Multi-Modular Dump Solving /'T,a

Multi-Modular Dump Solving

Multi-Modular DUMPS ... 1
INEFOTUCKION ... e 1
TheLinkage Editor REpOItcoooiiiiiii e 1
Findingthe tatement iNerrorccoiiivieiiiiiii e 2
Finding therdativeinterrupt address ... 2
Finding the modulein whichtheabend occurred 4
Finding the satement causngtheabend ...t 5

Findingthe Save AreaChain ... 7
Finding the Absolute Addressof eechnmodule 10
ENtry POINES ..ot 10
Finding the Parameters PassedtoModules 12

X I 13

Appendix A - Advanced DUMpP SoIVIiNg ... 14
TheTask Globd Table (TGT) ..ovvieiiiiiiii e 14
USNgthe TGT ..o e 15
Finding what parameters have been passed tomodules 16

Information Systems Training

Multi-Modular Dump Solving

Information Systems Training

Multi-Modular Dump Solving /'T,a

Multi-Modular Dumps

Introduction

In principle multi-modular dumps are no more difficult to solve than Sngle module dumps. Themain
difference when solving a multi-modular dump is that we mugt firgt find which module the abend
occurred in. In order to do this we need to understand a little more about the Linkage Editor
report.

The Linkage Editor Report

Thisreport gives aligt of the various modules which have been linked together to form the program
and ther rdative displacements within that program.

It isimportant to note that the ‘origin’ of the program is not dways the same as the entry point. i.e.
module 00 will not dways have a digplacement of 00 within the program.

MVS/ DFP VERSI ON 3 RELEASE 1 LI NKAGE EDI TOR 15:11: 44 TUE DEC 08, 1992
JOB DEVADTR STEP LI NK PROCEDURE STEPB

I NVOCATI ON PARAMETERS - XREF, LI ST, LET

ACTUAL SI ZE=(317440, 86016)

OUTPUT DATA SET SYS92343. T151143. RA000. DEVADTR. EXECLIB IS ON VOLUME USR008
| EWD000 | NCLUDE TESTLI B(TROMVR, TROMML)

| EWD000 ENTRY TROMML

CROSS REFERENCE TABLE

CONTROL SECTI ON ENTRY
NANVE ORI G N LENGTH NANME LOCATI ON NAVE LOCATI ON
NAME
TROMWR 00 4B2
TROMML 4B8 EDA
BPSAI OP * 1398 34
BPSOPEN 1398

ENTRY ADDRESS 4B8

TOTAL LENGTH 1CDO

** TROADC DI D NOT PREVI OQUSLY EXI ST BUT WAS ADDED AND HAS AMODE 24
** LOAD MODULE HAS RMODE 24

** AUTHORI ZATI ON CODE | S 0.

In the above example, the Entry Point (the start of the program) is TROIMM1 which begins a
displacement 4B8 within the program.

Thisis normaly because one or more of the modules within the program has been recompiled and
linked to the origind program at alater stage, i.e. after the program has been made live. The most
recently linked modules will be placed a the beginning of the program.

Information Systems Training Page 1

Multi-Modular Dump Solving

Finding the statement in error

The procedure will be:
1) Find the relative interrupt address.
2) Find the module in which the abend occurred.

3) Find the corresponding COBOL statement.

Finding the Relative Interrupt Address

There are many ways of finding the Relative Interrupt Address, the Address of the abending
ingtruction within your program. In this course we will show you the two main aternatives.

a) The easest way to use the OFFSET and ILC from the JOB LOG as for sngle modular
dumps.

15.11. 47 JOB06505 | EA9951 SYMPTOM DUMP OUTPUT
SYSTEM COMPLETI ON CODE=0C7 REASON CODE=00000007
TI ME=15. 11. 46 SEQ=44174 CPU=0000 ASI D=0038
PSW AT TI ME OF ERROR 078D1000 00006F86 ILC 6 |INTC 07
ACTI VE LOAD MODULE=TROADC ADDRESS=00006330
OFFSET=00000C56
DATA AT PSW 00006F80 - FC41D1F3 D1FEF833 9498D1F4
GPR 0-3 O00025FF8 00028E70 30026610 00026374
GPR 4-7 00026190 700070A8 O0O08CAFF8 FDO0000O
GPR 8-11 00028E70 00026310 00006894 00006B08
GPR 12-15 00006868 00025E88 7000BD14 8000BD24
END OF SYMPTOM DUMP

RELATIVE

INTERRUPT = OFFSET - ILC
ADDRESS

C50 = C56 - 6

Page 2 Information Systems Training

Multi-Modular Dump Solving /'T,a

b) The traditiond way of finding the rdative interrupt address is a little more
complex but may be useful if you want to check your result (or in somerare
cases where OFFSET is not given!).

In order to find the Relative Interrupt Address we must find the Absolute address of the
Origin of the program, the address of the start of the program:

The easiest way to look a the ADDRESSisin the SYMPTOM DUMP OUTPUT on the
Job Log (file 1).

15.11. 47 JOB06505 | EA9951 SYMPTOM DUMP OUTPUT
SYSTEM COVPLETI ON CODE=0C7 REASON CODE=00000007
Tl ME=15. 11. 46 SEQ=44174 CPU=0000 ASI D=0038
PSW AT TI ME OF ERROR 078D1000 00006F86 |ILC 6 |INTC 07
ACTI VE LOAD MODULE=TR9ADC ADDRESS=00006330
OFFSET=00000C56
DATA AT PSW 00006F80 - FC41D1F3 D1FEF833 9498D1F4
GPR 0-3 O00025FF8 00028E70 30026610 00026374
GPR 4-7 00026190 700070A8 O008CAFF8 FDO00000O
GPR 8-11 00028E70 00026310 00006894 00006B08
GPR 12-15 00006868 00025E88 7000BD14 8000BD24
END OF SYMPTOM DUMP

In this example the ADDRESS is 6330 ; this is the 'absolute origin' of the program.

In order to find the Relative Interrupt Address we now need to look up the Absolute
Interrupt Addressin the DATA AT PSW on the Symptom Dump.

The Absolute Address of the Origin is then subtracted from the Absolute Interrupt Address
to give the Rdlative Interrupt Address with the program.

RELATIVE ABSOLUTE ORIGIN
INERRUPT INTERRUPT - ADDRESS
ADDRESS ADDRESS

C50 6F80 - 6330

Information Systems Training Page 3

Multi-Modular Dump Solving

Finding the module in which the abend occurred

To do thiswe need to look at the Linkage Editor Report.

¢ MODULE MAP ***

CLASS B _TEXT LENGTH = 3828 ATTR BUTES = CAT, LOAD, RMODE= 24 ALIGN = DBLWORD

SECTION CLASS s SOURCE -------- CFFSET CFFSET NAME TYPE

LENGTH DDNAME SEQ MEMBER

0 TRLOOOLG CSECT 402 TESTLIB 01 TRLOOOLG
408 TRLO01LG CSECT 11E6 TESTLIB 01 TRLO01LG
15F0 TRL1002LG CSECT 604 TESTLIB 01 TR1002LG
1BF8 TRLOO03LG CSECT 6A2 TESTLIB 01 TRL003LG
22A0 TRL099LG CSECT 886 TESTLIB 01 TRL099LG
2B28 NMAGOCDE * CSECT 188 SYSLIB 01 MAGOCCDE

The Relative Interrupt Address can then be compared with the OFFSET or starting address of each
module within the program to find the module in which the abend occurred.

In our example the Relaive Interrupt Address is C50 and therefore the abend occurred in module
TR1001LG which starts at address 408 and has a length of 11E6. The next module starts at
address 15F0; as C50 is greater than 408 but less then 15F0 we can be sure that the abend
occurred before that module was entered.

Page 4 Information Systems Training

Multi-Modular Dump Solving /'T,a

Finding the statement causing the abend

To find this, once again we need to use the Linkage Editor Report and the Reative Interrupt
Address, as well asthe module compilation listing.

To find the statement in error we Ssmply subtract the origin or starting address of the module, from
the Relative Interrupt Address.

DISPLACEMENT RELATIVE START OF MODULE
WITHIN = INTERRUPT - (ORIGIN FROM LINK
MODULE ADDRESS EDITOR REPORT)

848 = C50 - 408

We can now find the COBOL statement in error by looking in the CONDENSED LISTING of the
appropriate module.

000185 MULTI PLY HRS-WKD BY PAY- RATE Gl VI NG Ws- WAGE.
LINE # HEXLOC VERB LINE # HEXLOC VERB
000185 000840 MULTI PLY 000187 0008A4 CALL

To determine the contents of the fields involved, we follow exactly the same procedure as we would
for a snglemodule program: we consult the Data Divison Map to find the appropriate base
locators, displacements and data types, then the VS COBOL |1 Abend information File to discover
the addresses of the base locators and findly we look up the fields in the dump.

Information Systems Training Page 5

Multi-Modular Dump Solving

Data Di vi si on Map

Sour ce Hi erarchy and Base Hex- Di spl acenent Asnblr Data
Li nel D Dat a Nane Locat or Bl k Structure Definition
Data Type

31 02 HRS-WKD BLF=0000 004 0 000 004 DS 2C
Di sp- Num

32 02 PAY-RATE. BLF=0000 006 0 000 006 DS 4C
Di sp- Num

141 02 Ws-WAGE BLW-0000 498 0 000 000 DS 4P
Packed- Dec

--- VS COBOL || ABEND I nformation ---

Contents of base locators for files are:
0- 00028E70

Contents of base |ocators for working storage are:
0- 00026310

P address of field in dump = base locator address + displacement
HRS-WKD=28E70 + 4= 28E74

PAY-RATE= 28E70 + 6= 28E76

WS-WAGE= 26310 + 498= 267A8

Page 6 Information Systems Training

Multi-Modular Dump Solving /'T,a

Looking up the addresses in the dump, we find:

00028E60 00000000 00000000 00028ECO 00050050
Foooooaoaonoononoana 43336. 8912 *
000267A0 40404040 00000000 0059994C FOF8F1F2

HRS-WKD contains 6#
PAY -RATE contains 8912
WS-WAGE contains +59994

b

Save Area Trace after first call

Program Save Area

CALLS

Subroutine Save Area

CALLS

Subroutine Save Area

CALLS

Subroutine Save Area

CALLS

Subroutine Save Area

Information Systems Training

FAF3F3F3 F67BF8F9 F1F24040 40404040

F9F20000 00000002 OFO0004F 0000OFOO
o 081292.............. *

Save Area Trace after subsequent call

Program Save Area

CALLS

Subroutine Save Area

"Fossil" Save Area

"Fossil" Save Area

"Fossil" Save Area

Page 7

Multi-Modular Dump Solving

THE SAVE AREA CHAIN

Whenever acdl is made to amodule or subroutine, the MV S operating systems sets up a portion
of memory known as the Save Area. The Save Area Chain can be found in your compile job.
This is done principaly so that the operating system knows where to return control to once the
module or subroutine has finished executing. If a subroutine or module then cdls a further
sub-module, anew save areais st up for that call. However, once control isfindly returned to the
top most module, any subsequent calsto modules will reusethe save areachain. Thiscan lead to
"fossl" save areas, as shown on the diagram below:

In this example, the first call has lead to a chain of 5 save areas being built up. The next cal,
however, only resultsin a chain of two - leaving three "foss|" save areas |eft over from the preceding
cal.

You can tdl how many save areas are currently active (i.e. not "fossils') by seeing how many are
listed at the end of the Save Area chain. Here, the operating system is attempting to re-trace its
steps back to the top most module. In the example on page 9, there are two currently active save
aress. Those a the bottom of the trace are the same as the first two in the trace but in reverse
order.

Page 8 Information Systems Training

Multi-Modular Dump Solving /'T,a

The Save Area Chain may be ussful in solving abends, particularly if the abend occurred in a
subroutine rather than the main body of your program. It will show you what was the last module
caled and the contents of the generd purpose registers (GPR) at the time of that cal. Each save
areacongsts of 18 fields, each afull word (4 bytes binary), formatted as follows:

|[WD1|HA |LSA |R14|R15|RO|R1|..|R11|R12 |
(Rnn isthe generd purpose register nn)

The HA fidld is a pointer to the save area of the Higher or calling module, and the LSA is a pointer
to the save area of the L ower or cdled module. Thus the save areas form a chain linking the various
modules together.

For example, in the save areatrace on page 9, the first save area (i.e. that set aside for the top most
program) starts at 00005FA8. It hasaHA of 00000000 - which isnormd for the first save area.
The LSA of 00025E88 points to the SA in the save area below. In turn, the HA in that,
00005FAS8, paints to the SA of the calling module.

Information Systems Training Page 9

Multi-Modular Dump Solving

SAVE AREA TRACE

TROADC WAS ENTERED VI A LI NK

SA 00005FA8 WD1 00000000 HA
FDO00008

R1 00005FF8 R2
008CAFF8

R7 FDO00000 R8
00D77CDA

TROADC WAS ENTERED VI A CALL

SA 00025E88 WD1 00108001 HA
00025FF8

R1 0002607C R2
008CAFF8

R7 FDO00000 R8
00006868

TROADC WAS ENTERED VI A CALL

SA 00005000 WD1 00000000 HA
00000008

R1 0002607C R2
008CAFF8

R7 FDO00000 R8
0002B970

BPSFI LE WAS ENTERED VI A CALL

SA 00005054 WD1 00000000 HA
00000008

R1 0002607C R2
00005000

R7 FDO00000 R8
0002B970

BPSFI LE WAS ENTERED VI A CALL

SA 00032420 WD1 00000000 HA
00000008

R1 00026088 R2
0002DEAO

R7 FDO00000 R8
4002DC56

BPSFI LE WAS ENTERED VI A CALL

SA 00032468 WD1 00000000 HA
00000008

R1 00026088 R2
0002DEAO

R7 FDO00000 R8
4002E63E

BPSFI LE WAS ENTERED VI A CALL

SA 000324B0 WD1 00000000 HA
00000008

R1 00026088 R2
0002DEAO

R7 FDO00000 R8
6002E9C8

BPSFI LE WAS ENTERED VI A CALL

SA 000324F8 WD1 00000000 HA
00000008

R1 00026088 R2
0002DEAO

R7 00033358 R8
60029BCO

BPSFI LE WAS ENTERED VI A CALL
SA 00032540 WD1 00000000 HA
00000008

PROCEEDI NG FORWARD FROM TCBFSAB

AT EP
00000000 LSA

00000040 R3

008FE010 R9

AT EP
00005FA8 LSA

00026610 R3

00028E70 R9

AT EP
00025E88 LSA

00025E88 R3

00028E70 R9

AT EP
00005000 LSA

00005054 R3

00028E70 RO

AT EP
00005054 LSA

00000000 R3

00028E70 R9

AT EP
00032420 LSA

00000000 R3

00028E70 R9

AT EP
00032468 LSA

0002EC08 R3

00028E70 R9

AT EP
000324B0 LSA

0002EC08 R3

00028E70 RO

AT EP
000324F8 LSA

TROMML. . . C2.1.3.0.12.08.92. 14. 42. 27
00025E88 RET 80FDAC10 EPA 000067E8 RO

008F69A4 R4 008F6980 R5 008F3470 R6
808FF408 R10 00000000 R11 008F3470 R12

BPSAI VR. 84. 298. BPSAI \R
00005000 RET 50007074 EPA 00007738 RO

00026374 R4 00000021 R5 700070A8 R6
00026310 R10 00006894 R11 00006B08 R12

BPSAI LK. BPSAI LK
00005054 RET 60007982 EPA 000078F8 RO

00026374 R4 00000021 R5 700070A8 R6
00026310 R10 00000008 R11 00005000 R12

BPSI NSA. 87. 043. BPSI NSA.
00032420 RET 6002BB78 EPA 0002DB58 RO

00026374 R4 0002607C R5 700070A8 R6
00026310 R10 00000008 R11 00032388 R12

BPSI NLR. 87. 043. BPSI NLR
00032468 RET 5002DCA8 EPA 0002E2BO RO

80026610 R4 00000000 R5 80026610 R6
00026310 R10 00000008 R11 00032388 R12

BPSSVM.. 86. 323. BPSSVM..
000324B0 RET 4002E670 EPA 0002E980 RO

80026610 R4 00000000 R5 80026610 R6
00026310 R10 00033470 R11 00032388 R12

BPSVRPR. 92. 260. BPSVRPR.
000324F8 RET 4002EBEE EPA 00029B78 RO

00029B78 R4 00000000 R5 00000000 R6

00026310 R10 00033470 R11 00032388 R12

BPSWRLO. 92. 260. BPSWRLO.
00032540 RET 70029DB0O EPA 00029EDO RO

00029B78 R4 0000000C R5 0000003C R6
00026310 R10 00033470 R11 00032388 R12

BPSWRPL. 92. 260. BPSWRPL.
00032588 RET 70029F56 EPA 0002B6F0 RO

Page 10

Information Systems Training

Multi-Modular Dump Solving /'T,a.-:nin

Information Systems Training Page 11

Multi-Modular Dump Solving

Finding the Absolute Address of Each Module

When using the save area trace it is useful to know the Absolute Address of the start of each
module.

Fr4 find the Origin of the program. Thisisthe vdue given in the ADDRESSfidd in file one of the
job (see page 3). To find the absolute start address, we smply add on the displacement given in the
linkage editor report.

Thus
TROMM?2 starts at 6330 + 0 = 6330
TROMM1 starts at 6330 + 4B8 = 67E8
BPSAIOP dtarts at 6330 + 1398 = 76C8
BPSAIOL dartsat 6330 + 13D0 = 7700
BPSAIWR darts at 6330 + 1408 = 7737

The three modules beginning BPS... are the actud external names of the BPS subroutines. The
subroutine names that we are more familiar with are given in the linkage editor report to the right and
below the externd names; thus, BPSAIWR actudly refers to the subroutine we cal BPSWRITE.
Entry Points

The EPA fidd contains the Entry Point Address of the module. By working out these addresses,
the modules last called can be traced. In our example save areatrace, the first two EPAs are:

EPA 67E8 whichisthe gart of module TROMM1
EPA 7738 whichisthe gart of the BPSWRITE module

Therefore, the last call made by program TROMM1 was to BPSWRITE. This method could be
used to find the module which caled a subroutine in which an abend has occurred.

To find the module in which the abend occurred, you will need to use the WDL fidd in the save
area

1) Find the save area chain and go to the bottom of it.

2) Working your way up the chain, search for the string 00108001 in the WD1
fidd.

3) When you have found the string, look at the save area following the block
that containsthe string 00108001. Look at the EPA field in that block -
it will be the entry point of the module in which the abend occurred.

Page 12 Information Systems Training

Multi-Modular Dump Solving /'T,a

Using our example save area, we can see that the last but one save area contains the string
00108001. The EPA field in the following block contains the value 000067E8, which corresponds
with the entry address of module TROMM 1, therefore, the abend occurred in that module.

Return Addresses

This can be used to find the statement following the cdl to an abending subroutine/module.

The RET fidd indicates the return address within the higher or caling module. However, only the
last three bytes of thefidd are Sgnificant. To find the Relaive Return Address within the module
al you need to do isto subtract the EPA of the higher module from the RET of the lower module.
This address can then be looked up in the Condensed Verb Ligting.

From our example:

BPSWRITE RET

50007074 b discardfirstbyte = 007074

TROMM1 EPA = 000067ES8
Return Address = 7074 - 67E8 = 88C (inTROMM1)

000230 000810 MOVE 000232 00083A ADD 000196 000862
CALL
000198 000896 SET 000200 0008A8 PERFORM 000244 0008A8
READ

000196 CALL ' BPSWRITE' USING COl N-REP, SPACE2,
REP- DETAI L- LI NE.

000197

000198 SET MONEY- | NDEX COI N- | NDEX TOTAL- | NDEX TO BASE- | NDEX.

We can see from the compiler listing that this return address fdls just after a cal to BPSWRITE -
just as we deduced from the linkage editor listing and the save area trace.

Information Systems Training Page 13

Multi-Modular Dump Solving

Finding Parameters Passed to Modules

It is often useful to find the values in the variables passed as parameters between program modules.
There are saverd ways of doing this but if you have acompiler listing and aVS COBOL 11 abend
information file (ddname SY SABOUT) the smplest method is asfollows:

The field we want to look up is B-WAGE. From the module compilation listing:

000049 LI NKAGE SECTI ON.

000050 M *

000051 01 B-TABLE.

000052 05 B- QUANTI TY PI C 999 OCCURS 11 TI MES

000053 | NDEXED BY B- | NDEX.

000054

000055 01 B-WAGE PI C S9999Vv99 COWP-3 VALUE +0.

From the condensed verb listing:

55 01 B-WAGE. BLL=0002 000 DS 4P
Packed- Dec

From the COBOL |l abend information file:

Contents of base locators for the |linkage section are:
0- 00000000 1- 00006330 2- 00005FFE

this field can be found in the dump at address SFFE (base locator + displacement):

0O0005FEO0 808F32A0 00000000 008F3470 00D77CDA 00000000 00000000 8000S5FFE 00000000
00006000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000

B-WA GE contains x00000000

This method will not work if your program has abended within a subroutine which you do not have a
compilation listing for (eg. a BPS routine). Such occasons are fortunately rare - subroutines are
generdly written such that they do NOT abend! In such dtuations, we can exploit a feature of
COBOL - that a subroutine using parameters uses the same area of memory to store the values as
the caling program. Hence, if you look up the parameters in the storage area of the calling program,
you will be able to see the contents of the parameters used in the subroutine.

*%*7% Note: thismethod will NOT work if the BY CONTENT clause is specified on the
CALL gatement which invokes the subroutine.

Page 14 Information Systems Training

Multi-Modular Dump Solving /'T,a

EXERCISE

Import MMDUMP1 and MMDUMP2 from DEV @@TR.TEST.SORCLBN, and submit both
jobs. They will produce a multi-modular dump which you can then solve,

. What module did the program abend in?

o At what relative offset within that module did the abend occur?
. On which line did the abend occur?

o What was the cause of the abend?

Show your results to your tutor including an explanation of why the abend occurred.

Information Systems Training Page 15

Multi-Modular Dump Solving

APPENDIX A - ADVANCED DUMP SOLVING

The methods outlined above will be sufficient for solving al but the most complicated storage
dumps. What follows is intended to act as additiond information for the very keen! For more
information, please consult the IBM Application Programming Debugging guide, SC26-4049.

The Task Global Table (TGT)

The TGT contains information about the program that was running et the time of the abend. It
keeps track of information pertinent to the program, such as.

. the location of the register save area
. the location and length of working storage
. pointers to the location of FCBs (File Control Blocks).

The TGT can be found in one of two ways.
o from the SY SABOUT file
o from the Save Area Trace,
The TGT garts with the program save areg, the location of the TGT will be the same as the value

given in the SA fidd of the save areablock of the module in which the program abended (see page
10 for a description of how to find the abending module). So, for example:

- VS COBOL || ABEND I|nformation ---
Program = ' TROMML' conpil ed on '12/08/92' at '14:42:27
TGT = ' 00025E88

| NTERRUPT AT 00006F86
PROCEEDI NG BACK VI A REG 13
TROADC WAS ENTERED VI A CALL AT EP BPSAI WR. 84. 298. BPSAI \R
SA 00025E88 WD1 00108001 HSA O00005FA8 LSA 00005000 RET 50007074 EPA 00007738 RO
00025FF8
R1 0002607C R2 00026610 R3 00026374 R4 00000021 R5 700070A8 R6

008CAFF8

R7 FDO0O0000 R8 00028E70 R9 00026310 R10 00006894 R11 00006B08 R12
00006868
TROADC WAS ENTERED VI A LI NK AT EP TROMML. .. C2.1.3.0.12.08.92. 14. 42. 27

SA 00005FA8 WD1 00000000 HSA 00000000 LSA 00025E88 RET 80FDAC10 EPA 000067E8 RO
FDO00008

R1 00005FF8 R2 00000040 R3 008F69A4 R4 008F6980 R5 O008F3470 R6
008CAFF8

R7 FDO0O0O000 R8 O0O08FE010 R9 808FF408 R10 00000000 R11 008F3470 R12
00D77CDA

Page 16 Information Systems Training

Multi-Modular Dump Solving /'T,a

You can identify aVS COBOL Il TGT because it starts with the string "00108001" and contains
the text "C2TGT+48" at offsat x48 from the sart of the TGT.

Information Systems Training Page 17

Multi-Modular Dump Solving

The figure below containsthe start of a TGT:

00025E80 00026030 00025E30 00108001 OOOO5FA8 00000000 00000000 00000000 00000000
* *

00025EA0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
* *

00025ECO 00000000 00000000 00000000 00000000 C3F2E3C7 E34EF4F8 02000000 61100220
e C2TGT. 48........ *

Using the TGT

There are anumber of usesto which the information in the TGT can be put; however, these notes
will concentrate on just one - the File Control Blocks (FCBs) associated with a program. The FCB
is the control block that VS COBOL |1 usesto control a dataset or file. In the FCB, you can find
information on how the file was opened or closed, a pointer to the File Information Block (FIB) and
information on the progress of the /O processing on afile,
The TGT contans

. at offset x64, the number of FCBs associated with the program.

. at offset x110, a pointer to the address of the FCB pointer.
If we use the TGT described on page 14 as an example:

= the number of the FCBs may be found at location 25E88 + 64 = 25EEC

= the FCB pointer will start at location 25E88 + 110 = 25F98.

00025EE0 00025CC8 000052E4 000260E8 00000001 000004C8 00000000 00000000 00009020
FooolthoolUhooYooooonoc nhanoobonoacs *

00025F80 00006969 00000000 000067E8 000068BO 00026010 00006890 00026064 00026310
o Yoo *

Hence, we can seethat there is 1 FCB associated with this program and it's location is pointed to
by the four bytes beginning at address 26064 in the dump.

00026060 00000000 00026190 CO000000 00000000 00000000 000262A8 00026700 0008912F

If there were any more FCBs associated with this program, they would be pointed to by the next
four bytes of the pointer list (i.e. location 26068).

Page 18 Information Systems Training

Multi-Modular Dump Solving /'T,a

Going to location 26190, we find the FCBID fidd. Thefirst three bytes are the letters "FCB", the
next two the FCB number and the next byte after that the FCB level number.

00026180 00026290 00026100 00026A0 00026110 C6C3C200 01020000 FFFFFFFF FFFFFFFF

Hence thisis FCB number 0001 and the level number is 02.

For more information concerning the TGT and FCBS, refer to the IBM VS COBOL |1 manud,
Application Programming Debugging (SC26-4049).

Finding What Parameters have been Passed to Modules

On page 12, we looked at two ways of determining what parameters had been passed between
programs. However, both rely on you having a compilation listing of the abending module. Thisis
not dwaysthe casel Thisthird method will work without the aid of a compilation ligting.

The method involves using the Save Area Trace:

(1) firdly, go to the bottom of the trace. Register 1 (R1) pointsto list of addresses of
the parameters being passed to the called module.

0 Go to the address shown in R1 inthe save area. Thiswill contain aligt of
addresses. These addresses correspond to the location of the parameters passed
between the subroutine and the caling module. For example:

0000A 788 000093D8 8000A 768

Note that the third address has got itsfirst bit set on, i.e. it beginswith '80', this
indicatesthat it is the last parameter passed.

(3) The three addresses:
A788 93D8 A768

can now be looked up in the dump to find their current values.

Information Systems Training Page 19

	Multi-Modular Dumps
	Finding the Statement in Error
	Finding the Module in which the Abend occured
	The Save Area Chain
	Finding the Absolute Address of Each Module
	Finding the Parameters Passed to Modules
	Exercise
	Appendix A - Advanced Dump Solving
	Using the TGT

