a l p a r a m e t e r s

Often, a parameter will contain multiple sub-parameters. These sub-parameters are separated by
commas. They can also be positional or keyword and follow the same sequencing rules. Multiple
sub-parameters must be enclosed in parentheses, unless there is only one sub-parameter and it is
not preceded by any commas.

Example from the DD statement -

keyword parameter

VOL=(PRIVATE,RETAIN,2,3,SER=BPT 123)

positional parameters

Advanced Job Control Language

Page 4 Information Systems Training

IS

Training

A statement may be continued onto the next and subsequent lines by following these rules:

1) Split the parameters after a comma.

2) Code // at the beginning of the next line.

3) Continue the parameters starting between columns 4 and 16. If the coding
begins after column 16 the system will treat it as a comment.

Example:

//INITEM DD DSN=DEVADTR.ITEMFILE,DISP=(NEW,CATLG),
// UNIT=SYSDU,SPACE=(TRKS,(1<1),RLSE),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=23440)

continue between columns 4 and 16
note comma

The comment field may be coded anywhere following the parameter field. It must be separated
from it by at least one blank. The comment field cannot be continued to another JCL statement.

Advanced Job Control Language

Information Systems Training Page 5

I S

Training

JCL Operations

The following operations will be described in more detail:

JOB assigns a name to the job and indicates its beginning.

EXEC indicates the beginning of a job step, assigns a name to that step and
identifies the program or procedure to be executed.

DD assigns a dataset (file) and describes its attributes.

OUTPUT specifies options for printing output datasets. It may be coded after the JOB
or EXEC statements.

PROC assigns default values to symbolic parameters in a catalogued procedure.
For in-stream procedures this statement indicates the beginning of the
procedure.

PEND indicates the end of an in-stream procedure.

The following are used in conjunction with JCL operations:

delimiters denote the end of an instream dataset. The default delimiter statement is /*.
A delimiter is required when using DD DATA but is optional with DD *.

comments can appear anywhere within a job following the JOB statement but before
the null or terminating statement. The are denoted by //*.

null A null statement (//) is an optional statement used as the last line in a job. It
marks the end of the job.

commands may be included in the job stream to control certain aspects of your job.

Advanced Job Control Language

Page 6 Information Systems Training

IS

Training

The JOB Statement

Format :

//jobname JOB account code,programmer name[,keyword parameters]...

jobname This identifies the job stream to the operating system. For jobs submitted by
programmers, this will be the programmer's logonid plus 1 alphanumeric or
national character (e.g. DEVADTRP).

account code The account code is used for charging purposes. A job will take a certain
amount of time to execute; the amount of time taken is proportional to the
cost charged. Boots is divided into a number of charge areas; ask your
manager for your account code.

programmer name The programmer's name is used for identifying jobs. It must be no more than
20 characters in length. If any spaces are to be included, the string must be
enclosed in apostrophes.

The account code and programmer name are positional parameters. Following the programmer
name one or more keyword parameters may be coded, in any order. Some of these are obligatory
whilst others are optional.

CLASS=jobclass This parameter must be coded. There are a large number of possible job
classes which control what priority the executing job has and what devices
are available to it; they are regularly amended.

TIME=(mins,secs) Minutes must be in the range 0-1440, Seconds must be in the range 0-59.
This parameter specifies the total CPU time allowed for the whole JOB. If
this limit is exceeded the JOB will abend with a system completion code of
322. For daytime testing on the Boots mainframe TIME=(0,30) is usually
sufficient but during training (0,10) is plenty of time.

Advanced Job Control Language

Information Systems Training Page 7

I S

Training

MSGLEVEL=(statements,messages)

statements is either 0, 1 or 2, messages is either 0 or 1.

statements: 0 - only the job statement is printed.
1 - ALL JCL including catalogued procedure statements is printed.
2 - only the input JCL is printed. (default)

messages: 0 - dataset disposition/allocation messages are not printed unless the
 job abends.

1 - all dataset disposition/allocation messages are printed (default).

TYPRUN=SCAN Requests that the JOB be scanned for JCL syntax errors but not
run.

TYPRUN=HOLD Used to put a job on to the job queue but to prevent execution
until the operator releases the job, e.g. while a tape needed by

the program is delivered to the computer room.

MSGCLASS=sysoutclass

Routes job output to a specified print class. Normally 6 for hold, Q for not hold; other
classes exist for other purposes.

NOTIFY=identifier This keyword allows you to request that the system notifies you
when your job has completed executing. You may either
request to be notified in a TSO session (in which case identifier

should correspond to your logonid) or in a ROSCOE session
(identifier should be ROSnppp where n is the ROSCOE system
number and ppp your ROSCOE prefix).

Advanced Job Control Language

Page 8 Information Systems Training

IS

Training

The JOBPARM Statement

This statement is a JES (Job Entry Subsystem) command. It allows you to specify printed output
characteristics. It should be coded immediately after the JOB statement.

Format:

/*JOBPARM [keyword parameters,]...

B/BURST=option Historically, was used with fanfold paper and dot-matrix printers. Now an
optional parameter. Enter B=Y if you want your output on separate sheets
or B=N for fanfold output.

R/ROOM=room This will be the room name that your output will be sent to. It will appear in
JES job separator pages to aid distribution of printouts .

T/TIME=nnnn An estimation of the Jobs' execution time in minutes of real time, (as
opposed to CPU time). Optional.

L/LINES=nnnn Estimated number of lines of output to be produced by the job, in
thousands. Optional.

K/LINECT=nnn Number of lines of output to appear on each page.

N/COPIES=nnn Number of copies of the output to be produced.

Example:

/*JOBPARM B=Y,R=WRLD,N=3

This will produce 3 copies of the job output. It will be burst and directed to room WRLD.

Advanced Job Control Language

Information Systems Training Page 9

I S

Training

EXERCISE 1

Write the JCL necessary to produce a jobcard (collective expression for the JOB and associated
JOBPARM statements) with the following attributes:

i) The jobname should be your logonid plus a character of your choice.

ii) Include your accounting code, your name and a telephone number where you
can be contacted.

iii) Select a job class appropriate for a job classified as DB2D demand batch

iv) Force the job to abend if it takes longer than 45 seconds of CPU time to
complete.

v) Select a MSGLEVEL that will provide as much information as possible about
the job.

vi) Route the job output to a held output class.

vii) Ensure that the job output is directed to room TRNG and is burst.

Advanced Job Control Language

Page 10 Information Systems Training

IS

Training

The EXEC Statement

The EXEC statement specifies that an entity is to be executed in the course of the job stream.

Format:

//stepname EXEC
PGM=program

procedure [,keyword parameters]...{ }
stepname Optional, but recommended particularly when there are quite a number of

steps within a job. The stepname should be unique within the job,
meaningful and no more than 8 characters. The first character of the name
must be alphabetic.

PGM=program specifies the program to be executed. If the program being executed does
not reside in SYS1.LINKLIB/2/3 then a STEPLIB DD statement must be
coded to inform the system which library to search for the program (see
4.3.1 Special DDnames).

procedure specifies the name of a catalogued or instream procedure to be used (see
page 31).

Any keyword parameters that are being used on the EXEC statement must be coded after the
procedure name or PGM=program.

COND=(code,operator,stepname) For information regarding COND, see page 34.

PARM=`parm...' For PARM see page 37 .

Examples:

//STEP10 EXEC PGM=MSE460A

MSE460A is the program name

//STEPCOB EXEC COB2

COB2 is the name of a catalogued procedure

Advanced Job Control Language

Information Systems Training Page 11

I S

Training

Dummy EXEC steps

It is sometimes useful to include in a job stream a step that executes a program that does nothing.
For example, suppose you wanted to submit a job that defined a dataset but did nothing else.
Because every job must include at least one step, you need to execute a program that does nothing,
as the dataset is defined using the DD statement. The program IEFBR14 is available as a "null"
program, and is often used in this way:

//DEFSTEP EXEC PGM=IEFBR14
//DEFDSN DD DSN=dsname ...

IEFBR14 will always return a condition code of zero.

Advanced Job Control Language

Page 12 Information Systems Training

IS

Training

EXERCISE 2

For this exercise, it will be necessary to consult the green Programming Reference Manual and
to use the ROSCOE RPF CATPROC.

i) What is the name of the program executed by the COPYSEQ catalogued
procedure?

ii) List three dataset comparison utility programs available at Boots.

iii) What is the name of the program which invokes the linkage editor (hint:
examine the LET catalogued procedure)?

iv) Name two catalogued procedures for compiling VS COBOL II programs.

v) What is the function of the TEST catalogued procedure?

Advanced Job Control Language

Information Systems Training Page 13

I S

Training

Special DDnames

These have particular meanings for the Operating System and should not be used for any other
purpose.

//STEPLIB DD DSN=steplibrary,DISP=SHR

The system will search the steplibrary for the program referenced in the associated EXEC
statement. If the program is not there it will search SYS1.LINKLIB/2/3. These three libraries are
known as the linklist and contain programs which are most commonly used, such as the utility
programs ICEGENER and IEBCOPY.

Only one STEPLIB is permitted per step but libraries may be concatenated (see page 27); this
statement, if present, usually comes immediately after the EXEC statement but this is not essential.

If a program abends, it is possible that it may dump. This is a process whereby diagnostic
information relating to the abend is written by the operating system to an output dataset. There are
three special DDnames available that each produce different dump formats:

//SYSABEND produces a formatted dump; this will include the system nucleus and the
executing program's region. This type of dump should not usually be
requested .

//SYSMDUMP This produces a dump containing similar information to SYSABEND but in
a machine-readable format. Again, this should not usually be requested .

//SYSUDUMP This is a formatted dump containing selected system control blocks and the
executing program's region. This is the usual type of dump to request •.

Advanced Job Control Language

Page 14 Information Systems Training

IS

Training

The DD Statement

The DD statement forms the link between the logical file referred to by the program and the physical
dataset on disk or tape. It has the general format:

//ddname DD [positional parameter][,keyword parameter]...

ddname This must be present (except for the second and subsequent data set in a
concatenation). The name must be unique within the step. A maximum of
255 ddnames per step is allowed.

The ddname in the JCL is linked to the files referred to in a program. The way in which this happens
varies according to the programming language. For example, in COBOL programs, association is
provided by using the SELECT clause of the FILE-CONTROL paragraph:

SELECT filename ASSIGN UT-S-ddname

The filename in the SELECT statement is defined via the FD statement of the FILE SECTION,
within the DATA DIVISION.

In the EASYTRIEVE PLUS language, the JCL ddname is associated with program files using the
FILE statement. Thus:

FILE ddname

Usually, a dataset will reside in one of three locations:

. inline, that is, it is included as part of the job stream;

. on disk

. on tape.

In addition, it is possible to specify a null or dummy dataset. This is often useful for testing purposes.

Advanced Job Control Language

Information Systems Training Page 15

I S

Training

Specifying an Inline dataset

An inline dataset is treated by a program as if it were a normal dataset with records 80 bytes long
(datasets with a record length of 80 bytes are sometimes referred to as card image datasets; this is
because punched cards used to be 80 characters wide). There are two different methods of
specifying an inline dataset:

//ddname DD *
data ...
data ...

The end of the dataset is indicated by a delimiter statement (/*) or any other JCL statement. As a
result, the inline dataset cannot include JCL. This problem can be avoided by coding:

//ddname DD DATA

The end of the dataset is indicated only by /*. This allows JCL to be read as data. If you wish to
treat a /* as data then a two-character delimiter must be specified in place of /* thus:

//ddname DD DATA,DLM=ZZ

The end of the data would then be indicated by a line containing ZZ in the first two columns.

Specifying a dataset on Disk

JCL allows you to either refer to an existing dataset or create a new one. In addition, it is possible to
deal with either permanent or temporary datasets. A temporary dataset is one that is created during
the course of a job stream and automatically deleted at the end of it. To refer to an existing dataset,
the general format of the JCL statement is:

//ddname DD DSN=dsname,DISP=disposition

The ddname links a physical dataset to the entity referenced in a program. The two keyword
parameters, DSN and DISP, specify what the dataset is called and how it is to be treated by the
job stream. DSN stands for Data Set Name. Every dataset used by a program has a name. This
name is assigned according to certain rules laid out in the Boots Programming Standards and
Guidelines, Section 2 (see also the Basic JCL notes). There are various different types of dataset;
the JCL to be coded for each is described below. The DISP parameter affects how the dataset is
going to be treated by the job stream. When dealing with existing datasets, it will usually have one of
three values:

Advanced Job Control Language

Page 16 Information Systems Training

IS

Training

OLD: The dataset existed before this step and is to be used exclusively by this job
(n.b. only one job can have exclusive access to a dataset at any one time).

SHR: The dataset existed before this step and will be used for INPUT ONLY;
therefore other jobs can access it at the same time.

MOD: For OUTPUT only. If the dataset already exists then output from this step
will be added to the end of the existing dataset.

Some examples.

To reference a specific member of a partitioned dataset for a read operation:

//ddname DD DSN=dsname(member),DISP=SHR

To reference a dataset exclusively during a job:

//ddname DD DSN=dsname,DISP=OLD

To write to the end of a temporary dataset:

//ddname DD DSN=&&dsname,DISP=MOD

 +a temporary dataset is prefixed by two ampersands.

Advanced Job Control Language

Information Systems Training Page 17

I S

Training

If the dataset which is referenced by the DD statement does not already exist, it will be created. If
this is to be done successfully, the operating system needs a number of items of information: where is
the dataset to be located? how big is the dataset to be? what attributes should the dataset possess?
what is to happen to the dataset at the end of the jobstream?. The JCL required to answer those
questions is:

//ddname DD DSN=dsname,DISP=(status,if-OK,if-abend),
// UNIT=disk,
// SPACE=(unit,(pr,sec[,dir])[,RLSE,CONTIG,ROUND]),
// DCB=(LRECL=lngth,RECFM=recform,BLKSIZE=blk)

If a dataset is being created, the DISP status keyword parameter should be NEW. However, there
are two additional sub-parameters that may be coded with DISP to control what happens to the
dataset when the job stream completes, as status refers to the current status of the dataset at the
start of the job step. If-OK specifies what is to happen to the dataset if the job step completes
normally. There are 5 options:

PASS: The dataset is to be passed on to a following step in the same job (the
system will keep track of where the dataset is for the duration of the job).

KEEP: The dataset is to be kept at the end of this step.

CATLG: Same as KEEP, but an entry is also created in the catalogue for ease of
access at some later date.

UNCATLG: Same as KEEP. Only applies to already catalogued datasets; the catalogue
entry that was created for this dataset is to be removed. This option should
NOT usually be used at Boots as it is difficult to keep track of uncatalogued
datasets.

DELETE: The dataset is to be deleted at the end of this step. If the dataset was
located via the catalogue, the catalogue entry will also be removed.

If if-OK is not specified, or only PASS is specified:

KEEP is assumed for a dataset that existed before this job;
DELETE is assumed for a dataset that did not exist before the job.

Advanced Job Control Language

Page 18 Information Systems Training

IS

Training

If-abend specifies what is to be done with the dataset if the job step terminates abnormally. There
are four options: KEEP, CATLG, UNCATLG and DELETE. The meanings of these options are
the same as for normal disposition. If a step terminates abnormally and no conditional disposition is
specified then the normal disposition is used, except where that normal disposition is PASS. In that
case, if the dataset existed before the job then it is KEPT. If the dataset did not exist before the job
then it is DELETED .

Some examples:

// DISP=(,PASS)

This is the usual way to reference a new, temporary dataset. The status parameter is allowed to
default to NEW; the dataset is PASSed to the next job step. DELETE is not explicitly coded
anywhere as temporary datasets are deleted by the operating system at the completion of a job.

// DISP=(,CATLG,DELETE)

This is the usual disposition to employ when creating a permanent dataset. ALL permanent datasets
must be catalogued; the DELETE parameter ensures that if the job step abends, the dataset will be
deleted; this allows the job stream to be re-run with the minimum of preparation.

The UNIT keyword parameter tells the operating system which disk to put the dataset on. At
Boots, disks are grouped into pools. The pool which development staff should use is SYSDU. It is
possible to specify which particular disk, rather than which disk pool, should be used by replacing
with UNIT=unit type and VOL=SER=diskname (where unit type might be 3380, 3390 etc.); this
option should not usually be used. Thus, you should code:

// UNIT=SYSDU

Advanced Job Control Language

Information Systems Training Page 19

I S

Training

The SPACE parameter defines how much space is to be reserved for the dataset on the disk. It has
a number of sub-parameters:

// SPACE=(unit,(pr,sec[,dir])[,RLSE,CONTIG,ROUND]),

Unit defines what the unit of allocation will be. It can be expressed in bytes - the average blocksize
of the dataset; tracks - TRK; or cylinders - CYL. The number of bytes in a track depends on the
model of disk unit that is being used; a typical value would be 47,476. There are 15 tracks in a
cylinder.

The pr sub-parameter specifies the number of units to be allocated initially, whereas sec defines the
number of units to be allocated when the primary allocation runs out. The secondary amount will be
allocated up to 15 times if necessary.

If a partitioned dataset is being created, space will need to be allocated to hold a directory listing of
the members in the dataset. This space is specified with the dir sub-parameter.

The remaining sub-parameters are optional: RLSE specifies that when the dataset is closed or
released by the job stream, any unused space should be released. CONTIG specifies that the
primary allocation must be contiguous space on the disk. This option will only be required for certain
special types of dataset. ROUND - when allocating in blocks round up to the nearest cylinder.

Some examples. The space required for a partitioned dataset:

// SPACE=(TRK,(10,1,10))

The dataset will be created with 10 tracks of space but this can potentially increase to 25 tracks
(10+(1*15)). Ten blocks are reserved for the dataset directory.

The space required for a non-partitioned sequential dataset:

// SPACE=(CYL,(50),RLSE)

The largest dataset that a developer is allowed to allocate is one that extends over 50 cylinders.

Advanced Job Control Language

Page 20 Information Systems Training

IS

Training

The final parameter necessary to define a new dataset is the DCB keyword parameter. It has the
general format:

// DCB=(LRECL=lngth,RECFM=recform,BLKSIZE=blk)

The LRECL sub-parameter specifies the record length of the dataset; the RECFM parameter
gives the format of the dataset (e.g. whether records have fixed or variable length); and BLKSIZE
defines the blocksize of the dataset. This should be a multiple of the record length; the optimum to
aim for is known as half-track blocking - that is, there should be two blocks per track. If a track
consists of 47,476 bytes, the optimum blocksize to aim for is 23738. The ROSCOE RPF BLOCK
will calculate the optimum blocksize for a given record length.

Some examples.

A dataset with 80 byte, fixed length, blocked records:

// DCB=(LRECL=80,RECFM=FB,BLKSIZE=23440)

A dataset with 124 byte, variable length records:

// DCB=(LRECL=124,RECFM=VB,BLKSIZE=23440)

the blocksize includes the 4 byte record-descriptor incorporated into variable length records.

To summarise: the DD statement required to create a dataset with 80 byte, fixed length records on
disk pool SYSDU -

//ddname DD DSN=dsname,DISP=(NEW,CATLG),
// UNIT=SYSDU,
// SPACE=(TRK,(10,1),RLSE),
// DCB=(LRECL=80,RECFM=FB,BLKSIZE=23440)

The dataset will be allocated up to 25 tracks of space. Any unused tracks will be freed.

A temporary dataset with 40 byte, variable length records requiring 25 cylinders of space:

//ddname DD DSN=&&dsname,DISP=(,PASS),
// UNIT=SYSDU,
// SPACE=(CYL,(25)),
// DCB=(LRECL=40,RECFM=VB,BLKSIZE=23444)

Advanced Job Control Language

Information Systems Training Page 21

I S

Training

EXERCISE 3

i) Code the DD statement required to assign the existing dataset
SYS1.RUNTIME to the ddname STEPLIB such that other users will be able to
use the dataset at the same time.

ii) Code the DD statement to create a temporary dataset called TEMP. Assign it
to the ddname OUTLIB; it should have variable length records of 56 bytes in
length. Make sure that the dataset resides on the SYSDU pool. The dataset will
need to contain 1,240,000 bytes; express the space required to contain this in
tracks, allowing up to 10% of the primary space allocation as a secondary
allocation.

iii) Code the DD statement required to create a partitioned dataset. It should have
80 byte, fixed length records. Allocate 50 directory blocks; the dataset requires 15
cylinders of space. Direct to the SYSDU pool. The dataset should be
assigned to the ddname LIBRARY and should have a name of
userid.ROSLIB.RETAIN.

Advanced Job Control Language

Page 22 Information Systems Training

IS

Training

Specifying a dataset on Tape

The use of tapes by development staff is being phased out, as tape drives are regarded as obsolete.
Moreover, the operating system has been configured such that development staff are actually
prevented from using tapes.

Specifying Dummy datasets

It is often useful to allocate a dummy dataset to a ddname. This can be done in one of two ways:

//ddname DD DUMMY
or

//ddname DD DSN=NULLFILE

This technique will work only for sequential datasets; no physical device allocations or I-O
operations are performed. For input operations, the first READ or GET will cause an end-of-file
condition to be set; for output, all WRITEs or PUTs will function normally as far as the program is
concerned but no actual I-O takes place.

It will be necessary to code DCB=BLKSIZE= when using DUMMY for an output file otherwise
the OPEN or WRITE may fail because the system does not have complete DCB information for the
data set. An example:

//FRED DD DUMMY,DCB=BLKSIZE=5000

Advanced Job Control Language

Information Systems Training Page 23

I S

Training

Disposition messages

These are found in the SYSMSGS file of a batch job and describe the result of a DD operation. For
example:

IEF285I DEVSTTR.RDR KEPT
IEF285I VOL SER NOS=D33501

The possible dispositions are: KEPT, DELETED, PASSED, CATALOGED,
UNCATALOGED,and RECATALOGED.

Occasionally, if a DD operation is unsuccessful, the message IEF283I may appear with:

NOT DELETED n

or message IEF287I with one of the following:

NOT CATLGD n

NOT UNCATLGD n

NOT RECATLGD n

The commonest message that you will encounter is NOT CATLGD 2 which means that the dataset
has not been catalogued because a dataset of the same name (on another disk) is already
catalogued. Refer to the `VS2 SYSTEM MESSAGES' manual for further explanations.

Advanced Job Control Language

Page 24 Information Systems Training

IS

Training

Sources of DCB Information

Information about a dataset's attributes can come from one of three sources. They are the program
referencing the dataset, the JCL DD statement and the dataset itself.

Program: This has the highest priority; any attribute specified in the program cannot be
overridden.

DD statement: Any attributes specified here will only be used if the program has not
specified a value.

Dataset: For an existing dataset, any field which has not been specified by the
program or the DD statement will be obtained from the dataset itself.

The resulting combination of attributes, after applying these rules, must be consistent.

Boots has a series of standards for DCB Information. For files acting as input to a program, the
program may, optionally, specify RECFM and LRECL; BLKSIZE should not be specified. In
COBOL programs, specify BLOCK CONTAINS 0 RECORDS in the FD. The DD statement
should not normally specify any DCB information; most of the required information should be
derived from the dataset itself.

For output datasets, the program should specify RECFM and LRECL but not BLKSIZE. In
COBOL programs, code BLOCK CONTAINS 0 RECORDS. The BLKSIZE should be specified
in the DD statement.

Advanced Job Control Language

Information Systems Training Page 25

I S

Training

Using the Output Writer

A function often required by programs is to write output to the job spool, from where it can be
printed. Output written to the spool can be browsed and manipulated online using either the
ROSCOE Attach Job facility or the TSO SDSF program. The format of the statement to use the
output writer is:

//ddname DD SYSOUT=class[,OUTLIM=lines,DCB=parms]

If class = `*', the output class will default to the same as the MSGCLASS on the jobcard. Other
values are possible but note that job output classes may vary. However, the following classes are
unlikely to change: if class = `A' the output will be printed by the mainframe printer; if class = `6', the
output will be held on the job spool until released via either ROSCOE or TSO.

The OUTLIM parameter specifies the maximum number of print records permitted. If the limit is
exceeded the job abends with a 722 abend code.

If the program using the output writer does not specify a record format or record length then these
will need to be specified in the JCL by using the DCB parameter.

An example:

//REPORT1 DD SYSOUT=*,OUTLIM=1000

This statement will allow a program to write up to 1000 lines of output to the ddname REPORT1.

Advanced Job Control Language

Page 26 Information Systems Training

IS

Training

Concatenating Datasets

Up to 255 sequential datasets may be concatenated and treated as a single dataset, provided:-

a) all of the datasets are on the same device type

b) all of the datasets have identical DCB attributes (however, different block
sizes are allowed, provided datasets are concatenated with largest BLKSIZE

first)

c) they are used for input only.

DUMMY or DSN=NULLFILE may only appear as the last entry in a concatenation, since it forces
an immediate end-of-file condition on reading.

To concatenate datasets, omit the ddname from the second and subsequent DD statements:

//ddname DD DSN=dataset1,.....
// DD DSN=dataset2,.....
// DD DSN=dataset3,.....

When the file is opened, the program will start reading at the beginning of the first dataset;
end-of-file will be indicated by the operating system only when the end of the last dataset is reached.

Up to 16 partitioned datasets may be concatenated and treated as a single partitioned dataset,
subject to the same restrictions.

Advanced Job Control Language

Information Systems Training Page 27

I S

Training

DD Statement Summary

Certain information must be given to the Operating System when datasets are being created or
accessed. The table below summarises what information must be included in the JCL when dealing
with datasets on disks.

 Information
 Required

 Parameter to use
 on DD statement

 Creating a
 dataset

 Retrieving a
 dataset

 Dataset name DSN í í

 Dataset location UNIT (also VOL) í X

 Dataset size SPACE í X

 Dataset attributes DCB í X

 Dataset status DISP í í

Advanced Job Control Language

Page 28 Information Systems Training

IS

Training

EXERCISE 4

i) A program is to be tested by diverting the output to a dummy dataset. It is a
COBOL program; the record length has been specified as 94 bytes and the
clause BLOCK CONTAINS 0 RECORDS has been coded in the FD
paragraph. Code the appropriate JCL for the desired output dataset.

ii) A COBOL program contains the following code:

SELECT GRANTEE-FILE ASSIGN TO UT-S-GRANTEE.

FD GRANTEE-FILE
LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 0 RECORDS

RECORDING MODE IS F.

01 GRANTEE-RECORD.
05 IN-GRANTEE-ID PIC X(8).
05 IN-GRANTEE-DESCPIC X(30).

The following JCL has been coded:

//GRANTEE DD DSN=DEVADTR.GRANTEE,DISP=MOD,
// DCB=(LRECL=40,BLKSIZE=23440)

The dataset DEVADTR.GRANTEE has the following characteristics: it has fixed length records of
38 bytes in length and a blocksize of 3800.

What are the consolidated DCB attributes applicable in this case?

iii) Code the JCL necessary to divert the ddname RPT1 to the spool. Cause an
abend to occur if more than 500 lines of output are produced.

iv) A program to be executed might reside in one of three libraries:
SYS1.RUNTIME, DEV@@TR.TEST.LOADLIB,
UB.TSS.DEV.LOADLIB. It is possible that more than one version of the
program exists in these libraries. The most up-to-date version will be in
DEV@@TR.TEST.LOADLIB and the oldest in SYS1.RUNTIME. Code
the DD statement that will search each of these libraries for the required
program in the correct order.

Advanced Job Control Language

Information Systems Training Page 29

I S

Training

The OUTPUT command

OUTPUT is a JES2 command, like JOBPARM (see page 9). It is used for manipulating and
directing output that is to be printed. It has the general format:

/*OUTPUT code{ }*
 parameter [,parameter] ...

Each OUTPUT statement has a unique 1-4 character identifying code. This allows several different
OUTPUT statements to be used in the same jobstream. If an OUTPUT statement continues over
more than one line, it is continued by coding an asterisk in column 10:

/*OUTPUT code parameters ...
/*OUTPUT * parameters ...

the continued line still starts with /*OUTPUT. The parameters available are:

B/BURST= either Y for individual sheets or N for one continuous sheet. Historically,
was used with fan-fold paper and dot-matrix printers. Now an optional
parameter.

X/CHARS= the character set to use. A number of different character sets are available at
Boots: APL enables special characters to be printed; BT12 is the standard
set

N/COPIES= enables multiple copies of a printout to be specified

D/DEST= destination printer. To print on the mainframe printer, specify LOCAL; to
print on a remote printer, specify either Rnnnn or RMTnnnn where nnnn
is the remote printer number

K/LINECT= number of lines to be printed before issuing a page throw.

An OUTPUT command is invoked by referring to it on a SYSOUT statement:

//ddname DD SYSOUT=(class,,code)

where class is the output class and code refers to the /*OUTPUT statement. An example:

/*OUTPUT OUTA DEST=R672
//REPORT1 DD SYSOUT=(*,,OUTA)

Advanced Job Control Language

Page 30 Information Systems Training

IS

Training

Output from REPORT1 will go to remote printer R672.

Advanced Job Control Language

Information Systems Training Page 31

I S

Training

The PROC and PEND statements

PROC and PEND are used to build up JCL "programs" called procedures. Procedures are not true
programs; they are simply collections of JCL statements. However, they do allow variable
substitution to take place and hence can be made general purpose. Procedures are invoked using
the EXEC command (see page 11).

Procedures can exist in one of two places: either they are instream procedures and included as
part of a jobstream, or they are saved in a dataset, in which case they are known as catalogued
procedures or catprocs. It is more usual to use catprocs rather than instream procedures.

Catprocs exist in specific libraries which the operating system is aware of. A list of the current
libraries may be obtained in ROSCOE by typing help catproc. The libraries which developers
within B.T.C. are likely to come across include:

SYS1.TESTPROC used by development staff for their own catprocs

SYSJ.QT.PROCLIB catprocs commonly used by development staff, for example, to compile
COBOL programs

SYS1.PROCLIB catprocs used by the operating system and other system software.

The general format of a procedure is:

//name PROC [symbolic parameter, ...]
// JCL statement ...
// JCL statement ...
// [PEND]

In catprocs, the PEND statement is generally omitted; it is necessary in instream procedures to
separate the procedure from the rest of the JCL. Symbolic parameters are variables used within a
catproc. They are defined at the start of the procedure as part of the PROC statement. Any
parameter thus defined can then be referenced in the JCL statements which make up the procedure.
They appear as their name preceded by an ampersand (&). This is replaced in the JCL that is
executed by the value assigned to the variable.

It is not possible to nest PROC statements.

Advanced Job Control Language

Page 32 Information Systems Training

IS

Training

Consider the following catproc, TEST, which resides on SYSJ.QT.PROCLIB:

//TEST PROC LIB='&&EXECLIB',MEMB=PROG,OUT=1000,SYSOUT='*'
//***
//* TEST - Execute a COBOL program *
//* Parms: LIB - library program is to be executed from *
//* MEMB - program name *
//* OUT - maximum number of output lines; default = 1000 *
//* SYSOUT - destination - default is assumed ('*') *
//* New Version, Alex Clark, Quality & Training, 19 Nov 1991 *
//* Version B ADC 28/11/1991 Add SYSABOUT and SYSDBOUT cards *
//***
//STEPC EXEC PGM=&MEMB
//STEPLIB DD DSN=&LIB,DISP=(SHR,PASS)
// DD DSN=SYS1.RUNTIME,DISP=(SHR,PASS)
//SYSOUT DD SYSOUT=&SYSOUT,OUTLIM=&OUT
//SYSPRINT DD SYSOUT=&SYSOUT,OUTLIM=&OUT
//SYSDBOUT DD SYSOUT=&SYSOUT
//SYSABOUT DD SYSOUT=&SYSOUT
//SYSUDUMP DD SYSOUT=&SYSOUT

The function of the procedure is to execute a COBOL program. The following code could be used
to invoke the procedure:

//STEP1 EXEC TEST,LIB=`DEV@@QT.TEST.LOADLIB',
// MEMB=QTTST01

That would result in the following JCL being executed:

//STEPC EXEC PGM=QTTST01
//STEPLIB DD DSN=DEV@@QT.TEST.LOADLIB,DISP=(SHR,PASS)
// DD DSN=SYS1.RUNTIME,DISP=(SHR,PASS)
//SYSOUT DD SYSOUT=*,OUTLIM=1000
//SYSPRINT DD SYSOUT=*,OUTLIM=1000
//SYSDBOUT DD SYSOUT=*
//SYSABOUT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*

any character which is not alphanumeric (A-Z,0-9) must be enclosed by apostrophes. In the above
example, the LIB symbolic parameter was enclosed in apostrophes because it included full stops
and @ symbols. Notice that the variables which were denoted by their names preceded by
ampersands have been replaced with the values that were assigned to them; these assignments were
either from the catproc itself, or from the EXEC statement. Any parameters passed via the EXEC
statement take precedence over those in the procedure itself.

Advanced Job Control Language

Information Systems Training Page 33

I S

Training

This is an example of an instream procedure:

//TEST PROC LIB='&&EXECLIB',MEMB=PROG,OUT=1000,SYSOUT='*'
//STEPC EXEC PGM=&MEMB
//STEPLIB DD DSN=&LIB,DISP=(SHR,PASS)
// DD DSN=SYS1.RUNTIME,DISP=(SHR,PASS)
//SYSOUT DD SYSOUT=&SYSOUT,OUTLIM=&OUT
//SYSPRINT DD SYSOUT=&SYSOUT,OUTLIM=&OUT
//SYSDBOUT DD SYSOUT=&SYSOUT
//SYSABOUT DD SYSOUT=&SYSOUT
//SYSUDUMP DD SYSOUT=&SYSOUT
// PEND
//*
//RUN1 EXEC TEST,LIB='DEV@@QT.TEST.LOADLIB',MEMB=FIRSTRUN,SYSOUT=A
//RUN2 EXEC TEST,LIB='DEV@@QT.TEST.LOADLIB',MEMB=SECRUN

Instream procedures are often used to cut down the amount of JCL that needs to be written to
perform a task. The above example reduces by about half the amount of JCL required to execute
the two programs FIRSTRUN and SECRUN.

Sometimes, you might want to use a procedure but you want to change part of it. If it is not a
symbolic parameter, you can override part of the JCL. The general format for overriding a
statement is:

//stepname.name [overriding statement]

Suppose that you wish to invoke the TEST catproc but wish to divert SYSOUT output to a dataset.
That could be accomplished by coding:

//RUN EXEC TEST,LIB=`DEV@@QT.TEST.LOADLIB',
// MEMB=FIRSTRUN
//STEPC.SYSOUT DD DSN=DEVADTR.TEST.OUTPUT,DISP=MOD

This will result in the existing SYSOUT card in the STEPC step being replaced. Alternatively,
additional parameters can be specified by using override statements.

the ROSCOE RPF catproc allows you to import a specified procedure into your AWS.

Advanced Job Control Language

Page 34 Information Systems Training

IS

Training

Making JCL Execution Conditional

Before a step in a job executes, the condition code(s) of previous step(s) can be tested. If the
condition in the test is satisfied then the step will not be executed. This test may be performed as
part of the EXEC statement. The general format is:

 //stepname EXEC PGM=pgm,COND=((code,operator,stepname)..)

Code is a number in the range 0 to 4095. It is derived from the completion code returned by a
program in a preceding step.
Operator is one of the following: LT,LE,NE,EQ,GE,GT.
Stepname is the name of a preceding step within the job stream.

Up to 8 condition code tests are allowed on one EXEC statement. If any of the tests are satisfied
then the step is bypassed.

For example:

COND=((4,LT,STEPA),(4,LT,STEPB))

means:- if 4 is less than the condition code set by STEPA or if 4 is less than the condition code set
by STEPB, then bypass this step. In other words, the step will be bypassed if either STEPA or
STEPB complete with a condition code of greater than four.

Usually, if a program abends, the rest of the job stream is not executed. However, as an alternative
to one of the 8 tests `EVEN' or `ONLY' may be coded:

EVEN means execute the step even if a previous step has abended.

ONLY means execute the step only if a preceding step has abended.

If you code

COND=((4,LT,STEPB),EVEN))

and the first test is satisfied, the second test will not be considered so the step will be bypassed,
regardless of the fact that EVEN is coded.

Advanced Job Control Language

Information Systems Training Page 35

I S

Training

To test the condition code of a step within a catalogued procedure, code:

COND=((code,operator,stepname.procedure-stepname),..)

Example:

//STEP2 EXEC COPYPROC
 ...
 ...
 ...
//STEP3 EXEC PGM=DEMOPEN,COND=((0,NE,STEP2.COPY1),..)

where COPY1 is a stepname within the COPYPROC procedure.

COND=(n,operator) - applies a test to all previously executed steps.

Steps which are not executed never generate a condition code so subsequent tests for the result of
the step will always be false.

It is also possible to test the execution of steps on the JOB statement. The general format is:

COND=((code,operator),...)

where code and operator have the same function as described above.

As with the EXEC statement, up to 8 tests are allowed. All 8 tests are applied to the condition code
set by each step in the job. If any one of the steps fulfils any of the tests then the rest of the job is
skipped.

Example:

COND=((8,LT),(4,EQ))

means if 8 is less than the condition code in any step or if 4 is equal to the condition code in any step
then skip the rest of the job.

The COND parameter used on the EXEC statement is generally more useful than on the JOB
statement.

Advanced Job Control Language

Page 36 Information Systems Training

IS

Training

Setting the Condition Code in a program

In COBOL, code

MOVE value TO RETURN-CODE.

In EASYTRIEVE PLUS, code

RETURN-CODE = value

Boots' standards (Programming Standards and Guidelines, Section 1) recommend that in ANY
program, the return code should always be explicitly set to zero unless the program is terminating
abnormally.

Advanced Job Control Language

Information Systems Training Page 37

I S

Training

Passing Information to Programs

It is possible to pass information to programs via JCL. It is done via the EXEC statement, e.g.

//stepname EXEC PGM=pgm,PARM=value

where value may be up to 100 characters of information. As with symbolic parameters, if the
information contains special characters it must be contained within apostrophes. For the special
considerations which apply to the use of apostrophes and ampersands and when the value needs to
be continued on another line see the OS/VS2 MVS JCL manual (1982) pp163.

Examples:

// EXEC PGM=HEXCHAR,PARM=`START=20,END=40'

// EXEC PRINFILE,DSN=`&&FRED',PARM=L100

Boots' standards recommend that you should not write programs which accept information as a
parameter in this way. However, there are still a number of production programs which rely on this
technique.

In COBOL programs, the root module of the program will contain a LINKAGE SECTION with
the following:

01 PARM-INFO.

03 PARM-LENGTH PIC S9(4) COMP.
03 PARM-DATA PIC X(100).

the length of the PARM-DATA string above is the maximum possible (100 bytes).

The PROCEDURE DIVISION clause will include the USING option:

PROCEDURE DIVISION USING PARM-INFO.

PARM-DATA will contain the characters specified in the PARM field of the EXEC statement.
PARM-LENGTH will contain the length of the PARM field.

Advanced Job Control Language

Page 38 Information Systems Training

IS

Training

In EASYTRIEVE PLUS programs, code:-

PARM-INFO W 102 A
PARM-LEN PARM-INFO 2 B
PARM-DATA PARM-INFO +2 100 A

...

...

...
JOB ...
CALL EZTPX01 USING (PARM-REGISTER PARM-INFO)

The information from the PARM statement will be placed in PARM-DATA; PARM-LEN will
contain the length of the field.

Advanced Job Control Language

Information Systems Training Page 39

I S

Training

Backward Referencing

Backward referencing is a method of referring to previous DD statements in a job stream. Its
purpose is to ensure that datasets that should have the same attributes do so. Backward referencing
may be used on the following parameters:

DSN= the system obtains the dsname from the specified dd statement.

VOL=REF= the system obtains UNIT and VOL information from the specified dd
statement. This is required if retrieving a temporary dataset twice in one
step.

DCB= the system obtains DCB fields as coded on the specified dd statement.

There are three forms of backward referencing, depending on where in the job stream the reference
is pointing to:

*.ddname

refers back to a previous ddname in the same step.

*.stepname.ddname

refers back to a ddname in a previous step.

*.stepname.procstepname.ddname

refers to a ddname within a procedure step within a procedure that was called by a preceding job
step.

An example:

//STEPA EXEC PGM=BANANA
//INPUT DD DSN=DEVADTR.BANANA.INPUT,DISP=MOD
...
...
//INPUT2 DD DSN=*.INPUT,DISP=SHR

Advanced Job Control Language

Page 40 Information Systems Training

IS

Training

Generation Data Groups

A Generation Data Group (or GDG) is a collection of related datasets, maintained in
chronological order; each one is known as a generation dataset. In JCL job streams, such datasets
are usually referred to by their relative name:

DSN=dsname(generation number)

where generation number will have the following values:

Most recent generation is generation 0
Previous generations are generation -1..-2..-3..
Next generations to be carried are +1..+2..+3..

The relative generation numbers are only altered at the end of a job which creates or deletes one
or more generations. Therefore, the dataset which is generation 0 at the beginning of a job should be
referred to as generation 0 throughout the job, even if one or more generations are created by
various different steps.

So, to read a generation dataset

DSN=CS.BCAMF(0),DISP=OLD is the most recent generation

DSN=CS.BCAMF(-1),DISP=OLD is the previous generation

If the generation number is omitted, then all existing generations in the group will be concatenated
and treated as one single dataset, provided they all have the same DCB attributes.

When writing a new generation, it is necessary to refer to a model GDG:

//DICK DD DSN=CS.BCAMF(+1),UNIT=....,
// DISP=(NEW,CATLG,DELETE),
// DCB=(BB.HK.MODELGDG,RECFM=...,LRECL=...,BLKSIZE=...)

New GDGs should be allocated by executing the ROSCOE RPF GDG.

Advanced Job Control Language

Information Systems Training Page 41

I S

Training

Checking JCL

There are several ways of checking that JCL will work correctly without running it. The first of these
is to specify TYPRUN=SCAN on the JOB statement, as described on page 8. This will cause the
job to be scanned for errors but not executed.

A sophisticated on-line checking mechanism is provided by the JCLCHECK product. This may be
invoked either from ROSCOE or from TSO. From ROSCOE, JCLCHECK is invoked by typing
JCK. You are then prompted for various parameters. A batch job is then submitted which checks
the contents of the AWS for JCL errors; the results of the check may be browsed by attaching the
job in the normal way.

It is possible to run JCLCHECK online from TSO. To use this option, the JCL to checked must
exist in a dataset. A comprehensive online tutorial is provided with the product to enable the new
user to exploit the powerful functions available. It is not recommended that development staff spend
a lot of time becoming familiar with this tool, as the ROSCOE JCK RPF provides all of the
checking functions that are usually required.

Good JCL style

JCL is notoriously difficult to read if coded badly. The following tips should act as pointers in writing
good JCL:

always thoroughly comment your JCL

give steps and symbolic parameters meaningful names

don't use backward referencing when it can be avoided

turn complicated, often used JCL into a catalogued procedure

make sure that JCL statements are aligned

test for condition codes on the EXEC rather than the JOB statement

test complicated JCL using JCLCHECK.

Advanced Job Control Language

Page 42 Information Systems Training

IS

Training

EXERCISE 5

Code the JCL necessary to perform the following tasks:

Include a valid jobcard, including your own logonid. The job should run down a class appropriate
for normal development usage. The msgclass should direct that the output from the job is held.

In the first job step, define a temporary dataset with fixed, 80 byte records. this dataset should be
big enough to hold 100,000 bytes with potential to expand to 500,000 bytes. It should reside on the
SYSDU pool.

In the second jobstep, invoke the COPYSEQ catproc to copy to the temporary dataset the
contents of DEV@@@@.SAMPLE.INVENT.

Copy to the end of the temporary dataset the following data:

///
// //
// EXTRA !! //
/***/
// FREE BANANAS !!! //
// AND TEAPOTS !!!! //
// //
///

Copy the resultant dataset to the spool. The output should go to remote printer 672 and should use
the APL character set.

Each step should ONLY execute if each of the preceding steps finished with a zero condition code.
Comment each step appropriately to describe what it does.

Advanced Job Control Language

Information Systems Training Page 43

I S

Training

	What is JCL
	The Job Stream
	JCL Statements
	JCL Operations
	The JOB Statement
	The JOBPARM Statement
	Exercise 1
	The EXEC Statement
	Dummy EXEC Steps
	Exercise 2
	Special DDnames
	The DD Statement
	Specifying an inline dataset
	Exercise 3
	Specifying a dataset on Tape
	Disposition Messages
	Sources of DCB Information
	Using the Output Writer
	Concatenating Datasets
	DD Statement Summary
	Exercise 4
	The OutPut Command
	The Proc and Pend Statements
	Making JCL Execution Conditional
	Setting the Condition Code in a Program
	Passing Information to Programs
	Backward Referencing
	Generation Data Groups
	Checking JCL
	Exercise 5

