
Embedded SQL programming

DB2 Information Management Software

http://www-136.ibm.com/developerworks/db2

Table of contents
If you're viewing this document online, you can click any of the topics below to link directly to that
section.

1. Before you start ... 2
2. Introduction to embedded SQL programming 5
3. Constructing an embedded SQL application 8
4. Diagnostics and error handling.. 25
5. Creating executable applications... 30
6. Conclusion... 34

Embedded SQL programming Page 1 of 36

Section 1. Before you start

What is this tutorial about?

This tutorial introduces you to embedded SQL programming and walks you
through the basic steps used to construct an embedded SQL application. This
tutorial also introduces you to the process used to convert one or more
high-level programming language source code files containing embedded SQL
into an executable application. In this tutorial, you will learn:

° How SQL statements are embedded in a high-level programming language
source code file

° The steps involved in developing an embedded SQL application
° What host variables are, how they are created, and how they are used
° What indicator variables are, how they are created, and when they are used
° How to analyze the contents of an SQLCA data structure variable
° How to establish a database connection from an embedded SQL application
° How to capture and process errors when they occur
° How to convert source code files containing embedded SQL into an

executable application

This is the third in a series of seven tutorials that you can use to help prepare
for the DB2 UDB V8.1 Family Application Development Certification exam
(Exam 703). The material in this tutorial primarily covers the objectives in
Section 3 of the exam, entitled "Embedded SQL programming." You can view
these objectives at: http://www.ibm.com/certify/tests/obj703.shtml.

You do not need a copy of DB2 Universal Database to complete this tutorial.
However, you can download a free trial version of IBM DB2 Universal Database
Enterprise Edition for reference.

Who should take this tutorial?

To take the DB2 V8 Family Development exam, you must have already passed
the DB2 UDB V8.1 Family Fundamentals exam (Exam 700). You can use the
DB2 Family Fundamentals tutorial series (see Resources on page 34) to
prepare for that test. It is a very popular tutorial series that has helped many
people understand the fundamentals of the DB2 family of products.

Although not all materials discussed in the Family Fundamentals tutorial series
are required to understand the concepts described in this tutorial, you should
have a basic knowledge of:

° DB2 instances

http://www-136.ibm.com/developerworks/db2 DB2 Information Management Software

Page 2 of 36 Embedded SQL programming

http://www.ibm.com/certify/tests/obj703.shtml
http://www6.software.ibm.com/dl/db2udbdl/db2udbdl-p?S_TACT=104AHW11&S_CMP=TUT

° Databases
° Database objects
° DB2 security

This tutorial is one of the tools that can help you prepare for Exam 703. You
should also take advantage of the Resources on page 34 identified at the end of
this tutorial for more information.

About the author
Roger E. Sanders is a database performance
engineer with Network Appliance, Inc. He has
been designing and developing database
applications for more than 18 years and he is
the author of eight books on DB2 Universal
Database, including DB2 Universal Database
v8.1 Certification Exam 703 Study Guide, DB2
Universal Database v8.1 Certification Exams
701 and 706 Study Guide, and DB2 Universal
Database v8.1 Certification Exam 700 Study
Guide. In addition, Roger is a regular
contributor to DB2 Magazine and he frequently
presents at International DB2 User's Group
(IDUG) and regional DB2 User's Group (RUG)
conferences. Roger holds eight IBM DB2
certifications, including:

° IBM Certified Advanced Database
Administrator -- DB2 Universal Database
V8.1 for Linux, UNIX, and Windows

° IBM Certified Database Administrator --
DB2 Universal Database V8.1 for Linux,
UNIX, and Windows

° IBM Certified Application Developer -- DB2
Universal Database V8.1 Family

° IBM Certified Database Associate -- DB2
Universal Database V8.1 Family.

° IBM Certified Advanced Technical Expert --
DB2 for Clusters

You can reach Roger at
rsanders@netapp.com.

Notices and trademarks

Copyright, 2004 International Business Machines Corporation. All rights

DB2 Information Management Software http://www-136.ibm.com/developerworks/db2

Embedded SQL programming Page 3 of 36

mailto:rsanders@netapp.com

reserved.

IBM, DB2, DB2 Universal Database, DB2 Information Integrator, WebSphere
and WebSphere MQ are trademarks or registered trademarks of IBM
Corporation in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service
marks of others.

http://www-136.ibm.com/developerworks/db2 DB2 Information Management Software

Page 4 of 36 Embedded SQL programming

Section 2. Introduction to embedded SQL programming

Structured Query Language and embedded SQL

Structured Query Language (SQL) is a standardized language used to
manipulate database objects and the data they contain. SQL is comprised of
several different statements that are used to define, alter, and destroy database
objects, as well as add, update, delete, and retrieve data values. However, SQL
is nonprocedural, and therefore is not a general-purpose programming
language. (SQL statements are executed by the DB2 Database Manager, not
by the operating system.) As a result, database applications are usually
developed by combining the decision and sequence control of a high-level
programming language with the data storage, manipulation, and retrieval
capabilities of SQL. Several methods are available for merging SQL with a
high-level programming language, but the simplest approach is to embed SQL
statements directly into the source code file(s) that will be used to create an
application. This technique is referred to as embedded SQL programming.

One of the drawbacks to developing applications using embedded SQL is that
high-level programming language compilers do not recognize, and therefore
cannot interpret, SQL statements encountered in a source code file. Because of
this, source code files containing embedded SQL statements must be
preprocessed (using a process known as precompiling) before they can be
compiled (and linked) to produce a database application. To facilitate this
preprocessing, each SQL statement coded in a high-level programming
language source code file must be prefixed with the keywords EXEC SQL and
terminated with either a semicolon (in C/C++ or FORTRAN) or the keywords
END_EXEC (in COBOL). When the preprocessor (a special tool known as the
SQL precompiler) encounters these keywords, it replaces the text that follows
(until a semicolon (;) or the keywords END-EXEC is found) with a DB2
UDB-specific function call that forwards the specified SQL statement to the DB2
Database Manager for processing.

Likewise, the DB2 Database Manager cannot work directly with high-level
programming language variables. Instead, it must use special variables known
as host variables to move data between an application and a database. (We will
take a closer look at host variables in Declaring host variables on page 8.) Host
variables look like any other high-level programming language variable; to be
set apart, they must be defined within a special section known as a declare
section. Also, in order for the SQL precompiler to distinguish host variables from
other text in an SQL statement, all references to host variables must be
preceded by a colon (:).

Static SQL

A static SQL statement is an SQL statement that can be hardcoded in an
application program at development time because information about its

DB2 Information Management Software http://www-136.ibm.com/developerworks/db2

Embedded SQL programming Page 5 of 36

structure and the objects (i.e., tables, column, and data types) it is intended to
interact with is known in advance. Since the details of a static SQL statement
are known at development time, the work of analyzing the statement and
selecting the optimum data access plan to use to execute the statement is
performed by the DB2 optimizer as part of the development process. Because
their operational form is stored in the database (as a package) and does not
have to be generated at application run time, static SQL statements execute
quickly.

The downside to this approach is that all static SQL statements must be
prepared (in other words, their access plans must be generated and stored in
the database) before they can be executed. Furthermore, static SQL statements
cannot be altered at run time, and each application that uses static SQL must
bind its operational package(s) to every database with which the application will
interact. Additionally, because static SQL applications require prior knowledge
of database objects, changes made to those objects after an application has
been developed can produce undesirable results.

The following are examples of static SQL statements:

SELECT COUNT(*) FROM EMPLOYEE

UPDATE EMPLOYEE SET LASTNAME = 'Jones' WHERE EMPID = '001'

SELECT MAX(SALARY), MIN(SALARY) INTO :MaxSalary, :MinSalary FROM EMPLOYEE

Generally, static SQL statements are well suited for high-performance
applications that execute predefined operations against a known set of
database objects.

Dynamic SQL

Although static SQL statements are relatively easy to incorporate into an
application, their use is somewhat limited because their format must be known
in advance. Dynamic SQL statements, on the other hand, are much more
flexible because they can be constructed at application run time; information
about a dynamic SQL statement's structure and the objects with which it plans
to interact does not have to be known in advance. Furthermore, because
dynamic SQL statements do not have a precoded, fixed format, the data
object(s) they reference can change each time the statement is executed.

Even though dynamic SQL statements are generally more flexible than static
SQL statements, they are usually more complicated to incorporate into an
application. And because the work of analyzing the statement to select the best
data access plan is performed at application run time (again, by the DB2
optimizer), dynamic SQL statements can take longer to execute than their static
SQL counterparts. (Since dynamic SQL statements can take advantage of the
database statistics available at application run time, there are some cases in

http://www-136.ibm.com/developerworks/db2 DB2 Information Management Software

Page 6 of 36 Embedded SQL programming

which a dynamic SQL statement will execute faster than an equivalent static
SQL statement, but those are the exception and not the norm.)

The following are examples of dynamic SQL statements:

SELECT COUNT(*) FROM ?

INSERT INTO EMPLOYEES VALUES (?, ?)

DELETE FROM DEPARTMENT WHERE DEPTID = ?

Generally, dynamic SQL statements are well suited for applications that interact
with a rapidly changing database or that allow users to define and execute
ad-hoc queries.

DB2 Information Management Software http://www-136.ibm.com/developerworks/db2

Embedded SQL programming Page 7 of 36

Section 3. Constructing an embedded SQL application

Declaring host variables

Earlier, we saw that the DB2 Database Manager relies on host variables to
move data between an application and a database. We also saw that we
distinguish host variables from other high-level programming language variables
by defining host variables in a special section known as a declare section. So
just how do we write declare sections?

The beginning of a declare section is defined by the BEGIN DECLARE
SECTION SQL statement, while the end is defined by the END DECLARE
SECTION statement. Thus, a typical declare section in a C/C++ source code file
would look something like:

EXEC SQL BEGIN DECLARE SECTION
char EmployeeID[7];
double Salary;

EXEC SQL END DECLARE SECTION

A declare section can be coded anywhere high-level programming language
variable declarations can be coded in a source code file. Although a source
code file typically contains only one declare section, multiple declare sections
are allowed.

Host variables that transfer data to a database are known as input host
variables, while host variables that receive data from a database are known as
output host variables. Regardless of whether a host variable is used for input or
output, its attributes must be appropriate for the context in which it is used.
Therefore, you must define host variables in such a way that their data types
and lengths are compatible with the data types and lengths of the columns they
are intended to work with: When deciding on the appropriate data type to assign
to a host variable, you should obtain information about the column or special
register that the variable will be associated with and refer to the conversion
charts found in the IBM DB2 Universal Database Application Development
Guide: Programming Client Applications documentation (see Resources on
page 34). Also, keep in mind that each host variable used in an application must
be assigned a unique name. Duplicate names in the same file are not allowed,
even when the host variables are defined in different declare sections. A tool
known as the Declaration Generator can be used to generate host variable
declarations for the columns of a given table in a database. This tool creates
embedded SQL declaration source code files, which can easily be inserted into
C/C++, Java language, COBOL, and FORTRAN applications. For more
information about this utility, refer to the db2dclgen command in the DB2 UDB
Command Reference product documentation.

How is a host variable used to move data between an application and a
database? The easiest way to answer this question is by examining a simple
embedded SQL source code fragment. The following C source code fragment

http://www-136.ibm.com/developerworks/db2 DB2 Information Management Software

Page 8 of 36 Embedded SQL programming

illustrates the proper use of host variables:

...
// Define The SQL Host Variables Needed
EXEC SQL BEGIN DECLARE SECTION;

char EmployeeNo[7];
char LastName[16];

EXEC SQL END DECLARE SECTION;
...

// Retrieve A Record From The Database
EXEC SQL SELECT EMPNO, LASTNAME

INTO :EmployeeNo, :LastName
FROM EMPLOYEE
WHERE EMPNO = '000100';

// Do Something With The Results
...

Declaring indicator variables

By default, columns in a DB2 UDB database table can contain null values.
Because null values are not stored the same way conventional data is stored,
special provisions must be made if an application intends to work with null data.
Null values cannot be retrieved and copied to host variables in the same
manner that other data values can. Instead, a special flag must be examined to
determine whether a specific value is meant to be null. And in order to obtain
the value of this flag, a special variable known as an indicator variable (or null
indicator variable) must be associated with the host variable that has been
assigned to a nullable column.

Because indicator variables must be accessible by both the DB2 Database
Manager and the application program, they must be defined inside a declare
section and they must be assigned a data type that is compatible with the DB2
UDB SMALLINT data type. Thus, the code used to define an indicator variable
in a C/C++ source code file will look something like:

EXEC SQL BEGIN DECLARE SECTION
short SalaryNullIndicator;

EXEC SQL END DECLARE SECTION

An indicator variable is associated with a specific host variable when it follows
the host variable in an SQL statement. Once an indicator variable has been
associated with a host variable, it can be examined as soon as its
corresponding host variable has been populated. If the indicator variable
contains a negative value, a null value was found and the value of the
corresponding host variable should be ignored. Otherwise, the value of the
corresponding host variable is valid.

DB2 Information Management Software http://www-136.ibm.com/developerworks/db2

Embedded SQL programming Page 9 of 36

Again, in order to understand how indicator variables are used, it helps to look
at an example embedded SQL source code fragment. The following code,
written in the C programming language, shows one example of how indicator
variables are defined and used:

...
// Define The SQL Host Variables Needed
EXEC SQL BEGIN DECLARE SECTION;

char EmployeeNo[7];
double Salary; // Salary - Used If SalaryNI Is

// Positive (>= 0)
short SalaryNI; // Salary NULL Indicator - Used

// To Determine If Salary
// Value Should Be NULL

EXEC SQL END DECLARE SECTION;
...

// Declare A Static Cursor
EXEC SQL DECLARE C1 CURSOR FOR SELECT EMPNO, DOUBLE(SALARY)

FROM EMPLOYEE;

// Open The Cursor
EXEC SQL OPEN C1;

// If The Cursor Was Opened Successfully, Retrieve And
// Display All Records Available
while (sqlca.sqlcode == SQL_RC_OK)
{

// Retrieve The Current Record From The Cursor
EXEC SQL FETCH C1 INTO :EmployeeNo, :Salary :SalaryNI;

// If The Salary Value For The Record Is NULL, ...
if (SalaryNI < 0)
{

printf("No salary information is available for ");
printf("employee %s\n", EmployeeNo);

}
}

// Close The Open Cursor
EXEC SQL CLOSE C1;
...

Indicator variables can also be used to send null values to a database when an
insert or update operation is performed. When processing INSERT and UPDATE
SQL statements, the DB2 Database Manager examines the value of any
indicator variable provided first. If it contains a negative value, the DB2
Database Manager assigns a null value to the appropriate column, provided null
values are allowed. (If the indicator variable is set to zero or contains a positive
number, or if no indicator variable is used, the DB2 Database Manager assigns
the value stored in the corresponding host variable to the appropriate column
instead.) Thus, the code used in a C/C++ source code file to assign a null value
to a column in a table would look something like:

ValueInd = -1;
EXEC SQL INSERT INTO TAB1 VALUES (:Value :ValueInd);

http://www-136.ibm.com/developerworks/db2 DB2 Information Management Software

Page 10 of 36 Embedded SQL programming

The SQLCA data structure

So far, we've only looked at how host variables and indicator variables are used
to move data between embedded SQL applications and database objects.
However, there are times when an embedded SQL application needs to
communicate with the DB2 Database Manager itself. Two special SQL data
structures are used to establish this vital communication link: the SQL
Communications Area (SQLCA) data structure and the SQL Descriptor Area
(SQLDA) data structure.

The SQLCA data structure contains a collection of elements that are updated by
the DB2 Database Manager each time an SQL statement or a DB2
administrative API function is executed. In order for the DB2 Database Manager
to populate this data structure, it must exist. Therefore, any application that
contains embedded SQL or that calls one or more administrative APIs must
define at least one SQLCA data structure variable. In fact, such an application
will not compile successfully if an SQLCA data structure variable does not exist.
The following table lists the elements that make up an SQLCA data structure
variable.

Element name Data type Description

sqlcaid CHAR(8) An eye catcher for storage dumps. To help
visually identify the data structure, this
element normally contains the value
"SQLCA".

sqlcabc INTEGER The size, in bytes, of the SQLCA data
structure itself. This element should always
contain the value 136.

sqlcode INTEGER The SQL return code value. A value of 0
indicates successful execution, a positive
value indicates successful execution with
warnings, and a negative value indicates an
error. Refer to the DB2 UDB Message
Reference, Volumes 1 and 2 product
manuals to obtain more information about a
specific SQL return code value.

sqlerrml SMALLINT The size, in bytes, of the data stored in the
sqlerrmc element of this structure. This
value can be any number between 0 and
70; a value of 0 indicates that no data has
been stored in the sqlerrmc field.

sqlerrmc CHAR(70) One or more error message tokens,
separated by the value "0xFF", that are to
be substituted for variables in the
descriptions of warning/error conditions.

DB2 Information Management Software http://www-136.ibm.com/developerworks/db2

Embedded SQL programming Page 11 of 36

This element is also used when a
successful connection is established.

sqlerrp CHAR(8) A diagnostic value that represents the type
of DB2 server currently being used. This
value begins with a 3-letter code identifying
the product version and release, and is
followed by 5 digits that identify the
modification level of the product. For
example, SQL08014 means DB2 Universal
Database, version 8, release 1,
modification level 4. If the sqlcode
element contains a negative value, this
element will contain an 8-character code
that identifies the module that reported the
error.

sqlerrd INTEGER
ARRAY

An array of six integer values that provide
additional diagnostic information when an
error occurs. (Refer to the next table in this
panel for more information about the
diagnostic information that can be returned
in this element.)

sqlwarn CHAR(11) An array of character values that serve as
warning indicators; each element of the
array contains either a blank or the letter W.
If compound SQL was used, this field will
contain an accumulation of the warning
indicators that were set for all
substatements executed in the compound
SQL statement block. (Refer to the third
table in this panel for more information
about the types of warning information that
can be returned in this element.)

sqlstate CHAR(5) The SQLSTATE value that identifies the
outcome of the most recently executed
SQL statement. For more on SQLSTATE
values, see SQLSTATEs on page29 .

Now let's look at the elements of the sqlca.sqlerrd array:

Array element Description

sqlerrd[0] If a connection was successfully established, this element will
contain the expected difference in length of mixed character
data (CHAR data types) when it is converted from the
application code page used to the database code page used.
A value of 0 or 1 indicates that no expansion is anticipated; a
positive value greater than 1 indicates a possible expansion in
length; and a negative value indicates a possible reduction in
length.

sqlerrd[1] If a connection was successfully established, this element will

http://www-136.ibm.com/developerworks/db2 DB2 Information Management Software

Page 12 of 36 Embedded SQL programming

contain the expected difference in length of mixed character
data (CHAR data types) when it is converted from the
database code page used to the application code page used.
A value of 0 or 1 indicates that no expansion is anticipated; a
positive value greater than 1 indicates a possible expansion in
length; and a negative value indicates a possible reduction in
length. If the SQLCA data structure contains information for
compound SQL, this element will contain the number of
substatements that failed (if any).

sqlerrd[2] If the SQLCA data structure contains information for a
CONNECT SQL statement that executed successfully, this
element will contain the value "1" if the connected database
is updatable and the value "2" if the connected database is
read-only.

If the SQLCA data structure contains information for a
PREPARE SQL statement that executed successfully, this
element will contain an estimate of the number of rows that will
be returned in a result data set when the prepared statement
is executed.

If the SQLCA data structure contains information for an
INSERT, UPDATE, or DELETE SQL statement that executed
successfully, this element will contain a count of the number of
rows that were affected by the operation.

If the SQLCA data structure contains information for
compound SQL, this element will contain a count of the
number of rows that were affected by the substatements in the
compound SQL statement block.

sqlerrd[3] If the SQLCA data structure contains information for a
CONNECT SQL statement that executed successfully, this
element will contain the value "0" if one-phase commit from a
down-level client is being used, the value "1" if one-phase
commit is being used, the value "2" if one-phase, read-only
commit is being used, and the value "3" if two-phase commit
is being used.

If the SQLCA data structure contains information for a
PREPARE SQL statement that executed successfully, this
element will contain a relative cost estimate of the resources
needed to prepare the statement specified.

If the SQLCA data structure contains information for
compound SQL, this element will contain a count of the
number of substatements in the compound SQL statement
block that executed successfully.

sqlerrd[4] If the SQLCA data structure contains information for a
CONNECT SQL statement that executed successfully, this
element will contain the value "0" if server authentication is
being used, the value "1" if client authentication is being
used, the value "2" if authentication is being handled by DB2
Connect, the value "3" if authentication is being handled by

DB2 Information Management Software http://www-136.ibm.com/developerworks/db2

Embedded SQL programming Page 13 of 36

DCE Security Services, and the value "255" if the way
authentication is being handled cannot be determined.

If the SQLCA data structure contains information for anything
else, this element will contain a count of the total number of
rows that were inserted, updated, or deleted as a result of the
DELETE rule of one or more referential integrity constraints or
the activation of one or more triggers. (If the SQLCA data
structure contains information for compound SQL, this element
will contain a count of all such rows for each substatement in
the compound SQL statement block that executed
successfully.)

sqlerrd[5] For partitioned databases, this element contains the partition
number of the partition that encountered an error or warning. If
no errors or warnings were encountered, this element will
contain the partition number of the partition that serves as the
coordinator node.

And now let's look at the elements of the of the sqlca.sqlwarn array:

Array element Description

sqlwarn[0] This element is blank if all other elements in the array are
blank; it contains the character W if one or more of the other
elements available is not blank.

sqlwarn[1] This element contains the character W if the value for a column
with a character string data type was truncated when it was
assigned to a host variable; it contains the character N if the
null-terminator for the string was truncated.

sqlwarn[2] This element contains the character W if null values were
eliminated from the arguments passed to a function.

sqlwarn[3] This element contains the character W if the number of values
retrieved does not equal the number of host variables
provided.

sqlwarn[4] This element contains the character W if an UPDATE or
DELETE SQL statement that does not contain a WHERE clause
was prepared.

sqlwarn[5] This element is reserved for future use.

sqlwarn[6] This element contains the character W if the result of a date
calculation was adjusted to avoid an invalid date value.

sqlwarn[7] This element is reserved for future use.

sqlwarn[8] This element contains the character W if a character that could
not be converted was replaced with a substitution character.

sqlwarn[9] This element contains the character W if one or more errors in
an arithmetic expression were ignored during column function
processing.

sqlwarn[10] This element contains the character W if a conversion error

http://www-136.ibm.com/developerworks/db2 DB2 Information Management Software

Page 14 of 36 Embedded SQL programming

occurred while converting a character data value in another
element of the SQLCA data structure variable.

The SQLDA data structure

The SQL Descriptor Area (SQLDA) data structure contains a collection of
elements that are used to provide detailed information to the PREPARE, OPEN,
FETCH, and EXECUTE SQL statements. This data structure consists of a header
followed by an array of structures, each of which describes a single host
variable or a single column in a result data set. The following table lists the
elements that make up an SQLDA data structure variable.

Element name Data type Description

sqldaid CHAR(8) An eye catcher for storage dumps. To help
visually identify the data structure, this
element normally contains the value
"SQLDA ".

sqldabc INTEGER The size, in bytes, of the SQLDA data
structure itself. The value assigned to this
element is determined using the equation
sqldabc = 16 + (44 * sqln).

sqln SMALLINT The total number of elements in the
sqlvar array.

sqld SMALLINT This element can indicate one of two
things: either the number of columns in the
result data set returned by a DESCRIBE or
a PREPARE SQL statement, or the number
of host variables described by the elements
in the sqlvar array.

sqlvar STRUCTURE
ARRAY

An array of data structures that contain
information about host variables or result
data set columns.

In addition to this basic information, an SQLDA data structure variable contains
an arbitrary number of occurrences of sqlvar data structures (which are
referred to as SQLVAR variables). The information stored in each SQLVAR
variable depends on the location where the corresponding SQLDA data
structure variable is used: When used with a PREPARE or a DESCRIBE SQL
statement, each SQLVAR variable will contain information about a column that
will exist in the result data set produced when the prepared SQL statement is
executed. (If any of the columns have a large object (LOB) or user-defined data
type, the number of SQLVAR variables used will be doubled and the seventh
byte of the character string value stored in the sqldaid element of the SQLDA
data structure variable will be assigned the value "2".) On the other hand,
when the SQLDA data structure variable is used with an OPEN, FETCH, or
EXECUTE SQL statement, each SQLVAR variable will contain information about

DB2 Information Management Software http://www-136.ibm.com/developerworks/db2

Embedded SQL programming Page 15 of 36

a host variable whose value is to be passed to the DB2 Database Manager.

Two types of SQLVAR variables are used: base SQLVARs and secondary
SQLVARs. Base SQLVARs contain basic information (such as data type code,
length attribute, column name, host variable address, and indicator variable
address) for result data set columns or host variables. The elements that make
up a base SQLVAR data structure variable are shown in the following table.

Element name Data type Description

sqltype SMALLINT The data type of a host variable used, or
the data type of a column in the result data
set produced.

sqllen SMALLINT The size (length), in bytes, of a host
variable used, or the size of a column in the
result data set produced.

sqldata Pointer A pointer to a location in memory where the
data for a host variable used is stored, or a
pointer to a location in memory where data
for a column in the result data set produced
is to be stored.

sqlind Pointer A pointer to a location in memory where the
data for the null indicator variable
associated with a host variable used is
stored, or a pointer to a location in memory
where the data for the null indicator variable
associated with a column in the result data
set produced is to be stored.

sqlname VARCHAR(30) The unqualified name of a host variable or
a column in the result data set produced.

On the other hand, secondary SQLVARs contain either the distinct data type
name for distinct data types or the length attribute of the column or host variable
and a pointer to the buffer that contains the actual length of the data for LOB
data types. Secondary SQLVAR entries are only present if the number of
SQLVAR entries is doubled because LOBs or distinct data types are used: If
locators or file reference variables are used to represent LOB data types,
secondary SQLVAR entries are not used.

The information stored in an SQLDA data structure variable, along with the
information stored in any corresponding SQLVAR variables, may be placed
there manually (using the appropriate programming language statements), or
can be generated automatically by executing the DESCRIBE SQL statement.

Both an SQLCA data structure variable and an SQLDA data structure variable
can be created by embedding the appropriate form of the INCLUDE SQL
statement (INCLUDE SQLCA and INCLUDE SQLDA, respectively) within an
embedded SQL source code file.

http://www-136.ibm.com/developerworks/db2 DB2 Information Management Software

Page 16 of 36 Embedded SQL programming

Establishing a database connection

In order to perform any type of operation against a database, you must first
establish a connection to that database. With embedded SQL applications,
database connections are made (and in some cases terminated) by executing
the CONNECT SQL statement. (The RESET option of the CONNECT statement is
used to terminate a connection.) During the connection process, the information
needed to establish a connection -- such as an authorization ID and a
corresponding password of an authorized user -- is passed to the database
specified for validation. Often, this information is collected at application run
time and passed to the CONNECT statement by way of one or more host
variables.

Embedded SQL applications can use two different types of connection
semantics. These two types, known simply as Type 1 and Type 2, support two
different types of transaction behavior: Type 1 connections support only one
database connection per transaction (referred to as a remote unit of work) while
Type 2 connections support any number of database connections per
transaction (referred to as an application-directed distributed unit of work).
Essentially, when Type 1 connections are used, an application can only be
connected to one database at a time. Once a connection to a database is
established and a transaction is started, that transaction must either be
committed or rolled back before another database connection can be
established. On the other hand, when Type 2 connections are used, an
application can be connected to several different databases at the same time,
and each database connection will have its own set of transactions. (The actual
type of connection semantics an application will use is determined by the value
assigned to the CONNECT, SQLRULES, DISCONNECT, and SYNCPOINT SQL
precompiler options when the application is precompiled.)

Preparing and executing SQL statements

When static SQL statements are embedded in an application, they are executed
as they are encountered. However, when dynamic SQL statements are used,
they can be processed in two ways:

° Prepare and execute: This approach separates the preparation of the SQL
statement from its actual execution and is typically used when an SQL
statement is to be executed repeatedly. This method is also used when an
application needs advance information about the columns that will exist in
the result data set produced when a SELECT SQL statement is executed.
The SQL statements PREPARE and EXECUTE are used to process dynamic
SQL statements in this manner.

° Execute immediately: This approach combines the preparation and the
execution of an SQL statement into a single step and is typically used when
an SQL statement is to be executed only once. This method is also used
when the application does not need additional information about the result

DB2 Information Management Software http://www-136.ibm.com/developerworks/db2

Embedded SQL programming Page 17 of 36

data set that will be produced, if any, when the SQL statement is executed.
The SQL statement EXECUTE IMMEDIATE is used to process dynamic SQL
statements in this manner.

Dynamic SQL statements that are prepared and executed (using either method)
at run time are not allowed to contain references to host variables. They can,
however, contain parameter markers in place of constants and/or expressions.
Parameter markers are represented by the question mark (?) character. They
indicate where in the SQL statement the current value of one or more host
variables or elements of an SQLDA data structure variable are to be substituted
when the statement is executed. (Parameter markers are typically used where a
host variable would be referenced if the SQL statement being executed were
static.) Two types of parameter markers are available: typed and untyped.

A typed parameter marker is one that is specified along with its target data type.
Typed parameter markers have this general form:

CAST(? AS DataType)

This notation does not imply that a function is called, but rather it promises that
the data type of the value replacing the parameter marker at application run
time will either be the data type specified or a data type that can be converted to
the data type specified. For example, consider the following SQL statement:

UPDATE EMPLOYEE SET LASTNAME = CAST(? AS VARCHAR(12))
WHERE EMPNO = '000050'

Here, the value for the LASTNAME column is provided at application run time,
and the data type of that value will be either VARCHAR(12) or a data type that
can be converted to VARCHAR(12).

An untyped parameter marker, on the other hand, is specified without a target
data type and has the form of a single question mark (?). The data type of an
untyped parameter marker is determined by the context in which it is used. For
example, in the following SQL statement, the value for the LASTNAME column
is provided at application run time, and it is assumed that the data type of that
value will be compatible with the data type that has been assigned to the
LASTNAME column of the EMPLOYEE table.

UPDATE EMPLOYEE SET LASTNAME = ? WHERE EMPNO = '000050'

When parameter markers are used in embedded SQL applications, values that
are to be substituted for parameter markers placed in an SQL statement must
be provided as additional parameters to the EXECUTE or the EXECUTE
IMMEDIATE SQL statement when either is used to execute the SQL statement
specified. The following example, written in the C programming language,
illustrates how actual values would be provided for parameter markers that have
been coded in a simple UPDATE SQL statement:

http://www-136.ibm.com/developerworks/db2 DB2 Information Management Software

Page 18 of 36 Embedded SQL programming

...
// Define The SQL Host Variables Needed
EXEC SQL BEGIN DECLARE SECTION;

char SQLStmt[80];
char JobType[10];

EXEC SQL END DECLARE SECTION;
...

// Define A Dynamic UPDATE SQL Statement That Uses A
// Parameter Marker
strcpy(SQLStmt, "UPDATE EMPLOYEE SET JOB = ? ");
strcat(SQLStmt, "WHERE JOB = 'DESIGNER'");

// Populate The Host Variable That Will Be Used In
// Place Of The Parameter Marker
strcpy(JobType, "MANAGER");

// Prepare The SQL Statement
EXEC SQL PREPARE SQL_STMT FROM :SQLStmt;

// Execute The SQL Statement
EXEC SQL EXECUTE SQL_STMT USING :JobType;
...

Retrieving and processing results

Regardless of whether a static SQL statement or a dynamic SQL statement is
used in an embedded SQL application, once the statement has been executed,
any results produced will need to be retrieved and processed. If the SQL
statement was anything other than a SELECT or a VALUES statement, the only
additional processing required after execution is a check of the SQLCA data
structure variable to ensure that the statement executed as expected. However,
if a SELECT statement or VALUES statement was executed, additional steps are
needed to retrieve each row of data from the result data set produced.

When a SELECT statement or a VALUES statement is executed from within an
application, DB2 UDB uses a mechanism known as a cursor to retrieve data
values from any result data set produced. The name cursor probably originated
from the blinking cursor found on early computer screens, and just as that
cursor indicated the current position on the screen and identified where typed
words would appear next, a DB2 UDB cursor indicates the current position in
the result data set (i.e., the current row) and identifies the row of data that will
be returned to the application next. The following steps must be performed in
order if a cursor is to be incorporated into an embedded SQL application:

1. Declare (define) a cursor along with its type (read-only or updatable), and
associate it with the desired query (SELECT or VALUES SQL statement).
This is done by executing the DECLARE CURSOR statement.

2. Open the cursor. This will cause the corresponding query to be executed
and a result data set to be produced. This is done by executing the OPEN
statement.

DB2 Information Management Software http://www-136.ibm.com/developerworks/db2

Embedded SQL programming Page 19 of 36

3. Retrieve (fetch) each row in the result data set, one by one, until an
end-of-data condition occurs. Each time a row is retrieved from the result
data set, the cursor is automatically moved to the next row. This is done by
repeatedly executing the FETCH statement; host variables or an SQLDA
data structure variable are used in conjunction with a FETCH statement to
extract a row of data from a result data set.

4. If appropriate, modify or delete the current row, but only if the cursor is an
updatable cursor. This is done by executing the UPDATE statement or the
DELETE statement.

5. Close the cursor. This action will cause the result data set that was produced
when the corresponding query was executed to be deleted. This is done by
executing the CLOSE statement.

Now that we have seen the steps that must be performed in order to use a
cursor, let's examine how these steps are coded in an application. The following
example, written in the C programming language, illustrates how a cursor would
be used to retrieve the results of a SELECT SQL statement:

...
// Declare The SQL Host Memory Variables
EXEC SQL BEGIN DECLARE SECTION;

char EmployeeNo[7];
char LastName[16];

EXEC SQL END DECLARE SECTION;
...

// Declare A Cursor
EXEC SQL DECLARE C1 CURSOR FOR

SELECT EMPNO, LASTNAME
FROM EMPLOYEE
WHERE JOB = 'DESIGNER';

// Open The Cursor
EXEC SQL OPEN C1;

// Fetch The Records
while (sqlca.sqlcode == SQL_RC_OK)
{

// Retrieve A Record
EXEC SQL FETCH C1
INTO :EmployeeNo, :LastName;

// Process The Information Retrieved
if (sqlca.sqlcode == SQL_RC_OK)

...
}

// Close The Cursor
EXEC SQL CLOSE C1;
...

If you know in advance that only one row of data will be produced in response
to a query, there are two other ways to copy the contents of that row to host
variables within an application program, by executing either the SELECT INTO
statement or the VALUES INTO statement. Like the SELECT SQL statement,

http://www-136.ibm.com/developerworks/db2 DB2 Information Management Software

Page 20 of 36 Embedded SQL programming

the SELECT INTO statement can be used to construct complex queries.
However, unlike the SELECT statement, the SELECT INTO statement requires
a list of valid host variables to be supplied as part of its syntax; it cannot be
used dynamically. Additionally, if the result data set produced when the SELECT
INTO statement is executed contains more than one record, the operation will
fail and an error will be generated. (If the result data set produced is empty, a
NOT FOUND warning will be generated.)

Like the SELECT INTO statement, the VALUES INTO statement can be used to
retrieve the data associated with a single record and copy it to one or more host
variables. And, like the SELECT INTO statement, when the VALUES INTO
statement is executed, all data retrieved is stored in a result data set. If this
result data set contains only one record, the first value in that record is copied to
the first host variable specified, the second value is copied to the second host
variable specified, and so on. However, the VALUES INTO statement cannot be
used to construct complex queries in the same way that the SELECT INTO
statement can.

Again, if the result data set produced when the VALUES INTO statement is
executed contains more than one record, the operation will fail and an error will
be generated. (If the result data set produced is empty, a NOT FOUND warning
will be generated.)

Managing transactions

A transaction (also known as a unit of work) is a sequence of one or more SQL
operations grouped together as a single unit, usually within an application
process. Such a unit is called atomic because it is indivisible -- either all of its
work is carried out or none of its work is carried out. A given transaction can be
comprised of any number of SQL operations, from a single operation to many
hundreds or even thousands, depending upon what is considered a single step
within your business logic.

The initiation and termination of a single transaction define points of data
consistency within a database: Either the effects of all operations performed
within a transaction are applied to the database and made permanent
(committed), or the effects of all operations performed are backed out (rolled
back) and the database is returned to the state it was in before the transaction
was initiated. In most cases, transactions are initiated the first time an
executable SQL statement is executed after a connection to a database has
been established, or immediately after a pre-existing transaction has been
terminated. Once initiated, transactions can be implicitly terminated using the
automatic commit feature. Using this feature, each executable SQL statement is
treated as a single transaction. If the statement executes successfully, any
changes made by that statement are applied to the database. If the statement
fails, any changes are discarded. Transactions can also be explicitly terminated
by executing either the COMMIT or the ROLLBACK SQL statement. In either
case, all transactions associated with a particular database should be
completed before the connection to that database is terminated.

DB2 Information Management Software http://www-136.ibm.com/developerworks/db2

Embedded SQL programming Page 21 of 36

Putting it all together

Now that we have examined some of the basic components used to construct
embedded SQL applications, let's see how each is typically coded in an
embedded SQL application. A simple embedded SQL application, written in the
C programming language using static SQL, that obtains and prints employee
identification numbers, last names, and salaries for all employees who have the
job title "designer" might look something like:

#include <stdio.h>
#include <string.h>
#include <sql.h>

int main()
{

// Include The SQLCA Data Structure Variable
EXEC SQL INCLUDE SQLCA;

// Define The SQL Host Variables Needed
EXEC SQL BEGIN DECLARE SECTION;

char EmployeeNo[7];
char LastName[16];
double Salary;
short SalaryNI;

EXEC SQL END DECLARE SECTION;

// Connect To The Appropriate Database
EXEC SQL CONNECT TO SAMPLE USER db2admin USING ibmdb2;

// Declare A Static Cursor
EXEC SQL DECLARE C1 CURSOR FOR

SELECT EMPNO,
LASTNAME,
DOUBLE(SALARY)

FROM EMPLOYEE
WHERE JOB = 'DESIGNER';

// Open The Cursor
EXEC SQL OPEN C1;

// If The Cursor Was Opened Successfully, Retrieve And
// Display All Records Available
while (sqlca.sqlcode == SQL_RC_OK)
{

// Retrieve The Current Record From The Cursor
EXEC SQL FETCH C1

INTO :EmployeeNo,
:LastName,
:Salary :SalaryNI;

// Display The Record Retrieved
if (sqlca.sqlcode == SQL_RC_OK)
{

printf("%-8s %-16s ", EmployeeNo,
LastName);

if (SalaryNI < 0)

http://www-136.ibm.com/developerworks/db2 DB2 Information Management Software

Page 22 of 36 Embedded SQL programming

printf("%lf\n", Salary);
else

printf("Unknown\n");
}

}

// Close The Open Cursor
EXEC SQL CLOSE C1;

// Commit The Transaction
EXEC SQL COMMIT;

// Terminate The Database Connection
EXEC SQL DISCONNECT CURRENT;

// Return Control To The Operating System
return(0);

}

On the other hand, a simple embedded SQL application, written in the C
programming language using dynamic SQL, that changes all job titles
"designer" to "manager" might look something like:

#include <stdio.h>
#include <string.h>
#include <sql.h>

int main()
{

// Include The SQLCA Data Structure Variable
EXEC SQL INCLUDE SQLCA;

// Define The SQL Host Variables Needed
EXEC SQL BEGIN DECLARE SECTION;

char SQLStmt[80];
char JobType[10];

EXEC SQL END DECLARE SECTION;

// Connect To The Appropriate Database
EXEC SQL CONNECT TO SAMPLE USER db2admin USING ibmdb2;

// Define A Dynamic UPDATE SQL Statement That Uses A
// Parameter Marker
strcpy(SQLStmt, "UPDATE EMPLOYEE SET JOB = ? ");
strcat(SQLStmt, "WHERE JOB = 'DESIGNER'");

// Populate The Host Variable That Will Be Used In
// Place Of The Parameter Marker
strcpy(JobType, "MANAGER");

// Prepare The SQL Statement
EXEC SQL PREPARE SQL_STMT FROM :SQLStmt;

// Execute The SQL Statement
EXEC SQL EXECUTE SQL_STMT USING :JobType;

// Commit The Transaction
EXEC SQL COMMIT;

DB2 Information Management Software http://www-136.ibm.com/developerworks/db2

Embedded SQL programming Page 23 of 36

// Terminate The Database Connection
EXEC SQL DISCONNECT CURRENT;

// Return Control To The Operating System
return(0);

}

http://www-136.ibm.com/developerworks/db2 DB2 Information Management Software

Page 24 of 36 Embedded SQL programming

Section 4. Diagnostics and error handling

Using the WHENEVER statement

In The SQLCA data structure on page 11, we saw that the SQL
Communications Area (SQLCA) data structure contains a collection of elements
that are updated by the DB2 Database Manager each time an SQL statement is
executed. One element of that structure, the sqlcode element, is assigned a
value that indicates the success or failure of the SQL statement executed. (A
value of 0 indicates successful execution, a positive value indicates successful
execution with warnings, and a negative value indicates that an error occurred.)
At a minimum, an embedded SQL application should always check the
sqlcode value produced (often referred to as the SQL return code)
immediately after an SQL statement is executed. Whenever an SQL statement
fails to execute as expected, users should be notified that an error or warning
condition occurred. Whenever possible, they should be provided with sufficient
diagnostic information so they can locate and correct the problem.

As you might imagine, checking the SQL return code after each SQL statement
is executed can add additional overhead to an application, especially when an
application contains a large number of SQL statements. However, because
every SQL statement coded in an embedded SQL application source code file
must be processed by the SQL precompiler, it is possible to have the
precompiler automatically generate the source code needed to check SQL
return codes. This is accomplished by embedding one or more forms of the
WHENEVER SQL statement into a source code file.

The WHENEVER statement tells the precompiler to generate source code that
evaluates SQL return codes and branches to a specified label whenever an
error, warning, or out-of-data condition occurs. (If the WHENEVER statement is
not used, the default behavior is to ignore SQL return codes and continue
processing as if no problems have been encountered.) Four forms of the
WHENEVER statement are available, one for each of the three different types of
error/warning conditions for which the WHENEVER statement can be used to
check, and one to turn error checking off:

° WHENEVER SQLERROR GOTO [Label]: Instructs the precompiler to
generate source code that evaluates SQL return codes and branches to the
label specified whenever a negative sqlcode value is generated.

° WHENEVER SQLWARNING GOTO [Label]: Instructs the precompiler to
generate source code that evaluates SQL return codes and branches to the
label specified whenever a positive sqlcode value (other than the value
"100") is generated.

° WHENEVER NOT FOUND GOTO [Label]: Instructs the precompiler to
generate source code that evaluates SQL return codes and branches to the
label specified whenever an sqlcode value of 100 or an sqlstate value
of 02000 is generated.

° WHENEVER [SQLERROR | SQL WARNING | NOT FOUND] CONTINUE:
Instructs the precompiler to ignore the SQL return code and continue with

DB2 Information Management Software http://www-136.ibm.com/developerworks/db2

Embedded SQL programming Page 25 of 36

the next instruction in the application.

A source code file can contain any combination of these four forms of the
WHENEVER statement, and the order in which the first three forms appear is
insignificant. However, once any form of the WHENEVER statement is used, the
SQL return codes of all subsequent SQL statements executed will be evaluated
and processed accordingly until the application ends or until another WHENEVER
statement alters this behavior.

The following example, written in the C programming language, illustrates how
the WHENEVER statement could typically be used to trap and process
out-of-data errors:

...
// Include The SQLCA Data Structure Variable
EXEC SQL INCLUDE SQLCA;

// Set Up Error Handler
EXEC SQL WHENEVER NOT FOUND GOTO NOT_FOUND_HANDLER;

// Connect To The Appropriate Database
EXEC SQL CONNECT TO SAMPLE USER db2admin USING ibmdb2;

// Execute A SELECT INTO SQL Statement (If A "DATA NOT
// FOUND" Situation Occurs, The Code Will Branch To
// The NOT_FOUND_HANDLER Label)
EXEC SQL SELECT EMPNO INTO :EmployeeNo

FROM RSANDERS.EMPLOYEE
WHERE JOB = 'CODER';

...

// Disable All Error Handling
EXEC SQL WHENEVER NOT FOUND CONTINUE;

// Prepare To Return To The Operating System
goto EXIT;

// Define A Generic "Data Not Found" Handler
NOT_FOUND_HANDLER:

printf("NOT FOUND: SQL Code = %d\n", sqlca.sqlcode);
EXEC SQL ROLLBACK;
goto EXIT;

EXIT:

// Terminate The Database Connection
EXEC SQL DISCONNECT CURRENT;

// Return Control To The Operating System
return(0);

Unfortunately, the code that is generated when the WHENEVER SQL statement
is used relies on GO TO branching instead of call/return interfaces to transfer
control to the appropriate error handling section of an embedded SQL
application. As a result, when control is passed to the source code that is used
to process errors and warnings, the application has no way of knowing where

http://www-136.ibm.com/developerworks/db2 DB2 Information Management Software

Page 26 of 36 Embedded SQL programming

control came from, nor does it have any way of knowing where it should return
control to after the error or warning has been properly handled. For this reason,
about the only thing an application can do when control is passed to a
WHENEVER statement error handling label is to display the error code generated,
roll back the current transaction, and return control to the operating system.

The Get Error Message API

Among other things, most editions of DB2 UDB and the DB2 Application
Development Client contain a rich set of functions that are referred to as the
administrative APIs (Application Programming Interfaces). These APIs are
designed to provide services other than the data storage, manipulation, and
retrieval functionality that SQL provides to DB2 UDB applications. (Essentially,
any database operation that can be performed from the Command Line
Processor by executing a DB2 command can be performed from within an
application by calling an administrative API.)

Earlier, we saw that the SQL Communications Area (SQLCA) data structure
contains a collection of elements that are updated by the DB2 Database
Manager each time an SQL statement is executed and that one element of that
structure, the sqlcode element, is assigned a value that indicates the success
or failure of the SQL statement executed. The value that gets assigned to the
sqlcode element is actually a coded number. A special administrative API can
be used to translate the coded number into a meaningful description that can
then be displayed to the user. This API is known as the Get Error Message API.
The basic syntax used to call it from a high-level programming source code file
is as follows for C/C++ applications:

sqlaintp (char *pBuffer,
short sBufferSize,
short sLineWidth,
struct sqlca *pSQLCA);

And here's the syntax for other high-level programming language applications:

sqlgintp (short sBufferSize,
short sLineWidth,
struct sqlca *pSQLCA,
char *pBuffer);

Let's look at the components of the syntax in more detail:

° pBuffer: Identifies a location in memory where the Get Error Message API
is to store any message text retrieved.

° sBufferSize: Identifies the size, in bytes, of the memory storage buffer to
which any message text retrieved should be written.

° sLineWidth: Identifies the maximum number of characters that one line of

DB2 Information Management Software http://www-136.ibm.com/developerworks/db2

Embedded SQL programming Page 27 of 36

message text should contain before a line break is inserted. A value of 0
indicates that the message text is to be returned without line breaks.

° pSQLCA: Identifies a location in memory where an SQL Communications
Area (SQLCA) data structure variable is stored.

Each time the Get Error Message API is called, the value stored in the
sqlcode element of the SQLCA data structure variable provided is used to
locate and retrieve appropriate error message text from a message file that is
shipped with DB2 UDB. The following example, written in the C programming
language, illustrates how the Get Error Message API would typically be used to
obtain and display the message associated with any SQL return code
generated:

...
// Include The SQLCA Data Structure Variable
EXEC SQL INCLUDE SQLCA;

// Declare The Local Memory Variables
long RetCode = SQL_RC_OK;
char ErrorMsg[1024];
...

// Perform Some SQL Operation
...

// If An Error Occurred, Obtain And Display
// Any Diagnostic Information Available
if (sqlca.sqlcode != SQL_RC_OK)
{

// Retrieve The Error Message Text For The Error
// Code Generated
RetCode = sqlaintp(ErrorMsg, sizeof(ErrorMsg), 70, &sqlca);
switch (RetCode)
{
case -1:

printf("ERROR : Insufficient memory.\n");
break;

case -3:
printf("ERROR : Message file is inaccessible.\n");
break;

case -5:
printf("ERROR : Invalid SQLCA, bad buffer, ");
printf("or bad buffer length specified.\n");
break;

default:
printf("%s\n", ErrorMsg);
break;

}
}
...

As you can see in this example, when the Get Error Message API is called, it
returns a value that indicates whether or not it executed successfully. In this
case, the return code produced is checked. If an error did occur, a message is
returned to the user explaining why the API failed. If the API was successful, the
message retrieved is returned to the user instead.

http://www-136.ibm.com/developerworks/db2 DB2 Information Management Software

Page 28 of 36 Embedded SQL programming

SQLSTATEs

DB2 UDB (as well as other relational database products) uses a set of error
message codes known as SQLSTATEs to provide supplementary diagnostic
information for warnings and errors. SQLSTATEs are alphanumeric strings that
are five characters (bytes) in length and have the format ccsss, where cc
indicates the error message class and sss indicates the error message
subclass. Like SQL return code values, SQLSTATE values are written to an
element (the sqlstate element) of an SQLCA data structure variable used
each time an SQL statement is executed. And just as the Get Error Message
API can be used to convert any SQL return code value generated into a
meaningful description, another API -- the Get SQLSTATE Message API -- can
be used to convert an SQLSTATE value into a meaningful description as well.
By including either (or both) of these APIs in your embedded SQL applications,
you can always return meaningful information to the end user whenever error
and/or warning conditions occur.

DB2 Information Management Software http://www-136.ibm.com/developerworks/db2

Embedded SQL programming Page 29 of 36

Section 5. Creating executable applications

The basic process

So far, we have looked at some of the basic steps of embedding SQL
statements in high-level programming language source code files, but we have
only hinted at how source code files containing embedded SQL statements are
converted into a working program. Once a source code file has been written,
the following steps must be performed, in the order shown, before an
application that interacts with a DB2 UDB database will be created:

1. All source code file(s) containing embedded SQL statements must be
precompiled to convert the embedded SQL statements used into
DB2-specific function calls and to create a corresponding package. You
must be connected to a database in order to run the SQL precompiler. All
packages created can be stored in the database being used by the SQL
precompiler, or they can be written to a special file known as a bind file,
which can then be bound to any valid DB2 UDB database later.

2. All high-level programming language source code files produced by the SQL
precompiler (and any additional source code files needed) must be compiled
to create object modules.

3. All appropriate object modules must be linked with high-level programming
language libraries and the DB2 UDB libraries to create an executable
program.

4. If the packages for the files that were processed by the SQL precompiler
have not already been bound to the appropriate database, they must be
bound using the bind files produced by the SQL precompiler.

The following illustration outlines the basic embedded SQL source code
file-to-executable application conversion process when deferred binding is
used. (We'll discuss deferred binding in more detail in Creating and binding
packages on page32 .)

http://www-136.ibm.com/developerworks/db2 DB2 Information Management Software

Page 30 of 36 Embedded SQL programming

Precompiling, compiling, and linking

During the precompile process, a source code file containing embedded SQL
statements is converted into a source code file that is made up entirely of
high-level programming language statements. (The embedded SQL statements

DB2 Information Management Software http://www-136.ibm.com/developerworks/db2

Embedded SQL programming Page 31 of 36

themselves are commented out and DB2-specific function calls are stored in
their place.) At the same time, a corresponding package that contains (among
other things) the access plans that are to be used to process each static SQL
statement embedded in the source code file is also produced. (Access plans
contain optimized information that the DB2 Database Manager uses to execute
SQL statements. Access plans for static SQL statements are produced at
precompile time, while access plans for dynamic SQL statements are produced
at application run time.) Packages produced by the SQL precompiler can be
stored in the database being used by the precompiler as they are generated, or
they can be written to an external bind file and bound to any valid DB2 UDB
database later (the process of storing this package in the appropriate database
is known as binding). By default, packages are automatically bound to the
database used for precompiling during the precompile process. Unless
otherwise specified, the SQL precompiler is also responsible for verifying that all
database objects (such as tables and columns) that have been referenced in
static SQL statements actually exist, and that all application data types used are
compatible with their database counterparts (that's why you need a database
connection in order to use the SQL precompiler.)

Once a source code file containing embedded SQL statements has been
processed by the SQL precompiler, the high-level programming language
source code file that is produced -- and any other source code files used -- must
be compiled by a high-level programming language compiler. This compiler is
responsible for converting source code files into object modules that the linker
can use to create an executable program.

When all of the source code files needed to build an application have been
compiled successfully, the resulting object module can be provided as input to
the linker. The linker combines object modules, high-level programming
language libraries, and DB2 UDB libraries to produce an executable application.
In most cases, this executable application exists as an executable file.
However, it can also exist as a shared library or a dynamic-link library (DLL) that
is loaded and executed by other executable applications

Creating and binding packages

Earlier, we saw that when a source code file containing embedded SQL
statements is processed by the SQL precompiler, a package containing data
access plans is produced, along with a source code file that is made up entirely
of high-level programming language statements. This package must reside in
an appropriate DB2 UDB database (i.e., a database that contains data objects
that are referenced by the package) before the corresponding application can
be executed against that database.

The process of storing such a package in a DB2 UDB database is known as
binding. By default, packages are automatically bound to the database being
used by the SQL precompiler during the precompile process. However, by
specifying the appropriate precompiler options, you can elect to store the steps
needed to create the package in a separate file (rather than in a database) and

http://www-136.ibm.com/developerworks/db2 DB2 Information Management Software

Page 32 of 36 Embedded SQL programming

complete the binding process at a later point in time, using a tool known as the
DB2 Binder (or simply the Binder). This is referred to as deferred binding, and is
preferable if you want to:

° Defer binding until you have an application program that compiles and links
successfully.

° Create a package under a different schema or under multiple schemas.
° Run an application against a database using different options (isolation level,

Explain on/off, etc.). By deferring the bind process, you can dynamically
change things like the isolation level used without having to rebuild the
application.

° Run an application against several different databases. By deferring the bind
process, you can build your program once and bind it to any number of
appropriate databases. Otherwise, you will have to rebuild the entire
application each time you want to run it against a new database.

° Run an application against a database that has been duplicated on several
different machines. By deferring the bind process, you can dynamically
create your application database on each machine, and then bind your
program to the newly created database (possibly as part of your application's
installation process).

DB2 Information Management Software http://www-136.ibm.com/developerworks/db2

Embedded SQL programming Page 33 of 36

Section 6. Conclusion

Summary

This tutorial introduced you to embedded SQL programming and walked you
through the basic steps used to construct an embedded SQL application. At this
point, you should know the difference between static SQL and dynamic SQL,
and you should know how both types of SQL statements can be embedded in a
high-level programming language source code file.

You should know how to declare and use host and indicator variables to move
data between an application and a database, and you should be able to analyze
the contents of an SQLCA data structure variable to determine whether an
embedded SQL statement executed as expected. Furthermore, you should
know how to establish a database connection, how to retrieve and process any
results produced, and how to terminate transactions.

Finally, you should be familiar with the steps used to convert a source code file
containing embedded SQL statements into an executable application.

Resources

For more information on DB2 Universal Database application development:

° DB2 Version 8 Administration Guide: Implementation, International Business
Machines Corporation, 2002.

° DB2 Version 8 Application Development Guide: Programming Client
Applications, International Business Machines Corporation, 2002.

° DB2 Version 8 Application Development Guide: Programming Server
Applications, International Business Machines Corporation, 2002.

° DB2 Version 8 Application Development Guide: Building and Running
Applications, International Business Machines Corporation, 2002.

° DB2 Version 8 SQL Reference Guide, Volume 1, International Business
Machines Corporation, 2002.

° DB2 Version 8 SQL Reference Guide, Volume 2, International Business
Machines Corporation, 2002.

For more information on the DB2 UDB V8.1 Family Application Development
Certification exam (Exam 703):

° DB2 Universal Database v8.1 Certification Exam 703 Study Guide, Sanders,
Roger E., International Business Machines Corporation, 2004.

° DB2 Universal Database v8 Application Development Certification Guide,
Martineau, David and others, International Business Machines Corporation,
2003.

http://www-136.ibm.com/developerworks/db2 DB2 Information Management Software

Page 34 of 36 Embedded SQL programming

° IBM DB2 Information Management -- Training and certification
(http://www.ibm.com/software/data/education//) for information on classes,
certifications available and additional resources.

As mentioned earlier, this tutorial is just one tutorial in a series of seven to help
you prepare for the DB2 UDB V8.1 Family Application Development
Certification exam (Exam 703). The complete list of all tutorials in this series is
provided below:

1. Database objects and Programming Methods
2. Data Manipulation
3. Embedded SQL Programming
4. ODBC/CLI Programming
5. Java Programming
6. Advanced Programming
7. User-Defined Routines

Before you take the certification exam (DB2 UDB V8.1 Application
Development, Exam 703) for which this tutorial was created to help you
prepare, you should have already taken and passed the DB2 V8.1 Family
Fundamentals certification exam (Exam 700). Use the DB2 V8.1 Family
Fundamentals certification prep tutorial series to prepare for that exam. A set of
six tutorials covers the following topics:

° DB2 planning
° DB2 security
° Accessing DB2 UDB data
° Working with DB2 UDB data
° Working with DB2 UDB objects
° Data concurrency

Use the DB2 V8.1 Database Administration certification prep tutorial series to
prepare for the DB2 UDB V8.1 for Linux, UNIX and Windows Database
Administration certification exam (Exam 701). A set of six tutorials covers the
following topics:

° Server management
° Data placement
° Database access
° Monitoring DB2 activity
° DB2 utilities
° Backup and recovery

Check out developerWorks Subscription for one-stop access to a
comprehensive portfolio of the latest IBM software from DB2, Lotus, Rational,
Tivoli, and WebSphere, allowing you to maximize ROI and lower your labor
costs, leading to superior productivity.

DB2 Information Management Software http://www-136.ibm.com/developerworks/db2

Embedded SQL programming Page 35 of 36

http://www.ibm.com/software/data/education//
http://www-106.ibm.com/developerworks/edu/i-dw-db2-cert7031-i.html?S_TACT=104AHW11&S_CMP=TUT
http://www-106.ibm.com/developerworks/edu/i-dw-db2-cert7032-i.html?S_TACT=104AHW11&S_CMP=TUT
http://www-106.ibm.com/developerworks/edu/i-dw-db2-cert7034-i.html?S_TACT=104AHW11&S_CMP=TUT
http://www-106.ibm.com/developerworks/edu/i-dw-db2-cert7035-i.html?S_TACT=104AHW11&S_CMP=TUT
http://www-106.ibm.com/developerworks/edu/i-dw-db2-cert7036-i.html?S_TACT=104AHW11&S_CMP=TUT
www-106.ibm.com/developerworks/db2/library/tutorials/db2cert/db2cert_V8_tut.html?S_TACT=104AHW11&S_CMP=TUT
www-106.ibm.com/developerworks/db2/library/tutorials/db2cert/db2cert_V8_tut.html?S_TACT=104AHW11&S_CMP=TUT
www-106.ibm.com/developerworks/db2/library/tutorials/db2cert/701_prep.html?S_TACT=104AHW11&S_CMP=TUT
http://www-106.ibm.com/developerworks/subscription/

Feedback

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

For more information about the Toot-O-Matic, visit
www-106.ibm.com/developerworks/xml/library/x-toot/ .

http://www-136.ibm.com/developerworks/db2 DB2 Information Management Software

Page 36 of 36 Embedded SQL programming

http://www-106.ibm.com/developerworks/xml/library/x-toot/

	Table of contents
	Before you start
	What is this tutorial about?
	Who should take this tutorial?
	About the author
	Notices and trademarks

	Introduction to embedded SQL programming
	Structured Query Language and embedded SQL
	Static SQL
	Dynamic SQL

	Constructing an embedded SQL application
	Declaring host variables
	Declaring indicator variables
	The SQLCA data structure
	The SQLDA data structure
	Establishing a database connection
	Preparing and executing SQL statements
	Retrieving and processing results
	Managing transactions
	Putting it all together

	Diagnostics and error handling
	Using the WHENEVER statement
	The Get Error Message API
	SQLSTATEs

	Creating executable applications
	The basic process
	Precompiling, compiling, and linking
	Creating and binding packages

	Conclusion
	Summary
	Resources
	Feedback

