
Multi-Modular Dump Solving

Multi-Modular Dumps . 1
Introduction . 1
The Linkage Editor Report . 1
Finding the statement in error . 2
Finding the relative interrupt address . 2
Finding the module in which the abend occurred . 4
Finding the statement causing the abend . 5

Finding the Save Area Chain . 7
Finding the Absolute Address of each module . 10
Entry Points . 10
Finding the Parameters Passed to Modules . 12

Exercise . 13

Appendix A - Advanced Dump Solving . 14
The Task Global Table (TGT) . 14
Using the TGT . 15
Finding what parameters have been passed to modules 16

Multi-Modular Dump Solving

Information Systems Training

I S

Training

Multi-Modular Dump Solving

Information Systems Training

IS

Training

Multi-Modular Dumps

Introduction

In principle multi-modular dumps are no more difficult to solve than single module dumps. The main
difference when solving a multi-modular dump is that we must first find which module the abend
occurred in. In order to do this we need to understand a little more about the Linkage Editor
report.

The Linkage Editor Report

This report gives a list of the various modules which have been linked together to form the program
and their relative displacements within that program.

It is important to note that the 'origin' of the program is not always the same as the entry point. i.e.
module 00 will not always have a displacement of 00 within the program.

MVS/DFP VERSION 3 RELEASE 1 LINKAGE EDITOR 15:11:44 TUE DEC 08, 1992
 JOB DEVADTR STEP LINK PROCEDURE STEPB
 INVOCATION PARAMETERS - XREF,LIST,LET
 ACTUAL SIZE=(317440,86016)
 OUTPUT DATA SET SYS92343.T151143.RA000.DEVADTR.EXECLIB IS ON VOLUME USR008
IEW0000 INCLUDE TESTLIB(TR9MM2,TR9MM1)
IEW0000 ENTRY TR9MM1

 CROSS REFERENCE TABLE

 CONTROL SECTION ENTRY
 NAME ORIGIN LENGTH NAME LOCATION NAME LOCATION
 NAME
 TR9MM2 00 4B2
 TR9MM1 4B8 EDA
 BPSAIOP * 1398 34
 BPSOPEN 1398
 ...

 ENTRY ADDRESS 4B8
 TOTAL LENGTH 1CD0
 ** TR9ADC DID NOT PREVIOUSLY EXIST BUT WAS ADDED AND HAS AMODE 24
 ** LOAD MODULE HAS RMODE 24
 ** AUTHORIZATION CODE IS 0.

In the above example, the Entry Point (the start of the program) is TR9MM1 which begins at
displacement 4B8 within the program.

This is normally because one or more of the modules within the program has been recompiled and
linked to the original program at a later stage, i.e. after the program has been made live. The most
recently linked modules will be placed at the beginning of the program.

Multi-Modular Dump Solving

Information Systems Training Page 1

I S

Training

Finding the statement in error

The procedure will be :

1) Find the relative interrupt address.

2) Find the module in which the abend occurred.

3) Find the corresponding COBOL statement.

Finding the Relative Interrupt Address

There are many ways of finding the Relative Interrupt Address, the Address of the abending
instruction within your program. In this course we will show you the two main alternatives.

a) The easiest way to use the OFFSET and ILC from the JOB LOG as for single modular
dumps.

15.11.47 JOB06505 IEA995I SYMPTOM DUMP OUTPUT
 SYSTEM COMPLETION CODE=0C7 REASON CODE=00000007
 TIME=15.11.46 SEQ=44174 CPU=0000 ASID=0038
 PSW AT TIME OF ERROR 078D1000 00006F86 ILC 6 INTC 07
 ACTIVE LOAD MODULE=TR9ADC ADDRESS=00006330
OFFSET=00000C56
 DATA AT PSW 00006F80 - FC41D1F3 D1FEF833 9498D1F4
 GPR 0-3 00025FF8 00028E70 30026610 00026374
 GPR 4-7 00026190 700070A8 008CAFF8 FD000000
 GPR 8-11 00028E70 00026310 00006894 00006B08
 GPR 12-15 00006868 00025E88 7000BD14 8000BD24
 END OF SYMPTOM DUMP

RELATIVE
INTERRUPT = OFFSET - ILC
ADDRESS

C50 = C56 - 6

Multi-Modular Dump Solving

Page 2 Information Systems Training

IS

Training

b) The traditional way of finding the relative interrupt address is a little more
complex but may be useful if you want to check your result (or in some rare
cases where OFFSET is not given!).

In order to find the Relative Interrupt Address we must find the Absolute address of the
Origin of the program, the address of the start of the program:

The easiest way to look at the ADDRESS is in the SYMPTOM DUMP OUTPUT on the
Job Log (file 1).

15.11.47 JOB06505 IEA995I SYMPTOM DUMP OUTPUT
 SYSTEM COMPLETION CODE=0C7 REASON CODE=00000007
 TIME=15.11.46 SEQ=44174 CPU=0000 ASID=0038
 PSW AT TIME OF ERROR 078D1000 00006F86 ILC 6 INTC 07
 ACTIVE LOAD MODULE=TR9ADC ADDRESS=00006330
OFFSET=00000C56
 DATA AT PSW 00006F80 - FC41D1F3 D1FEF833 9498D1F4
 GPR 0-3 00025FF8 00028E70 30026610 00026374
 GPR 4-7 00026190 700070A8 008CAFF8 FD000000
 GPR 8-11 00028E70 00026310 00006894 00006B08
 GPR 12-15 00006868 00025E88 7000BD14 8000BD24
 END OF SYMPTOM DUMP

In this example the ADDRESS is 6330 ; this is the 'absolute origin' of the program.

In order to find the Relative Interrupt Address we now need to look up the Absolute
Interrupt Address in the DATA AT PSW on the Symptom Dump.

The Absolute Address of the Origin is then subtracted from the Absolute Interrupt Address
to give the Relative Interrupt Address with the program.

RELATIVE ABSOLUTE ORIGIN

INERRUPT = INTERRUPT - ADDRESS

ADDRESS ADDRESS

C50 = 6F80 - 6330

Multi-Modular Dump Solving

Information Systems Training Page 3

I S

Training

Finding the module in which the abend occurred

To do this we need to look at the Linkage Editor Report.

 *** M O D U L E M A P ***

 CLASS B_TEXT LENGTH = 3828 ATTRIBUTES = CAT, LOAD, RMODE= 24 ALIGN = DBLWORD

SECTION CLASS ------- SOURCE -------- OFFSET OFFSET NAME TYPE

 LENGTH DDNAME SEQ MEMBER
 0 TR1000LG CSECT 402 TESTLIB 01 TR1000LG

 408 TR1001LG CSECT 11E6 TESTLIB 01 TR1001LG

 15F0 TR1002LG CSECT 604 TESTLIB 01 TR1002LG

 1BF8 TR1003LG CSECT 6A2 TESTLIB 01 TR1003LG

 22A0 TR1099LG CSECT 886 TESTLIB 01 TR1099LG

 2B28 MAGCODE * CSECT 188 SYSLIB 01 MAGCODE

..............

The Relative Interrupt Address can then be compared with the OFFSET or starting address of each
module within the program to find the module in which the abend occurred.

In our example the Relative Interrupt Address is C50 and therefore the abend occurred in module
TR1001LG which starts at address 408 and has a length of 11E6. The next module starts at
address 15F0; as C50 is greater than 408 but less then 15F0 we can be sure that the abend
occurred before that module was entered.

Multi-Modular Dump Solving

Page 4 Information Systems Training

IS

Training

Finding the statement causing the abend

To find this, once again we need to use the Linkage Editor Report and the Relative Interrupt
Address, as well as the module compilation listing.

To find the statement in error we simply subtract the origin or starting address of the module, from
the Relative Interrupt Address.

DISPLACEMENT RELATIVE START OF MODULE

WITHIN = INTERRUPT - (ORIGIN FROM LINK

MODULE ADDRESS EDITOR REPORT)

848 = C50 - 408

We can now find the COBOL statement in error by looking in the CONDENSED LISTING of the
appropriate module.

 000185 MULTIPLY HRS-WKD BY PAY-RATE GIVING WS-WAGE.

LINE # HEXLOC VERB LINE # HEXLOC VERB
000185 000840 MULTIPLY 000187 0008A4 CALL

To determine the contents of the fields involved, we follow exactly the same procedure as we would
for a single-module program: we consult the Data Division Map to find the appropriate base
locators, displacements and data types, then the VS COBOL II Abend information File to discover
the addresses of the base locators and finally we look up the fields in the dump.

Multi-Modular Dump Solving

Information Systems Training Page 5

I S

Training

Data Division Map
Source Hierarchy and Base Hex-Displacement Asmblr Data
LineID Data Name Locator Blk Structure Definition
Data Type
 31 02 HRS-WKD BLF=0000 004 0 000 004 DS 2C
Disp-Num
 32 02 PAY-RATE. BLF=0000 006 0 000 006 DS 4C
Disp-Num
 141 02 WS-WAGE BLW=0000 498 0 000 000 DS 4P
Packed-Dec

--- VS COBOL II ABEND Information ---
Contents of base locators for files are:
 0-00028E70
Contents of base locators for working storage are:
 0-00026310

⇒ address of field in dump = base locator address + displacement
HRS-WKD= 28E70 + 4= 28E74
PAY-RATE= 28E70 + 6= 28E76
WS-WAGE= 26310 + 498= 267A8

Multi-Modular Dump Solving

Page 6 Information Systems Training

IS

Training

Looking up the addresses in the dump, we find:

00028E60 00000000 00000000 00028EC0 00050050 F4F3F3F3 F67BF8F9 F1F24040 40404040
*................43336.8912 *
000267A0 40404040 00000000 0059994C F0F8F1F2 F9F20000 00000002 0F00004F 00000F00

* 081292..............*

HRS-WKD contains 6#
PAY-RATE contains 8912
WS-WAGE contains +59994

⇒ the abend was caused by invalid data in the HRS-WKD field.

Multi-Modular Dump Solving

Information Systems Training Page 7

I S

Training

Program Save Area

CALLS

Subroutine Save Area

CALLS

CALLS

CALLS

CALLS

Program Save Area

Subroutine Save Area

Subroutine Save Area

Subroutine Save Area

Subroutine Save Area

"Fossil" Save Area

"Fossil" Save Area

"Fossil" Save Area

Save Area Trace after first call Save Area Trace after subsequent call

THE SAVE AREA CHAIN

Whenever a call is made to a module or subroutine, the MVS operating systems sets up a portion
of memory known as the Save Area. The Save Area Chain can be found in your compile job.
This is done principally so that the operating system knows where to return control to once the
module or subroutine has finished executing. If a subroutine or module then calls a further
sub-module, a new save area is set up for that call. However, once control is finally returned to the
top most module, any subsequent calls to modules will reuse the save area chain. This can lead to
"fossil" save areas, as shown on the diagram below:

In this example, the first call has lead to a chain of 5 save areas being built up. The next call,
however, only results in a chain of two - leaving three "fossil" save areas left over from the preceding
call.

You can tell how many save areas are currently active (i.e. not "fossils") by seeing how many are
listed at the end of the Save Area chain. Here, the operating system is attempting to re-trace its
steps back to the top most module. In the example on page 9, there are two currently active save
areas. Those at the bottom of the trace are the same as the first two in the trace but in reverse
order.

Multi-Modular Dump Solving

Page 8 Information Systems Training

IS

Training

The Save Area Chain may be useful in solving abends, particularly if the abend occurred in a
subroutine rather than the main body of your program. It will show you what was the last module
called and the contents of the general purpose registers (GPR) at the time of that call. Each save
area consists of 18 fields, each a full word (4 bytes binary), formatted as follows:

| WD1 | HA | LSA | R14 | R15 | R0 | R1| .. | R11 | R12 |

(Rnn is the general purpose register nn)

The HA field is a pointer to the save area of the Higher or calling module, and the LSA is a pointer
to the save area of the Lower or called module. Thus the save areas form a chain linking the various
modules together.

For example, in the save area trace on page 9, the first save area (i.e. that set aside for the top most
program) starts at 00005FA8. It has a HA of 00000000 - which is normal for the first save area.
The LSA of 00025E88 points to the SA in the save area below. In turn, the HA in that,
00005FA8, points to the SA of the calling module.

Multi-Modular Dump Solving

Information Systems Training Page 9

I S

Training

SAVE AREA TRACE
PROCEEDING FORWARD FROM TCBFSAB
TR9ADC WAS ENTERED VIA LINK AT EP TR9MM1...C2.1.3.0.12.08.92.14.42.27
SA 00005FA8 WD1 00000000 HA 00000000 LSA 00025E88 RET 80FDAC10 EPA 000067E8 R0
FD000008
 R1 00005FF8 R2 00000040 R3 008F69A4 R4 008F6980 R5 008F3470 R6
008CAFF8
 R7 FD000000 R8 008FE010 R9 808FF408 R10 00000000 R11 008F3470 R12
00D77CDA
TR9ADC WAS ENTERED VIA CALL AT EP BPSAIWR.84.298.BPSAIWR.
SA 00025E88 WD1 00108001 HA 00005FA8 LSA 00005000 RET 50007074 EPA 00007738 R0
00025FF8
 R1 0002607C R2 00026610 R3 00026374 R4 00000021 R5 700070A8 R6
008CAFF8
 R7 FD000000 R8 00028E70 R9 00026310 R10 00006894 R11 00006B08 R12
00006868
TR9ADC WAS ENTERED VIA CALL AT EP BPSAILK.......BPSAILK
SA 00005000 WD1 00000000 HA 00025E88 LSA 00005054 RET 60007982 EPA 000078F8 R0
00000008
 R1 0002607C R2 00025E88 R3 00026374 R4 00000021 R5 700070A8 R6
008CAFF8
 R7 FD000000 R8 00028E70 R9 00026310 R10 00000008 R11 00005000 R12
0002B970
BPSFILE WAS ENTERED VIA CALL AT EP BPSINSA.87.043.BPSINSA.
SA 00005054 WD1 00000000 HA 00005000 LSA 00032420 RET 6002BB78 EPA 0002DB58 R0
00000008
 R1 0002607C R2 00005054 R3 00026374 R4 0002607C R5 700070A8 R6
00005000
 R7 FD000000 R8 00028E70 R9 00026310 R10 00000008 R11 00032388 R12
0002B970
BPSFILE WAS ENTERED VIA CALL AT EP BPSINLR.87.043.BPSINLR.
SA 00032420 WD1 00000000 HA 00005054 LSA 00032468 RET 5002DCA8 EPA 0002E2B0 R0
00000008
 R1 00026088 R2 00000000 R3 80026610 R4 00000000 R5 80026610 R6
0002DEA0
 R7 FD000000 R8 00028E70 R9 00026310 R10 00000008 R11 00032388 R12
4002DC56
BPSFILE WAS ENTERED VIA CALL AT EP BPSSVML.86.323.BPSSVML.
SA 00032468 WD1 00000000 HA 00032420 LSA 000324B0 RET 4002E670 EPA 0002E980 R0
00000008
 R1 00026088 R2 00000000 R3 80026610 R4 00000000 R5 80026610 R6
0002DEA0
 R7 FD000000 R8 00028E70 R9 00026310 R10 00033470 R11 00032388 R12
4002E63E
BPSFILE WAS ENTERED VIA CALL AT EP BPSWRPR.92.260.BPSWRPR.
SA 000324B0 WD1 00000000 HA 00032468 LSA 000324F8 RET 4002EBEE EPA 00029B78 R0
00000008
 R1 00026088 R2 0002EC08 R3 00029B78 R4 00000000 R5 00000000 R6
0002DEA0
 R7 FD000000 R8 00028E70 R9 00026310 R10 00033470 R11 00032388 R12
6002E9C8
BPSFILE WAS ENTERED VIA CALL AT EP BPSWRLO.92.260.BPSWRLO.
SA 000324F8 WD1 00000000 HA 000324B0 LSA 00032540 RET 70029DB0 EPA 00029ED0 R0
00000008
 R1 00026088 R2 0002EC08 R3 00029B78 R4 0000000C R5 0000003C R6
0002DEA0
 R7 00033358 R8 00028E70 R9 00026310 R10 00033470 R11 00032388 R12
60029BC0
BPSFILE WAS ENTERED VIA CALL AT EP BPSWRPL.92.260.BPSWRPL.
SA 00032540 WD1 00000000 HA 000324F8 LSA 00032588 RET 70029F56 EPA 0002B6F0 R0
00000008

Multi-Modular Dump Solving

Page 10 Information Systems Training

IS

Training

Multi-Modular Dump Solving

Information Systems Training Page 11

I S

Training

Finding the Absolute Address of Each Module

When using the save area trace it is useful to know the Absolute Address of the start of each
module.

First find the Origin of the program. This is the value given in the ADDRESS field in file one of the
job (see page 3). To find the absolute start address, we simply add on the displacement given in the
linkage editor report.

Thus:
TR9MM2 starts at 6330 + 0 = 6330

TR9MM1 starts at 6330 + 4B8 = 67E8

BPSAIOP starts at 6330 + 1398 = 76C8

BPSAIOL starts at 6330 + 13D0 = 7700

BPSAIWR starts at 6330 + 1408 = 7737

The three modules beginning BPS... are the actual external names of the BPS subroutines. The
subroutine names that we are more familiar with are given in the linkage editor report to the right and
below the external names; thus, BPSAIWR actually refers to the subroutine we call BPSWRITE.

Entry Points

The EPA field contains the Entry Point Address of the module. By working out these addresses,
the modules last called can be traced. In our example save area trace, the first two EPAs are:

EPA 67E8 which is the start of module TR9MM1
EPA 7738 which is the start of the BPSWRITE module

Therefore, the last call made by program TR9MM1 was to BPSWRITE. This method could be
used to find the module which called a subroutine in which an abend has occurred.

To find the module in which the abend occurred, you will need to use the WD1 field in the save
area:

1) Find the save area chain and go to the bottom of it.

2) Working your way up the chain, search for the string 00108001 in the WD1
field.

3) When you have found the string, look at the save area following the block
that contains the string 00108001. Look at the EPA field in that block -
it will be the entry point of the module in which the abend occurred.

Multi-Modular Dump Solving

Page 12 Information Systems Training

IS

Training

Using our example save area, we can see that the last but one save area contains the string
00108001. The EPA field in the following block contains the value 000067E8, which corresponds
with the entry address of module TR9MM1; therefore, the abend occurred in that module.

Return Addresses

This can be used to find the statement following the call to an abending subroutine/module.

The RET field indicates the return address within the higher or calling module. However, only the
last three bytes of the field are significant. To find the Relative Return Address within the module
all you need to do is to subtract the EPA of the higher module from the RET of the lower module.
This address can then be looked up in the Condensed Verb Listing.

From our example:

BPSWRITE RET = 50007074 ⇒ discard first byte = 007074

TR9MM1 EPA = 000067E8

 Return Address = 7074 - 67E8 = 88C (in TR9MM1)

000230 000810 MOVE 000232 00083A ADD 000196 000862
CALL
000198 000896 SET 000200 0008A8 PERFORM 000244 0008A8
READ
 000196 CALL 'BPSWRITE' USING COIN-REP, SPACE2,
REP-DETAIL-LINE.
 000197
 000198 SET MONEY-INDEX COIN-INDEX TOTAL-INDEX TO BASE-INDEX.

We can see from the compiler listing that this return address falls just after a call to BPSWRITE -
just as we deduced from the linkage editor listing and the save area trace.

Multi-Modular Dump Solving

Information Systems Training Page 13

I S

Training

Finding Parameters Passed to Modules

It is often useful to find the values in the variables passed as parameters between program modules.
There are several ways of doing this but if you have a compiler listing and a VS COBOL II abend
information file (ddname SYSABOUT) the simplest method is as follows:

The field we want to look up is B-WAGE. From the module compilation listing:

 000049 LINKAGE SECTION.
 000050 *----------------*
 000051 01 B-TABLE.
 000052 05 B-QUANTITY PIC 999 OCCURS 11 TIMES
 000053 INDEXED BY B-INDEX.
 000054
 000055 01 B-WAGE PIC S9999V99 COMP-3 VALUE +0.

From the condensed verb listing:

 55 01 B-WAGE. BLL=0002 000 DS 4P
Packed-Dec

From the COBOL II abend information file:

Contents of base locators for the linkage section are:
 0-00000000 1-00006330 2-00005FFE

 this field can be found in the dump at address 5FFE (base locator + displacement):

00005FE0 808F32A0 00000000 008F3470 00D77CDA 00000000 00000000 80005FFE 00000000
 00006000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000

B-WAGE contains x00000000

This method will not work if your program has abended within a subroutine which you do not have a
compilation listing for (e.g. a BPS routine). Such occasions are fortunately rare - subroutines are
generally written such that they do NOT abend! In such situations, we can exploit a feature of
COBOL - that a subroutine using parameters uses the same area of memory to store the values as
the calling program. Hence, if you look up the parameters in the storage area of the calling program,
you will be able to see the contents of the parameters used in the subroutine.

OOO Note: this method will NOT work if the BY CONTENT clause is specified on the
CALL statement which invokes the subroutine.

Multi-Modular Dump Solving

Page 14 Information Systems Training

IS

Training

EXERCISE

Import MMDUMP1 and MMDUMP2 from DEV@@TR.TEST.SORCLBN, and submit both
jobs. They will produce a multi-modular dump which you can then solve.

What module did the program abend in?

At what relative offset within that module did the abend occur?

On which line did the abend occur?

What was the cause of the abend?

Show your results to your tutor including an explanation of why the abend occurred.

Multi-Modular Dump Solving

Information Systems Training Page 15

I S

Training

APPENDIX A - ADVANCED DUMP SOLVING

The methods outlined above will be sufficient for solving all but the most complicated storage
dumps. What follows is intended to act as additional information for the very keen! For more
information, please consult the IBM Application Programming Debugging guide, SC26-4049.

The Task Global Table (TGT)

The TGT contains information about the program that was running at the time of the abend. It
keeps track of information pertinent to the program, such as:

the location of the register save area

the location and length of working storage

pointers to the location of FCBs (File Control Blocks).

The TGT can be found in one of two ways:

from the SYSABOUT file

from the Save Area Trace.

The TGT starts with the program save area, the location of the TGT will be the same as the value
given in the SA field of the save area block of the module in which the program abended (see page
10 for a description of how to find the abending module). So, for example:

--- VS COBOL II ABEND Information ---
Program = 'TR9MM1' compiled on '12/08/92' at '14:42:27'
 TGT = '00025E88'

INTERRUPT AT 00006F86
PROCEEDING BACK VIA REG 13
TR9ADC WAS ENTERED VIA CALL AT EP BPSAIWR.84.298.BPSAIWR.
SA 00025E88 WD1 00108001 HSA 00005FA8 LSA 00005000 RET 50007074 EPA 00007738 R0
00025FF8
 R1 0002607C R2 00026610 R3 00026374 R4 00000021 R5 700070A8 R6
008CAFF8
 R7 FD000000 R8 00028E70 R9 00026310 R10 00006894 R11 00006B08 R12
00006868
TR9ADC WAS ENTERED VIA LINK AT EP TR9MM1...C2.1.3.0.12.08.92.14.42.27
SA 00005FA8 WD1 00000000 HSA 00000000 LSA 00025E88 RET 80FDAC10 EPA 000067E8 R0
FD000008
 R1 00005FF8 R2 00000040 R3 008F69A4 R4 008F6980 R5 008F3470 R6
008CAFF8
 R7 FD000000 R8 008FE010 R9 808FF408 R10 00000000 R11 008F3470 R12
00D77CDA

Multi-Modular Dump Solving

Page 16 Information Systems Training

IS

Training

You can identify a VS COBOL II TGT because it starts with the string "00108001" and contains
the text "C2TGT+48" at offset x48 from the start of the TGT.

Multi-Modular Dump Solving

Information Systems Training Page 17

I S

Training

The figure below contains the start of a TGT:

00025E80 00026030 00025E30 00108001 00005FA8 00000000 00000000 00000000 00000000

00025EA0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00025EC0 00000000 00000000 00000000 00000000 C3F2E3C7 E34EF4F8 02000000 61100220
 C2TGT.48........

Using the TGT

There are a number of uses to which the information in the TGT can be put; however, these notes
will concentrate on just one - the File Control Blocks (FCBs) associated with a program. The FCB
is the control block that VS COBOL II uses to control a dataset or file. In the FCB, you can find
information on how the file was opened or closed, a pointer to the File Information Block (FIB) and
information on the progress of the I/O processing on a file.

The TGT contains:

at offset x64, the number of FCBs associated with the program.

at offset x110, a pointer to the address of the FCB pointer.

If we use the TGT described on page 14 as an example:

+ the number of the FCBs may be found at location 25E88 + 64 = 25EEC

+ the FCB pointer will start at location 25E88 + 110 = 25F98.

00025EE0 00025CC8 000052E4 000260E8 00000001 000004C8 00000000 00000000 00009020
 ...H...U...Y.......H............
00025F80 00006969 00000000 000067E8 000068B0 00026010 00006890 00026064 00026310
 Y....................

Hence, we can see that there is 1 FCB associated with this program and it's location is pointed to
by the four bytes beginning at address 26064 in the dump.

00026060 00000000 00026190 C0000000 00000000 00000000 000262A8 00026700 0008912F

If there were any more FCBs associated with this program, they would be pointed to by the next
four bytes of the pointer list (i.e. location 26068).

Multi-Modular Dump Solving

Page 18 Information Systems Training

IS

Training

Going to location 26190, we find the FCBID field. The first three bytes are the letters "FCB", the
next two the FCB number and the next byte after that the FCB level number.

00026180 00026290 00026100 00026A0 00026110 C6C3C200 01020000 FFFFFFFF FFFFFFFF

Hence this is FCB number 0001 and the level number is 02.

For more information concerning the TGT and FCBs, refer to the IBM VS COBOL II manual,
Application Programming Debugging (SC26-4049).

Finding What Parameters have been Passed to Modules

On page 12, we looked at two ways of determining what parameters had been passed between
programs. However, both rely on you having a compilation listing of the abending module. This is
not always the case! This third method will work without the aid of a compilation listing.

The method involves using the Save Area Trace:

Ê firstly, go to the bottom of the trace. Register 1 (R1) points to list of addresses of
the parameters being passed to the called module.

Ë Go to the address shown in R1 in the save area. This will contain a list of
addresses. These addresses correspond to the location of the parameters passed
between the subroutine and the calling module. For example:

0000A788 000093D8 8000A768

Note that the third address has got its first bit set on, i.e. it begins with '80', this
indicates that it is the last parameter passed.

Ì The three addresses:

A788 93D8 A768

can now be looked up in the dump to find their current values.

Multi-Modular Dump Solving

Information Systems Training Page 19

I S

Training

	Multi-Modular Dumps
	Finding the Statement in Error
	Finding the Module in which the Abend occured
	The Save Area Chain
	Finding the Absolute Address of Each Module
	Finding the Parameters Passed to Modules
	Exercise
	Appendix A - Advanced Dump Solving
	Using the TGT

