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Abstract 

This paper surveys the developments in the field of international finance, in particular the research of 
economists on foreign exchange rates.  That might be of interest to physicists working on the econophysics of 
exchange rates.  We show how the econophysics agenda might follow naturally from the economists´ 
research.  We also present our own work on the econophysics of exchange rates. 
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1.  Introduction 
Economists working on the field of international finance traditionally felt uneasy 

with the ideas in modern finance theory, in particular with its notion of efficient markets.  
Instead, foreign exchange markets are widely believed to behave like the unstable and 
irrational asset markets described by Keynes [1]. 

The efficient markets assumption stands against the role of mass psychology.  But 
that has been challenged recently by studies in behavioral finance.  Since real returns are 
nearly unpredictable, the real price of stocks is believed by efficient market theorists to be 
close to their intrinsic value.  However, behaviorists think that such a case for efficiency 
represents "one of the most remarkable errors in the history of economic thought" [2]. 

International finance has thus been in practice open economy macroeconomics.  As 
it happens, macroeconomics seems to have failed as well to satisfactorily address exchange 
rate behavior, as this paper will show briefly.  That circumstance makes international 
finance economists more prone to welcome the new ideas coming from physics.  In so-
called econophysics, the behavior of exchange rates and other financial assets are seen as 
complex.  In complex systems with many interacting units, everything depends on 
everything else. 

Section 2 discusses the role of expectations in macroeconomics.  Section 3 focuses 
on the failure of modeling attempts in the framework of open economy macroeconomics.  
Section 4 shortly presents the econophysics agenda.  Sections 5 and 6 introduce the Lévy 
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distributions and show some algebra behind them.  Section 7 displays our previous results 
on the econophysics of exchange rates.  Section 8 shows our work on exchange rate 
multiscaling.  And section 9 concludes. 
 
2.  Macroeconomics and expectations 

Macroeconomics was practically single-handed launched by Keynes [3].  Keynes' 
basic insight was that a market economy is inherently unstable, and that the source of 
instability lies in the logic of financial markets.  According to Keynes, market capitalism 
should be neither left alone nor abolished, but stabilized.  After the developments that took 
place in macroeconomics after Keynes, what still arguably survives of Keynesian 
economics today is the above insight [4]. 

Keynes’ book was greatly simplified in a paper by Hicks [5] which proposed the so-
called IS-LM model.  For tractability, the IS-LM model assumed stationary expectations, 
i.e. people forecast no change for future prices.  Stationary expectations is a reasonable 
assumption in a stable zero-inflation environment, but that is not so when inflation 
departures from nil. 

Adaptive expectations came up to take the possibility of a non-zero inflation into 
account.  Here people forecast by looking at previous inflation.  Adaptive expectations is a 
fair assumption if prices are growing up at a constant rate.  However, it is not if prices 
speed up.  Even if prices accelerate at a constant rate, people with adaptive expectations 
will make systematic forecast errors. 

So rational expectations is the assumption that people also consider an accelerating 
inflation together with all past and current information, including that of government 
policy.  But rational expectations assumes, too, that people behave as if they have the "true 
model" of the economy in their minds, and that is too demanding. 

One must seriously accept that the models used by real world people ("popular 
models") are not the rational expectations one [6].  Economic modeling has thus no choice 
but collecting data on the popular models themselves.  By doing so, Shiller [6] and 
colleagues found feedback systems with complicated dynamics, where one does not need to 
refer to a trigger to explain a crash. 

That rational expectations is a quite restrictive borderline case can be illustrated 
with reference to the El Farol bar problem put forward by Arthur [7, 8].  Suppose that one 
hundred people must decide independently each week whether to show up at their favorite 
bar (El Farol in Santa Fe).  If someone predicts, say, that more than 60 will attend, he will 
avoid the crowds and stay home.  If he predicts fewer than 60 he will go.  No "correct" 
expectational model can be assumed to be common knowledge.  If all use a model (say, 
rational expectations) that predicts few will go, all will go, invalidating the model.  If all 
believe most will go, no one will go, invalidating the belief.  Expectations will be forced to 
differ, i.e. expectations are necessarily heterogeneous. 

Arthur and colleagues [9] extended the El Farol economy and generated out-of-
equilibrium outcomes, of which the equilibrium with rational expectations is just a possible 
particular outcome.  They found two possible regimes: (1) if parameters are set so that 
artificial agents update their hypotheses slowly, the diversity of expectations collapses 
quickly into the homogeneous rational expectations one; and (2) if the rate of updating of 
hypotheses is turned up, the artificial market displays several of the “anomalies” observed 
in real markets, such as unexpected price bubbles and crashes, random periods of high and 
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low price variation, and the presence of technical trading. 
These anomalies are thought of as out-of-equilibrium phenomena.  It has to be said 

that mainstream macroeconomics and finance have also developed some equilibrium stories 
for such anomalies [10, 11].  But although “rational expectation bubbles” might still be 
useful as a limiting case, from the above discussion it would not be sensible to assume 
rational expectations from the start. 

That expectations should be both endogenous and heterogeneous is a lesson that 
international finance economists have already learned.  They also have met complexity (an 
issue exhaustively discussed elsewhere [12]) in a book by Krugman [13].  Complexity may 
come to stay.  A reason good enough for that to happen is the failure of modeling attempts 
in the framework of open economy macroeconomics.  In what follows, that will be 
discussed in some detail. 
 
3.  Open economy macroeconomics 

In the open economy macroeconomics field, nominal and real exchange rate 
volatility of the floating period following Bretton Woods was explained by "overshooting" 
in the Dornbusch [14] model.  In such a benchmark model of the field, goods price 
stickiness is the critical reason for the exchange rate to overshoot its long run value in 
response to monetary shocks. 

However, empirical evidence for overshooting is thin [15-17].  In particular, one 
empirical regularity inconsistent with it is the well documented [15, 18] tendency for spot 
and forward exchange rates to move in tandem. 

Despite the fact that its empirical performance is not very successful [19], the 
Dornbusch model played a dominant role in shaping the literature on exchange rate 
dynamics through the early nineties [20].  That demonstrates "undeniable time-tested 
appeal of the traditional sticky price Keynesian model" [21].  Its prominence might also be 
related to the analytic simplicity of the model. 

For macroeconomists, however, the Dornbusch model presents limitations related to 
its lack of microfoundations [22].  The quest for microeconomic foundations for 
macroeconomics is an almost consensus among macroeconomists, and is reminiscent of the 
so-called reductionism in physics.  The research on microfoundations has begun when 
rational expectations stepped in.  But reductionism is unlikely to be useful when complexity 
is involved [12].  So microfoundations are not the issue if macroeconomic phenomena are 
complex. 
 Traditional flexible price models of the exchange rate have been developed 
theoretically by the intertemporal approach to the current account [23-25].  A widely 
accepted standpoint by international macroeconomists is, however, that most important 
problems cannot be satisfactorily addressed in the framework of perfect price flexibility.  
That is another reason why empirical macroeconomists and policymakers have continued to 
use the Dornbusch model [15]. 

Overall it can be said that modeling with the standard macroeconomic models has 
failed empirically.  Such a poor performance was made clear when studies demonstrated 
that a random walk predicts exchange rate behavior better than the models based on the 
"fundamentals" of the economy [26-28].  Also a number of empirical studies found that 
exchange rate data exhibit unit roots with a non-constant variance for the error term [29-
32].  Series are thus likely to be non-stationary with time dependent heteroskedasticity for 
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the error. 
 To revive the standard macroeconomic models, Koedijk and Schotman [33] 
estimated an "error-correction" real exchange rate equation and showed that it is superior, 
in-sample, to a random walk.  Also using dynamic error-correction techniques, Mark [34] 
considered an equation (derived from the Dornbusch model) to investigate the performance 
of the macro models concerning long run predictability.  In forecasting tests over long 
horizons, piece of evidence was found that macro fundamentals help to predict the nominal 
exchange rate.  The study by Chinn and Meese [35] also suggested that over long enough 
periods there is indeed a stationary relationship between the exchange rate and the 
fundamentals of the open macroeconomy models. 

Despite that, the hypothesis that the exchange rate follows a random walk is still to 
be taken seriously.  An interesting development that makes it possible to conciliate the 
apparent divergence between random walk and fundamentals is the model of De Grauwe 
and Dewachter [36], and De Grauwe, Dewachter, and Embrechts [37], where expectations 
are heterogeneous.  De Grauwe and colleagues' model gives supplementary speculative 
dynamics to the Dornbusch model by considering chart rules concerning forecasting, and 
explains exchange rate movements by chaos.  An advantage of chaotic models is to mimic 
the random walk pattern of the exchange rate with the "stochastic" behavior produced by 
deterministic solutions.  The model of De Grauwe and associates has also been extended to 
show that massive foreign exchange intervention can remove the chaos [38]. 

In the mid 1980s the general sentiment was that the research had grown tired of 
searching for new macro models [39].  As a result, attention shifted from examination of 
macro models toward work related to the foreign exchange market as a financial market per 
se.  Such a trend was reinforced by other studies pointing out that the nominal exchange 
rate shows much greater variability than the fundamentals [40-44].  Thus the literature on 
foreign exchange market microstructure focused on the behavior of agents and market 
characteristics rather than on the influence of macro fundamentals.  One motivation for 
such work has been to understand the mechanisms generating deviations from 
fundamentals.  A survey on that is provided by Flood [45], and another useful reference is 
Frankel, Galli, and Giovannini [46]. 

Other studies adopted the "news approach", which relies on the existence of 
unexpected shocks to explain exchange rate movements.  It was shown however that only a 
small proportion of movements of the spot exchange rate is caused by news [47].  A survey 
of the papers dealing with news is provided by Frankel and Rose [48]. 

As an offshoot of the closed economy macro literature on real business cycles, the 
equilibrium exchange rate model [21, 49-53] came up to give a full account of the supply 
side.  At this stage it is not possible to draw any firm conclusions concerning the empirical 
validity of the equilibrium model [19].  The emerging challenger of the equilibrium model 
is that of Obstfeld and Rogoff [15, 16].  The studies collected together in Van Der Ploeg 
[54] allow a general appreciation of other new developments. 

The model of the exchange rate developed by Obstfeld and Rogoff (the "redux" 
model) assumes monopolistic competition and sticky nominal prices in the short run.  
While preserving the sticky price feature of the Dornbusch model, it provides a more 
rigorous framework than the latter by incorporating the intertemporal approach to the 
current account.  That allows for evaluating the welfare effects of macro policies on output 
and the exchange rate, a possibility not contemplated by the flexible price intertemporal 
approach. 
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The results of Obstfeld and Rogoff sometimes differ sharply from those of either the 
Dornbusch model or the flexible price intertemporal approach to the current account.  If the 
redux model succeed empirically, macroeconomists might claim that lack of 
microfoundations partly explains the bad empirical performance of the Dornbusch model.  
The wave of research initiated by the redux model is sometimes labelled "new open 
economy macroeconomics".  Lane [55] and Sarno [56] present surveys.  (The speculative 
dynamics side of the model of De Grauwe and colleagues has also been blended with the 
model of Obstfeld and Rogoff to produce a chaotic nominal exchange rate [57]). 

Lane questions the relevance of this literature for policymaking because many 
welfare results are highly sensitive to the precise denomination of price stickiness and the 
specification of preferences.  But the widespread commitment with microfoundations and 
the many unanswered questions that remain should ensure that the literature is likely to 
grow yet further in the coming years among macroeconomists. 

Where do we then stand in the open economy macroeconomics literature?  The 
Dornbusch model demonstrates undeniable time-tested appeal.  But the redux model comes 
up to update the Dornbusch model as regards microfoundations and a supposed 
breakthrough is to allow an explicit welfare analysis as far as policy is concerned.  The 
welfare results of the new open economy macroeconomics literature are highly sensitive to 
the precise denomination of price stickiness and the specification of preferences, though.  
For that reason, the literature is of only limited interest in policy circles.  Notwithstanding, 
the lack of welfare criteria of the Dornbusch model is claimed to yield misleading policy 
prescriptions; and that will encourage macroeconomists to further research on the new open 
economy macroeconomics. 
 
4.  The econophysics agenda 

Unlike mainstream economists, physicists usually think of the macroeconomy as a 
complex system, with many interacting subunits, where everything depends on everything 
else.  But how does everything depend on everything else?  Here physicists are looking for 
empirical laws that will describe this complex interaction [58].  So they have decided to 
examine empirical economic and financial facts prior to the building up of models. 

By adapting the biased random walk of Bachelier [59] for the S&P500 data (which 
encompass the crash of 19 October 1987), Stanley and colleagues [58] show that the huge 
drop of Black Monday is virtually impossible in the model.  The biased random walk has a 
probability density function that is Gaussian.  With returns (fluctuations) normalized to one 
standard deviation, the probability of having more than 5 standard deviations is essentially 
zero.  However, there are 30 or 40 shocks in the S&P500 returns that exceed 5 standard 
deviations.  And Black Monday is more than 34 standard deviations [58].  Research on 
econophysics that take empirical data into account aims at showing that catastrophic, rare 
events like Black Monday must be considered as part of the overall picture; they are not (in 
a sense) "anomalies".  Even the great stock market crashes would be simply ordinary 
(although infrequent) events. 

As observed [58], almost everything in nature, including disordered things, has 
scale.  Most functions in physics have a characteristic scale and almost all physics comes 
down to solving a differential equation.  But some systems in nature lack a scale.  In 
particular, systems with many interacting units (like the macroeconomy) generally exhibit 
scale invariance that can be expressed by power laws.  This is the case of financial price 
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fluctuations as well, like those of the S&P500 [60, 61]. 
Mandelbrot [62] looked at how random changes in cotton prices were distributed by 

size and did not find a bell curve.  Instead, he discovered that price changes do not have a 
typical size, thereby being governed by a non-Gaussian power law.  That allows one to see 
large fluctuations in market prices as a result of the natural, internal workings of markets; 
they can strike from time to time even if there are no sudden alterations of the 
fundamentals.  Mandelbrot suggested a stable Lévy distribution [63] to model the cotton 
prices.  Indeed Mandelbrot [64] showed how Lévy distributions can be applied to a number 
of situations and coined the term "Lévy flights". 

Financial asset prices are also unlikely to follow Gaussian distributions [65].  Sky-
high peaks and fat tails are pervasive in financial data.  Although leptokurtosis could be 
accounted for by stable Lévy distributions, these have never been established in mainstream 
finance.  One reason is related to their property of infinite variance.  Since volatility is a 
central concept to finance, it is useful for the variance to be finite.  (The debate in the early 
days of modern finance can be appreciated in Cootner [66]). 

To remedy such a deficiency, a truncated Lévy distribution has been put forward 
[67, 68].  A truncated Lévy flight aims at modeling financial series through a non-stable 
distribution which features non-normal scaling power laws and finite variance.  The 
truncated Lévy flight is then a candidate to satisfactorily model financial data.  Indeed, that 
has been shown for the S&P500 [68] and other stock markets [69-71], as well as foreign 
exchange rates [72].  (An earlier study that found power laws in foreign exchange markets 
is that of Müller et al. [73].) 

Non-Gaussian power laws are expected to coexist uneasily with mainstream finance 
theory, which is built on the efficient market hypothesis.  However, econophysics does not 
clash with mainstream finance.  Overall physicists see the efficient market as an idealized 
system and real markets as only approximately efficient.  They think the concept of 
efficient markets is still useful to model financial markets.  But rather than simply assuming 
normality from the start, they try to fully characterize the statistical properties of the 
random processes observed in financial markets [74]. 
 
5.  Lévy distributions 

The sum of independent random variables is distributed like anyone of them.  Lévy 
[75] investigated the uniqueness of the Gaussian distribution in displaying such a property, 
which follows from the law of large numbers.  He put forward a more general approach 
valid for distributions with an infinite second moment. 

Let P(x) be a distribution of a random variable x which is normalized to 

∫
∞

∞

=1d)( xxP                                                                                                                         (1) 

whose characteristic function is 

∫
∞

∞−

= )(ed)( i xPxq qxϕ                                                                                                             (2) 

A linear combination 
22113 xcxccx +=                                                                                                                   (3) 

for 21 xx ≠  is stable if 321 ,, xxx  are governed by the same )( jxP .  The Gaussian 
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distribution 
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gives precisely an example of a stable distribution with second moment which is finite 
>=< 2xdσ                                                                                                                           (5) 

 Lévy [75] found a distinct class of solutions.  To see this let us use Eq. (3) to write 
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By considering Eq. (2), the characteristic function is 
)()()( 21 qcqccq ϕϕϕ =                                                                                                            (7) 

which in logs is given by 
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Distribution )(xPα  with characteristic function 

)exp()( α
αϕ qcq −=                                                                                                             (11) 

is the Lévy distribution of index α .  Condition 20 ≤< α  guarantees that 

∫= )(ed)( i qqxP qx
αα ϕ                                                                                                        (12) 

is positive.  If 2=α  the Lévy collapses to the Gaussian )(xPG .  If 1=α  the Lévy 
becomes a Cauchy distribution 
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Also, for ∞→x  we have 
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1
2
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 A Lévy process is a time-dependent process that at an infinitesimal time has the 
Lévy distribution of the process variable.  The characteristic function of the Lévy process is 

)exp(),( α
αϕ qcttq −=                                                                                                         (15) 

and the original Lévy process is given by its inverse Fourier transform, i.e. 

∫ −=
α

α
qctqxqtxP ied),(                                                                                                       (16) 

For ∞→x  an equation similar to (14) holds.  From this equation, moment of order m is 

α≥∞>=< mx m ,                                                                                                              (17) 
where m need not be integer.  Second moment (m = 2) is infinite since 2<α .  More details 
on the Lévy process (and also on so-called Lévy walks) can be found elsewhere [76]. 
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As observed, a sharply truncated Lévy flight (TLF) has been put forward.  But it is 
still possible to define a TLF with a smooth cutoff that yields an infinitely divisible 
characteristic function [77].  In a smoothly truncated Lévy flight (STLF), the cutoff is 
carried out by asymptotic approximation of a stable distribution valid for large values [78]. 

Yet the STLF breaks down in the presence of positive feedbacks [79, 80].  But the 
cutoff can still be alternatively combined with a statistical distribution factor to generate a 
gradually truncated Lévy flight (GTLF) [79, 80].  Nevertheless that procedure also brings 
fatter tails.  The GTLF itself also breaks down if the positive feedbacks are strong enough.  
That apparently happens because the truncation function decreases exponentially. 

We have ourselves put forward what we call an exponentially damped Lévy flight 
(EDLF) [81], in which the gradually truncated Lévy is modified and then combined with 
the smoothly truncated one.  In the presence of increasing and positive feedbacks, our 
distribution smoothly and gradually deviates from the Lévy.  The truncation parameters are 
estimated by nonlinear least squares to provide an optimized fit for the tails.  Our EDLF 
seems to fairly fit data on daily exchange rates.  Section 7 will discuss that in some detail. 

Whether scaling is single or multiple depends on how a Lévy flight is broken.  
While the abruptly truncated Lévy flight (the TLF itself) exhibits mere single scaling, the 
STLF shows multiscaling [78, 82].  When employing the abruptly TLF [74] to fit the 
exchange rate data we have realized that such data set might be fitted by an EDLF as well 
[81].  That is interesting because we can focus on the exchange-rate multiscaling properties 
stemming from the EDLF.  Not surprisingly, and in accordance with previous literature 
[83-88], we find multiscaling to be pervasive among exchange rates.  This will be shown in 
section 8. 
 
6.  More algebra behind the Lévy distributions 
 Now let Sn be the sum of n independent and identically distributed random variables 
Xt, 
Sn = X1 + X2 + X3 …+ Xn                                                                                   (18) 
with E(Xt) = 0.  It is usual to work with returns in finance, i.e. 
Z∆t(t) = St – St – ∆t = Xt + Xt – 1 + … + Xt – ∆t + 1                                                          (19) 
where ∆t is a time lag.  Now consider the symmetric Lévy distribution 

∫
∞

∆∆ ∆−≡
0

)d)cos(exp(1)( qqZtqγZL t
α

t π
                                                          (20) 

where 0 < α < 2, and γ  > 0 is a scale factor. 
 The characteristic function of (20), )(Kϕ , is such that 
ln[ϕ(K)] = –γ∆t|K|α                                                                                               (21) 
which satisfies ∆t ln[ϕ(K)] = ln[ϕ(∆t1/α K)].  That means that the corresponding probability 
distribution is 
L(Z∆t) = ∆t–1/α L(∆t–1/αZ∆t) = ∆t–1/α L( sZ )                                                          (22) 
where sZ  = ∆t–1/α Z∆t is a scaled variable at ∆t. 

Let us define a modified Lévy flight (MLF) through 
)()()(P ttt ZfZLZ ∆∆∆ =η                                                                                   (23) 

where η is a normalizing constant, and f(Z∆t) is the change carried out on the distribution. 
 The abruptly truncated Lévy flight (TLF) is an extension to which 
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where lmax is the step size at which the distribution begins to departure from the ordinary 
Lévy.  The TLF is not stable and has finite variance, thereby converging to a Gaussian 
equilibrium according the central limit theorem.  The characteristic function of the TLF is 
no longer infinitely divisible.  Nevertheless approximate scaling can still occur for a finite 
time interval [74].  But scaling must break down for longer time intervals. 

Now consider the STLF [77, 78].  The cutoff parameter λ0 > 0 is introduced into 
Eq. (6) as 
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Function )( tsmooth Zf ∆  is based on the asymptotic approximation of a stable distribution of 
index α valid for large values of |Z∆t| when γ = 1.  It exhibits a power law behavior.  For 0 < 
α < 1, the first term of the expansion of )( tZL ∆  can be approximated by 

π
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By taking into account the particular case of the Lévy where a = b, we get 
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where )/arctan( 0λθ K= , and )( αγ −Γ= C .  Now the characteristic function ends up 
infinitely divisible. 
 The GTLF [79, 80] is defined as 
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where lc is the step size at which the distribution starts to deviate from the Lévy.  Here β0 
and β1 are the constants related to the truncation. 
 When using the currency data to be presented in section 7, we have realized that 
their distributions deviate from the Lévy in a smooth and gradual fashion after |Z∆t| > lc.  
Sometimes the deviations were also caught increasing.  Such a class of deviations was 
already found to be positive [79, 80], which means even fatter tails.  It has been argued [79, 
80] that, since the physical capacity of a system is limited, the feedback begins to decrease 
exponentially (and not abruptly) after a certain critical step size.  In contrast, in the 
presence of our previously found increasing deviations, we think that an abrupt truncation 
is necessary still.  In such cases, using the truncation approaches as in Eqs. (24), (25), and 
(28) might prove not to be appropriate. 

For that very reason we have suggested [81] the broader formulation for f(Z∆t) 
dubbed EDLF.  The EDLF encompasses the previous TLF, STLF, and GTLF.  Our EDLF 
is defined as 
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where 
[ ] 32 )|(|/||1)( 3max21

ττ λλλ cttt lZlZZH −+−+= ∆∆∆                                                  (30) 
and ϑ, λ1, λ2 ≤ 0, λ3 ≤ 0, τ1, τ2, and τ3 are parameters describing the deviations from the 
Lévy, lc is (as before) the step size at which the distribution begins to deviate from the 
Lévy, and lmax is the step size at which an abrupt truncation is carried out. 

Note that when lmax → ∞, we have 
3)|(|)( 321
τλλλ ctt lZZH −++= ∆∆                                                                        (31) 

By setting ϑ = 0, τ1 = – 1 – α, lc = 0, and τ3 = 1 in Eqs. (29), (30), and (31), the resulting 
function is thus equivalent to the smooth case given by Eq. (25).  When lmax → ∞, the 
similar function for the gradual case can be found by setting ϑ = λ1 = λ2 = τ1 = 0.  The 
abrupt case is given by setting lc = 0 and choosing the appropriate parameters such that 
H(Z∆t) → – ∞. 
 
7.  Illustration with exchange rate data 
 Now we turn to review our own work on the dollar prices of 30 currencies plus a 
fake euro. The data sets for the 30 currencies were taken from the Federal Reserve website.  
As standard, here we ignore “holes” from weekends and holidays; analysis thus 
concentrates on trading days.  Since the series for the real euro is too short, we have 
decided to take a false euro instead in order to get a longer series.  We build the fictitious 
series for the euro by following a methodology put forward by Ausloos and Ivanova [89].  
Table 1 shows the 31 currencies, historical time period, and number of data points. 

Fig. 1 displays the logarithm of the probability density functions (PDFs) of currency 
returns for selected countries in Table 1, namely Australia, Britain, Canada, Belgium, India, 
Brazil, China, and South Africa.  Increases in time horizons range from ∆t = 1, 2, and 5 
trading days (a week) to 240 trading days (a year).  A spreading of the PDFs characteristic 
of any random walk is observed.  Fig. 2 shows a log-log plot of the "probability of return to 
the origin" P(0) against ∆t [68].  Roughly, scaling power laws emerge for the currencies 
within the time window of 1 ≤ ∆t ≤ 100; and that fact is at first consistent with the presence 
of a TLF. 

Table 2 presents parameters α and γ for the currencies in Table 1.  Parameter α is 
greater than two for six countries, namely Canada, China, Malaysia, South Africa, 
Thailand, and Venezuela; the currencies of these countries may (or may not) be outside the 
Lévy regime.  For all the other currencies, a TLF might describe the data within a time 
window of (generally) 100 trading days (not shown). 

Thus a Lévy PDF could model the modal region of such processes within a finite 
time interval.  Thus we have made a case for the presence of such TLFs (with finite second 
moments) to be pervasive in daily time series of currency returns. 

We have also moved up to assess how our EDLF adjusts to the same data.  But here 
estimation of parameters α and γ departures from our previous approach, which is standard 
in this type of literature.  Such parameters are usually estimated by plotting the probability 
of return to the origin against ∆t.  Our new hybrid estimation process takes a maximum 
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likelihood approach for α and γ, and nonlinear least squares for the other parameters. 
 From Eq. (23), the log likelihood function is given by 

constant))(ln())(Lln())(Pln( ++= ∑∑∑ ∆∆∆
z

t
z

t
z

t zfzz .                                             (32) 

 The maximum likelihood estimates are obtained by minimizing Eq. (32) as a 
function of the distribution parameters.  Note that (32) is composed of three parts.  For ∆t = 
1, the first part depends only on α and γ, and the second one depends on the other 
parameters.  As a result, the estimation process can be carried out separately for ∆t = 1.  
The maximum likelihood estimates of α and γ are the same as those obtained if the process 
were a Lévy.  Such a practice is discussed elsewhere [90, 91], and a computer program for 
implementing it (called Stable.exe) is available online at 
http://academic2.american.edu/~jpnolan/. 

With α̂  and γ̂  being the maximum likelihood estimates of α and γ, let )(ˆ
szP  be the 

sample probabilities of the scaled variable at ∆t, i.e. ts ztz ∆
−∆= α̂/1  = ∆t–1/α Z∆t.  Also let 

)(ˆ
1zL  be the Lévy distribution using α̂ , γ̂  for ∆t = 1.  The difference )(ˆln)(ˆln 1zLzP s −  

shows how data deviate from the original Lévy process.  Assuming that 
)(ˆln)(ˆln 1zLzP s − = ln )( tdamped zf ∆ , which equals 

)||(     ),()|ln(| max
/1/1

1 ltzltzHz scss
ααϑβ −− ∆<<∆++ ,                                             (33) 

then the parameters describing the deviations from the Lévy can be estimated by a 
nonlinear least squares procedure.  Results are displayed in Table 3. 

The sample probabilities of a scaled variable at ∆t, )(ˆ
szP  together with a Lévy 

distribution using α̂  and γ̂  were then calculated.  The differences )(ˆln)(ˆln 1zLzP s −  are 
shown in Fig. 4.  The resulting curves are shown as the continuous lines in Fig. 4.  Their 
parameter estimates obtained by the nonlinear least squares method are also presented in 
Table 3.  In all cases, parameters λ3 and β3 were dropped from the model.  Here zero 
estimates for λ3 and β3 mean that the scaled PDFs exhibit heavy tails with increasing and 
positive feedbacks. 

The examples in Fig. 5 show that our EDLF fits the exchange rate data reasonable 
well.  Note that the larger dispersion at the tails area in Fig. 5 is partly due to the equal 
hystogram bins taken in the scale of Z.  The dispersion could be significantly reduced if we 
had taken a lnZ axis with equal bins in lnZ [76].  It is also worth emphasizing that the data 
in Fig. 4 show log differences )(ˆln)(ˆln 1zLzP s −  that are increasing.  And that is why fatter 
tails with increasing (instead of decreasing) and positive feedback emerge. 
 
8.  Multiscaling 
 Our suggested EDLF has been employed to study the multiscaling properties of the 
exchange rates above [92].  Here we briefly discuss our contribution on this subject.  (A 
discussion of multiscaling together with comprehensive references is given elsewhere [76].) 

By scaling Z∆t together with the truncation parameters, a distribution can be 
collapsed onto ∆t = 1.  We thus have 

)()()(P ttt ZfZLZ ∆∆∆ =η = )()(/1
sss ZfZLt ηα−∆ = )(Ps

/1
sZt α−∆                                  (34) 
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where ts ZtZ ∆
−∆= α/1 , and )( ss Zf  is a truncation function defined by the scaled 

parameters max
/1 ltlms
α−∆= , ccs ltl α/1−∆= , and 3

/
3

3 λλ ατts ∆= . 
  Power laws for both the Kth absolute moment and norm of the characteristic 
function of the EDLF can be derived as follows.  By scaling Z∆t and using max

/1 ltlms
α−∆= , 

ccs ltl α/1−∆= , and 3
/

3
3 λλ ατts ∆= , the Kth absolute moment ]|[| K

tZE ∆  can be reckoned as 

]|[| K
tZE ∆ = ∆tK/α ]|[| K

ss ZE                                                                                (35) 
Note that such a power law depends on α and lmax, lc, and λ3.  If it were dependent only on 
α, multiscaling could not emerge because ln ]|[| K

tZE ∆  would be given by a linear function 
K/α. 
 Now let 
<|Z∆t(t)|K> = ∑ = ∆−−

n

t
K

tttn SS
1

1 ||                                                                                        (36) 
and 
<| Z~ |K> = ∑ = −−

n

t
K

ttn SS
1 1

1 ||                                                                                              (37) 

be the Kth sample mean of the lagged absolute values of St at the time interval ∆t and 1 
respectively.  For moments which are low enough (such as 0 < K < α), )(P tZ∆  is expected 
to be approximated by )( tZL ∆ , which in turn does not depend on the truncation parameters 
[78].  The reason why that might occur is that tails differ, and thereby they do not 
contribute a great deal to the low moment case [78].  Thus we expect  <|Z∆t|K> ≈ ∆t K/α 
<| Z~ |K> to hold for lower moments.  That means that the ratio R(K, ∆t) = <|S∆t|K>/<| S~ |K> 
scales with ∆t as R(K, ∆t) = ∆t K/α. 

By considering the case with K > α, lmax finite, ϑ = 0, and λ3 = 0, it can be shown 
[92] that 

]|[| K
tZE ∆  ≈ damped

K

Osint
π

πααηγα )2/()1(2/ +Γ∆                                                            (38) 

where 

),1(
! 120
2

)(
11 τατ

λ
α

λτα
α

+−++
−

= ∑ ≥
+−

−

KjB
j

el
K
l

O uj

j
K
ms

K
cs

damped                                              (39) 

and max
/1 ltlms
α−∆= , ccs ltl α/1−∆= , and ),1( 12 τατ +−+ KjBu  is the incomplete Beta 

function with 1 + jτ2 > 0, K – α + τ1 > 0, and u = 1 – lc/lmax. Thus the ratio 
]|[| K

tZE ∆ / ]|[| 1
KZE  is approximately given by 

α/Kt∆
),1(

!
)(

),1(
!

)(
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2
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)(
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2
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                                  (40) 

In such a situation, the ratio R(K, ∆t) scales as R(K, ∆t) = ∆t K/α if the ratio of (40) 
equals one.  Nakao [78] previously noted that the self-similarity of ]|[| K

ss ZE  breaks down 

if K > α.  If K < α then ]|[| K
ss ZE  ≈ ]|[| 1

KZE ; otherwise, ]|[| K
ss ZE  ≠ ]|[| 1

KZE .  In 
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practice the power law is of type R(K, ∆t) = ν∆t K/α  for some time interval ∆t, where ν is a 
constant describing quasi-stable processes [72].  In such situations, ratio (40) gets 
approximately equal to ν for 21  ttt ∆≤∆≤∆ .  By depending solely on how the truncation 
parameters are set, a number of distinct scaling patterns can be uncovered.  For example, if 
lc = 0 then ]|[| K

tZE ∆ / ]|[| 1
KZE  ≈ ατ /1 1−∆t . 

The norm of the characteristic function can also be used to assess parameter γ by 
taking into account the same assumption that )( tZP ∆  ≈ )( tZL ∆  for low values of |K|.  Since 

]E[)( tiKZeK ∆≡ϕ  = E[cos(KZ∆t) + isin(KZ∆t)] = E[cos(KZ∆t)] + iE[sin(KZ∆t)]          (41) 
then the squared norm of ϕ(K) is ||ϕ(K)||2 = E2[cos(KZ∆t)] + E2[sin(KZ∆t)].  For some K and 
∆t, ||ϕ(K)|| can be estimated by 
|| )(ˆ Kϕ ||2 = <cos(KZ∆t)>2 + <sin(KZ∆t)>2                                                          (42) 

By assuming that ln[ϕ(K)] ≈ –γ∆t|K|α for 0 < K < α, the “estimated” norm in logs of 
the characteristic function is ln||ϕ(K)||, and then we can expect that ln|| )(ˆ Kϕ || = –γ∆t|K|α. 

Fig. 6 displays sample ratios R(K, ∆t) for several values of K in log-log plots of the 
exchange rates.  Some ratios exhibit power law dependence on ∆t.  Pictures with lines 
which are dependent on K emerge in some of the plots. 

By fitting lnR(K, ∆t) = ξln∆t for every K, we get the corresponding scaling 
exponents shown in Fig. 7.  Some curves show linear dependence on K, for 0 < K < α.  
However scaling breaks down after K > α, and a nonlinear behavior steps in. 
 Fig. 8 displays the sample logarithm of the absolute characteristic function versus ∆t 
for several values of K.  A power law dependence on ∆t seems again to emerge from the 
pictures. 
 By fitting ln|| )(ˆ Kϕ || = ζ∆t for every K, the estimated values of ζ versus α̂|| K  are 
plotted in Fig. 9.  Britain, Brazil and Canada show a linear dependence for all K < 3.  For 
all the other cases, the linear dependence on the initial values of K are followed by 
nonlinear patterns. 
  Table 4 shows results for all the currencies, where either single scaling or 
multiscaling is displayed in connection with both (ξ and ζ) exponents.  As can be seen, 
multiscaling is pervasive among foreign exchange rates. 
 
9.  Conclusion 
 This paper is a survey of the work of economists in the field of exchange rates 
called international finance.  It is also a presentation of our own previous work on the 
econophysics of exchange rates.  That might be of interest to physicists working on the 
general subject of econophysics. 
 Overall the paper is intended to show how the econophysics agenda might follow 
naturally from the economists´ research as far as international finance is concerned.  Our 
own work on the subject focuses mainly on the Lévy distribution and its applications to 
exchange rate data.  Among other things, we present our suggested method to break the 
Lévy tails and show the multiscaling properties of actual exchange rates in connection with 
our exponentially damped Lévy flight. 
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Table 1 
Description of data sets. 
 
Country Currency Time Period Data Points 
Australia Australian Dollar 4Jan71 – 10Jan03 8025 
Austria Shilling 4Jan71 – 31Dec98 6999 
Belgium Belgian Franc 4Jan71 – 31Dec98 7013 
Brazil Real 2Jan95 – 10Jan03 2014 
Britain Pound 4Jan71 – 10Jan03 8032 
Canada Canadian Dollar 4Jan71 – 10Jan03 8038 
China Yuan 2Jan81 – 10Jan03 5471 
Denmark Krone 4Jan71 – 10Jan03 8031 
Euro Area False Euro 4Jan93 – 10Jan03 2521 
Finland Markka 4Jan71 – 31Dec98 6976 
France Franc 4Jan71 – 31Dec98 7021 
Germany Deutsche Mark 4Jan71 – 31Dec98 7021 
Ireland Pound 4Jan71 – 31Dec98 7021 
India Rupee 2Jan73 – 10Jan03 7525 
Italy Lira 4Jan71 – 31Dec98 7020 
Japan Yen 4Jan71 – 10Jan03 8026 
Malaysia Ringgit 4Jan71 – 10Jan03 8010 
Mexico Peso 8Nov93 – 10Jan03 2300 
Netherlands Guilder 4Jan71 – 31Dec98 7021 
New Zealand New Zealand Dollar 4Jan71 – 10Jan03 8016 
Portugal Escudo 2Jan73 – 31Dec98 6518 
Singapore Singapore Dollar 2Jan81 – 10Jan03 5531 
South Africa Rand 4Jan71 – 10Jan03 8005 
South Korea Won 13Apr81 – 10Jan03 5416 
Spain Peseta 2Jan73 – 31Dec98 6521 
Sri Lanka Rupee 2Jan73 – 10Jan03 7172 
Sweden Krona 4Jan71 – 10Jan03 8031 
Switzerland Swiss Franc 4Jan71 – 10Jan03 8032 
Taiwan Taiwan Dollar 30Oct83 – 10Jan03 4548 
Thailand Baht 2Jan81 – 10Jan03 5428 
Venezuela Bolivar 2Jan95 – 10Jan03 2013 
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Table 2 
Parameters α and γ for the currencies in Table 1. 
 
Country α γ 
Austrália 1.41487 .004656830 
Áustria 1.90185 .000010368 
Belgium 1.56042 .009849513 
Brazil .89059 .003707604 
Britain 1.76454 .000078676 
Canada 2.04822 .000005979 
China 4.19286 2.5306E-11 
Denmark 1.39021 .002288440 
Euro Area 1.80054 .000046794 
Finland 1.75114 .00040350 
France 1.48668 .001021003 
Germany 1.54737 .000330146 
Ireland 1.61516 .000150068 
India 1.87979 .000018721 
Italy 1.27801 .014513000 
Japan 1.43542 .011937000 
Malaysia 2.78363 .000000169 
Mexico 1.60305 .000923330 
Netherlands 1.55999 .00034082 
New Zealand 1.87623 .000011118 
Portugal 1.33192 .00514115 
Singapore 1.81272 .000027149 
South Africa 3.46313 1.7417E-8 
South Korea .93298 .015343000 
Spain 1.28282 .01962400 
Sri Lanka 1.22370 .000898138 
Sweden 1.53611 .000880928 
Switzerland 1.68564 .000209469 
Taiwan 1.19228 .003356487 
Thailand 2.03006 .000033537 
Venezuela 4.13507 6.6404E-9 
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Table 3 
Parameter estimates for selected currencies. 
 
Country α̂  γ̂  

1λ̂  2λ̂  1̂β  2β̂  ϑ̂  lc lmax 
Australia 1.4753 .00180229 8.3372 0.0000 2.2366 0.0000 .00428 .0000 0.27 
Brazil 0.5960 .00157227 3.3317 0.0000 1.0683 0.0000 .00277 .0000 0.27 
Britain 1.5513 .00520366 1.0086 -3.7788 -0.0276 2.4653 .00000 .0050 0.09 
Canada 1.5599 .00181284 2.8675 -2.4219 0.8203 3.3156 .00000 .0035 0.04 
Denmark 1.5117 .02321810 4.7664 -3.4188 0.8453 2.4294 .00000 .0350 1.10 
Euro Area 1.8574 .00039037 10.5374 0.0000 1.3456 0.0000 - .00168 .0015 0.07 
Hong Kong 0.7600 .00085047 4.0242 -1.5663 0.8316 4.6757 .00000 .0000 0.70 
Japan 1.4341 .49351300 1.3605 0.0000 1.9274 0.0000 .33850 .7500 30.00 
Mexico 1.4017 .02356360 5.0413 -1.5195 1.4748 2.7723 .00000 .0350 1.30 
New Zealand 1.4061 .00154540 5.0986 -3.3148 0.7782 4.4101 .00000 .0000 0.22 
Norway 1.5180 .02001750 4.1884 -2.0023 1.0801 1.3332 .00000 .0350 0.50 
Singapore 1.4696 .00270447 5.4180 -0.7819 1.4317 1.4658 .00000 .0055 0.08 
South Korea 0.6394 .33273200 2.6583 0.0000 1.1408 0.0000 .44520 .0000 400.00 
Sweden 1.4062 .01853350 4.7843 -2.9571 1.0297 2.3466 .00000 .0250 1.10 
Switzerland 1.5984 .00717332 4.3446 -1.8323 1.1556 3.2261 .00000 .0125 0.17 
Taiwan 1.0052 .01627530 3.6706 0.0000 1.6571 0.00000 .05930 .0000 1.70 
 
Estimates α̂  and γ̂  are obtained by the maximum likelihood method for ∆t = 1.  Estimates 1λ̂ , 2λ̂ , 3λ̂  1̂β , 

2β̂ , 3β̂ , and ϑ̂  are nonlinear least square estimates for the truncation parameters of the function using the 

SAS system (http://www.sas.com); and lc and lmax are empirically found from our data.  Since 3λ̂  and 3β̂  = 0 
for all cases, they have been omitted. 



 
18

Table 4 
Single scaling and multiscaling. 
 
Country Currency Exponent ξ Exponent ζ 
Australia Australian Dollar Multiscaling (2) Multiscaling (2) 
Austria Shilling Multiscaling (1.8) Single Scaling 
Belgium Belgian Franc Single Scaling Multiscaling (0.3) 
Brazil Real Single Scaling Single Scaling 
Britain Pound Single Scaling Single Scaling 
Canada Canadian Dollar Single Scaling Single Scaling 
China Yuan Multiscaling (1) Multiscaling (1) 
Denmark Krone Multiscaling (2) Single Scaling 
Euro Area False Euro Multiscaling (2.2) Single Scaling 
Finland Markka Multiscaling (2.1) Single Scaling 
France Franc Multiscaling (2) Single Scaling 
Germany Deutsche Mark Multiscaling (2) Single Scaling 
Ireland Pound Multiscaling (2) Single Scaling 
India Rupee Multiscaling (2) Multiscaling (1.4) 
Italy Lira Multiscaling (2.5) Multiscaling (0.1) 
Japan Yen Multiscaling (2) Multiscaling (0.25) 
Malaysia Ringgit Multiscaling (1.8) Multiscaling (2) 
Mexico Peso Multiscaling (2) Multiscaling (1.5) 
Netherlands Guilder Multiscaling (2.5) Single Scaling 
New Zealand New Zealand Dollar Multiscaling (1.5) Single Scaling 
Portugal Escudo Multiscaling (2.5) Multiscaling (0.2) 
Singapore Singapore Dollar Multiscaling (2) Single Scaling 
South Africa Rand Multiscaling (1) Multiscaling (2) 
South Korea Won Multiscaling (1.5) Multiscaling (2) 
Spain Peseta Multiscaling (2) Multiscaling (~0) 
Sri Lanka Rupee Multiscaling (~0) Multiscaling (~0) 
Sweden Krona Multiscaling (2) Multiscaling (3) 
Switzerland Swiss Franc Multiscaling (2.5) Single Scaling 
Taiwan Taiwan Dollar Multiscaling (1.5) Multiscaling (0.5) 
Thailand Baht Multiscaling (~0) Multiscaling (0.5) 
Venezuela Bolivar Multiscaling (1) Multiscaling (~0) 
 
An approximate linear behavior for all K (all κ(α) = |K|α) gives evidence of mere single scaling. In turn, a 
linear behavior for initial values of K < αo (κ(α) < αo) followed by a nonlinear pattern after K > αo (κ(α) > 
αo) tracks the presence of multiscaling. 
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Fig. 1.  Probability density functions of the currency returns of Australia, Britain, Canada, Belgium, India, 
Brazil, China, and South Africa observed at time intervals ∆t, which range from 1 to 240 trading days.  As ∆t 
is increased, a spreading of the probability distribution characteristic of any random walk is observed. 
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Fig 2.   Log-log plot of the probability of return to the origin P(0) against the time lag ∆t for the currency 
returns of Australia, Britain, Canada, Belgium, India, Brazil, China, and South Africa.  Power laws emerge 
within the time window of  1 ≤ ∆t ≤ 100.  This non-Gaussian scaling is consistent with the presence of a TLF.  
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Fig. 3.   The same PDFs as in Fig. 1, but now plotted in scaled units P(Z).  Given the scaling index α for a 
given currency, all the data is made to collapse onto a ∆t = 1 distribution. 
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Fig. 4.  Log of differences showing how the observed log PDFs of currency returns deviate from the original 
log Lévy process. The continuous lines are the fittings using the variance and ts ztz ∆

−∆= α̂/1 . 
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Fig. 5.  The same PDFs as in Fig. 1 but now plotted in scaled units P(Zs), where ts ztz ∆

−∆= α̂/1 . Given the 
scaling index α for a currency, the data are made to collapse onto a ∆t = 1 distribution.  The curves are our 
suggested exponentially damped Lévy flights estimated from the data. 



 
24

 

 

 

 

 
 
Fig.6.  Estimated ratios R(K,∆t) of selected exchange rates for K = 0.0–3.0 at intervals of 0.2.  For each plot, 
the bottom line corresponds to K = 0.0, and the top one to K = 3.0. 
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Fig. 7. Estimated multiscaling exponents ξ for selected exchange rates.  An approximate linear behavior for 
all K gives a piece of evidence of mere single scaling.  A linear behavior for initial values of K < α followed 
by a nonlinear pattern after K > α tracks the presence of multiscaling. 
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Fig. 8. Estimated ratios ln||ϕL(K)|| for selected exchange rates for K = 0.0–3.0 at intervals of 0.2.  For each 
plot, the upper line corresponds to K = 0.0, and the bottom one to K = 3.0. 
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Fig. 9. Estimated multiscaling exponents ζ for selected exchange rates.  An approximate linear behavior for 
all κ(α) = |K|α indicates mere single scaling.  A linear behavior for initial values of κ(α) < αo followed by a 
nonlinear pattern after κ(α) > αo captures the presence of multiscaling. 
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