Site hosted by Angelfire.com: Build your free website today!

 

MEDICAL  INSTRUMENTS

 

 

 

               

       Audiogram                       Kidney- Dialysis                           E.K.G.                                Stethoscope

 

Germany, Hamburg 23.09.1998; Postcard for 50th German Urology Congress

Pioneer of Endoscopy; Maximillian Nitze (150th birthday ) cancellation

He discovered in 1877 first endoscopic instrument

 

Endoscopy is a method of viewing the inside of the body using an endoscope, especially useful in diagnosis and treatment of disorders of the gastrointestinal tract. An instrument employing fiber-optic technology, an endoscope contains up to 20,000 coherent quartz fibers. In order to provide an image of the area of the body being investigated, light is shone down the endoscope and is reflected back up the bundle of fibers and viewed through an eyepiece by the endoscopist. Because the alignment of each fiber is maintained throughout the length of the endoscope, there is no distortion in the final image. The tip of the endoscope can be maneuvered through 180° and has mechanisms for cleaning the lens or the tissue under examination.

 

Microscope is any of several types of instruments used to obtain a magnified image of minute objects or minute details of objects.

 

The most widely used microscopes are optical microscopes, which use visible light to create a magnified image of an object. The simplest form of optical microscope is the double-convex lens with a short focal length. These lenses can magnify an object by up to 15 times. In general, however, a compound microscope is used, which has multiple lenses to provide more magnification than a single convex lens could alone. Some optical microscopes can magnify an object by 2,000 times or more.

 

The compound microscope consists essentially of two lens systems, the objective and the ocular, mounted at opposite ends of a closed tube. The objective lens is composed of several lens elements that form an enlarged real image of the object being examined. The microscope lenses are set up so that the real image formed by the objective lies at the focal point of the ocular; the observer looking through the ocular sees an enlarged virtual image of the real image. The total magnification of the microscope is determined by the focal lengths of the two lens systems.

 

The accessory equipment of an optical microscope includes a firm stand with a flat stage for holding the material to be examined, and some means for moving the microscope tube towards and away from the stage so that the specimen can be brought into focus. Ordinarily, specimens for microscopic examination are transparent and are viewed by using light that passes through the specimen. The specimens are usually mounted on thin, rectangular glass slides. The stage has a small hole through which light passes. Underneath the stage there is a mirror that reflects light through the specimen, or a special electric light source that directs light through the specimen.

 

In photomicrography, which is the process of taking photographs through a microscope, a camera is mounted directly above the microscope's eyepiece. Normally the camera does not contain a lens, because the microscope itself acts as the lens system. The term microphotography, sometimes used instead of photomicrography, is usually applied to the technique of duplicating and reducing a picture or a document to a miniature size for storage.

 

Microscopes used for research commonly have a number of refinements to enable a complete study of the specimens. Because the image of a specimen is highly magnified and inverted, manipulating the specimen by hand is very difficult. As a result, the stages of high-powered research microscopes are mounted so that they can be moved by means of micrometer screws; in some microscopes, the stage can also be rotated. In addition, all research microscopes are equipped with three or more objectives, mounted on a revolving head, so that the magnifying power of the microscope can be varied.

 

Special-Purpose Optical Microscopes

A number of types of microscopes have been developed for specialized uses. One such type is the stereoscopic microscope, which is actually two low-powered microscopes arranged so that they converge on the specimen. These instruments provide a three-dimensional image that has its right side up.

 

The ultraviolet microscope uses the ultraviolet region of the spectrum rather than the visual region, either to gain resolution because of the shorter wavelength or to emphasize detail by selective absorption at different wavelengths within the ultraviolet band. Because glass does not transmit the shorter ultraviolet wavelengths, the optics used in this type of microscope are usually quartz, fluorite, or aluminized-mirror systems. Further, because ultraviolet radiation is invisible, the image is made visible through phosphorescence, photography, or electronic scanning. The ultraviolet microscope is used in medical research.

 

The petrographic microscope is used to identify and quantitatively estimate the mineral components of igneous rock and metamorphic rock. It is equipped with a Nicol prism or other polarizing device to polarize the light that passes through the specimen being examined. Another Nicol prism or analyzer determines the polarization of the light after it has passed through the specimen. The microscope also has a rotating stage that, by suitable adjustment, indicates the change in polarization caused by the specimen.

 

The dark-field microscope employs illumination in the form of a hollow, extremely intense cone of light, which is concentrated on the specimen. The field of view of the objective lies in the hollow, dark portion of the cone and thus picks up only scattered light from the object. As a consequence, the clear portions of the specimen appear as a dark background, and the minute objects under study glow brightly against this dark field. This form of illumination is useful for transparent, unstained biological material and for minute objects that cannot be seen in normal illumination under the microscope.

 

The phase microscope illuminates the specimen with a hollow cone of light, as in the dark-field microscope. In the phase microscope, however, the cone of light is narrower and enters the field of view of the objective. Within the objective is a ring-shaped device that both reduces the intensity of the light and introduces a phase shift of a quarter of a wavelength. This form of illumination causes minute variations of refractive index in a transparent specimen to become visible. This type of microscope is particularly effective for studying living tissue; hence, it is used widely in biology and medicine.

 

Very advanced optical microscopes include the near-field microscope, through which even details slightly smaller than the wavelengths of light can be seen. A light beam shining through a tiny hole is played across the specimen at a distance of only about half the diameter of the hole, until an entire image is obtained.

 

Electron Microscope

The magnifying power of an optical microscope is limited by the wavelength of visible light. An electron microscope uses electrons to “illuminate” an object; since electrons have a much smaller wavelength than light, they can resolve much smaller structures than light can. The smallest wavelength of visible light is about 4,000 angstroms (1 angstrom is 0.0000000001 meters); the wavelength of electrons used in electron microscopes is usually about 0.5 angstrom.

 

All electron microscopes comprise several basic elements. They have an electron gun emitting electrons that strike the specimen and create a magnified image. Magnetic “lenses” that create magnetic fields are used to direct and focus the electrons, because the conventional lenses used in optical microscopes to focus visible light do not work with electrons. A vacuum system is an important part of any electron microscope. Electrons are easily scattered by air molecules, so the interior of an electron microscope must be at a very high vacuum. Finally, electron microscopes also have a system that records or displays the image produced by the electrons.

 

There are two basic types of electron microscopes: the transmission electron microscope (TEM), and the scanning electron microscope (SEM). In a TEM, the electron beam is directed onto the object to be magnified. Some of the electrons are absorbed or bounce off the specimen; others pass through and form a magnified image of the specimen. The sample must be cut very thin to be used in a TEM; usually the sample is no more than a few thousand angstroms thick. A photographic plate or fluorescent screen is placed beyond the sample to record the magnified image. Transmission electron microscopes are capable of magnifying an object up to 1 million times.

 

A scanning electron microscope creates a magnified image of the surface of an object. When using an SEM, the object to be magnified does not need to be thinly sliced; the sample can be placed in the microscope with little, if any, preparation. An SEM scans the surface of the sample bit by bit, in contrast to the TEM, which looks at a relatively large part of the object all at once. In an SEM, a tightly focused electron beam moves over the entire sample, much the way an electron beam scans an image onto the screen of a television. Electrons in the tightly focused beam might scatter directly off the sample, or cause secondary electrons to be emitted from the surface of the sample; these scattered or secondary electrons are collected and counted by an electronic device located to the side of the sample. Each scanned point on the sample corresponds to a pixel on a television monitor; the more electrons the counting device detects, the brighter the pixel on the monitor is. As the electron beam scans over the entire sample, a complete image of the sample is displayed on the monitor. Scanning electron microscopes can magnify objects 100,000 times or more. SEMs are particularly useful because, unlike TEMs and powerful optical microscopes, SEMs produce detailed pictures of the surface of objects, providing a realistic three-dimensional image.

 

Various other electron microscopes have been developed. A scanning transmission electron microscope (STEM) combines elements of an SEM and a TEM, and can resolve single atoms in a sample. An electron probe microanalyser, which is an electron microscope fitted with an X-ray spectrum analyzer, can examine the high-energy X-rays that are emitted by the sample when it is bombarded with electrons. Because the identity of different atoms or molecules can be determined by examining their X-ray emissions, electron probe analyzers not only provide a magnified image of the sample as a conventional electron microscope does, but also information about the sample's chemical composition.

 

Scanning Probe Microscope

A scanning probe microscope uses a probe that scans the surface of a sample to provide a three-dimensional image of the network of atoms or molecules on the surface of the sample. A probe is an extremely sharp metal point that can be as narrow as a single atom at the tip. An important type of scanning probe microscope is the scanning tunneling microscope (STM). Invented in 1981, the STM uses a quantum physics phenomenon called tunneling to provide detailed images of substances that can conduct electricity. The probe is brought to within a few angstroms of the surface of the material being viewed, and a small voltage is applied between the surface and the probe. Because the probe is so close to the surface, electrons leak, or tunnel across the gap between the probe and surface, generating a current. The size of the tunneling current depends on the distance between the surface and the probe; if the probe moves closer to the surface, the tunneling current increases, and if the probe moves away from the surface, the tunneling current decreases. As the scanning mechanism of the STM moves the probe along the surface of the substance, the mechanism constantly adjusts the height of the probe to keep the tunneling current constant. By tracking these minute adjustments, a sketch of the contours of the surface is produced. After many scans back and forth along the surface, a computer is used to create a three-dimensional representation of the surface.

 

Another type of scanning probe microscope is the atomic force microscope (AFM), which does not use a tunneling current, so the sample does not need to be able to conduct electricity. As the probe in an AFM moves along the surface of a sample, the electrons in the metal probe are repelled by the electron clouds of the atoms in the sample. As the probe moves along the sample, the AFM adjusts the height of the probe to keep the force on the probe constant. A sensing mechanism records the up-and-down movements of the probe, and feeds the data into a computer; from this data, the computer constructs a three-dimensional image of the surface of the sample.

 

Carl Zeiss 1816 – 1888

German manufacturer of optical instruments, born in Weimar. He studied medicine, then in 1846 opened a shop in which he produced and repaired optical equipment for the University of Jena. Initially he specialized in the manufacture of microscopes. In 1866 he invited Ernst Karl Abbe, a German mathematician and physicist, to be his director of research; Abbe, who made outstanding contributions to the design of optical instruments, became Zeiss's partner in 1875. The Zeiss workshop soon acquired a worldwide reputation for the manufacture of high-quality optical equipment, particularly cameras and microscopes. After Zeiss's death, Abbe became sole owner of the firm, established international branch offices, and set up the Carl Zeiss Foundation for Research. The Zeiss factory and glassworks are now in Oberkochen and Mainz, Germany.