(Reprinted with permission from Research Associates Laboratory, Inc. Milford, Ohio 45150.)
Summary
Chlamydia psittaci infection is well established in
our pet bird population. Infections range from a clinically inapparent state, with intermittent
shedding of the organism, to overt clinical disease and mortality. Establishing a confirmatory
diagnosis of infection in the live bird is difficult as no single test can accurately diagnose
the disease in all species or at all times. Conventional diagnostic methods have inherent
problems in detection (sensitivity & specificity) and interpretation of results which are often
equivocal. A molecular based DNA assay was developed to test clinical samples for the presence
of the chlamydial organism. Test performance was evaluated both in vitro and in vivo via a
controlled infectivity study. The molecular based assay was extremely sensitive and specific in
detecting Chlamydia psittaci in infected birds.
Introduction
Avian chlamydiosis is an important disease that has historically
affected aviculture for decades. Disease impact ranges directly from overt clinical disease
and mortality to the often non-diagnosed effects on growth, health, and reproduction. The
Chlamydia psittaci organism exhibits a pronounced variability in host susceptibility,
pathogenicity, course of disease, and diagnostic parameters. While numerous diagnostic methods
have become available over the years, test results are often equivocal, making a confirmed
diagnosis elusive.
Chlamydial Infection
The elementary body is the infective form of the Chlamydial
organism which reproduces by infecting a host cell. Generally this occurs at the initial site
of infection. The columnar epithelium of the mucous membranes (and macrophages) lining the
respiratory or digestive route is generally the first area involved. During this localized
phase, the chlamydial organism enters the host cell, undergoes transition to a large reticulate
body (inclusion) and through growth and division, produces between 100-500 chlamydial bodies
per cell. Approximately 48 hours post infection, the cell may rupture, releasing these
infective organisms. Sometimes however, cells do not lyse, causing them to remain chronically
infected for long periods of time.
The organism has been isolated from over 120 species of birds with infection in parakeets,
lovebirds, cockatiels, amazon parrots, and macaws being the most prevalent. In general, young
birds are more susceptible to chlamydial infection than adults. New World species, especially
amazon parrots and macaws appear to be most susceptible while cockatoos and African gray
parrots are fairly resistant.
Chlamydia psittaci infections can persist in a clinically inapparent state with intermittent
shedding of the organism over long periods of time. Many birds, especially parakeets,
lovebirds and cockatiels, remain asymptomatically infected. These "carrier" birds appear normal
but can shed large numbers of organisms during periods of stress. Shedding occurs in the
droppings, nasal and ocular discharges, and oral and pharyngeal secretions. Feather dust,
droppings, and secretions are frequent sources of transmission as they dry and become dispersed
through the air. Other birds become infected by either inhaling or ingesting these sources of
the organism. Vertical transmission through the egg has also been shown to occur.
Incubation Period
The time between exposure and clinical disease is highly variable.
The diverse response to infection among the wide range of avian species and variable strain
virulence account for differences in the incubation period. Estimates of this period in caged
birds vary from days to weeks and longer. Most commonly, this period is at least 3 to 10 days
in length. Latent infections are common and active disease may occur years after exposure.
Estimates have ranged from 42 days up to several years. Incubation period is difficult to
assess due to these chronically infected birds that develop persistent, asymptomatic infections.
Clinical Disease
The course of Chlamydial infection in pet birds is extremely
variable. The pathogenicity of the organism and relative susceptibility of the host species
are major factors in determining the outcome of infection. A considerable diversity exists in
the pathogenicity and virulence of different strains of the avian Chlamydial organism. Some may
produce only sub-clinical infections while others almost always produce severe, fatal disease.
Infections in pet birds may range from showing no clinical signs to subacute, acute, or chronic
disease. The species of bird involved also affects the outcome of infection. One particular
strain may cause severe disease in one species while causing mild or no clinical signs in another
. Route of exposure and stress on the individual are other determining factors. The virulence
of a particular strain of Chlamydia and the disease that it produces is also dependent upon
certain hepatic and nephrotoxins. The high number of birds with significant chlamydial
antibody titers suggests that most infections occur without the development of obvious clinical
disease.
Chlamydia Diagnosis
Chlamydial infections can generally be adequately treated
provided they are accurately diagnosed. Accurate diagnosis however can represent a
considerable challenge.
Establishing a confirmatory diagnosis of infection in the live bird is difficult as no single
test can accurately diagnose the disease in all species or at all times. In one study, several
commonly used diagnostic tests each run on 246 individual birds, gave total positive test
results ranging from 2.5% to 58.5%.(1) Alternately, no single test can
guarantee that a bird is
free from the infection.
Traditionally, diagnostic tests for avian chlamydiosis have relied on the direct detection of
the organism in clinical samples or indirect detection by measuring a host response to the
organism. Antigen and organism tests detect physical characteristics of the organism being
present in various clinical samples or the organism itself (cell culture, enzyme linked
immunosorbent assay, & immunoflourescent stains). Host response tests often measure some type
of serologic response of the bird to infection (latex agglutination, blocking enzyme linked
immunosorbent assay, elementary body agglutination).
Conventional methods have inherent problems in detection (sensitivity & specificity) and
interpretation of results. No one particular method is "ideal." While most available tests
can support a tentative diagnosis of chlamydiosis, results are often equivocal and open to
interpretation. As in most diseases, test results must be interpreted in light of a thorough
medical evaluation involving a complete history, physical exam, routine diagnostic tests, and
response to therapy to arrive at a correct diagnosis. Current commonly used methods of
Chlamydia diagnosis are as follows:
Culture
Chlamydial culture, where the organism is grown in mice, chick embryos,
or tissue culture,
directly demonstrates the presence of the chlamydial organism in a clinical sample.
(2)
It historically has been the most specific diagnostic procedure and a considered "gold
standard" for chlamydial diagnosis. The method allows for the detection of a small number of
organisms making it a sensitive diagnostic tool. Tissue samples (liver, spleen, kidney) and
droppings can be tested in this manner. A positive result reliably predicts a chlamydia-infected
bird. However, a negative result is not as reliable in determining that a bird is not
infected. Disadvantages include false-negative results, which can be due to intermittent
shedding and/or loss of the organism's viability. Specialized handling of the clinical sample
is imperative to insure a reliable test. An additional disadvantage of cell culture is that it
can take up to 2 weeks to determine a result and is often expensive.
When screening live birds for C. psittaci, the microorganism may not be shed daily. Serial
specimens should be collected over a 3 to 5 consecutive day period. Specimens should be
refrigerated and transported with wet ice. Diagnosis by isolation of C. psittaci in cell
culture remains difficult and requires sufficient numbers of viable, infectious organisms to
confirm infection.(2)
ELISA
Enzyme linked immunosorbent assay methods (ELISA) for the detection of C.
psittaci relies on a
monoclonal antibody binding to a specific antigen of the chlamydial organism.
Two of the ELISA tests currently being used to detect C. psittaci were developed for human
Chlamydia detection (IDEIA, Johnson & Johnson Surecell). While their sensitivity and specificity
for detecting C. psittaci in birds is unknown, they have had some benefit as an in-clinic
screening procedure.(3) These results must be evaluated in light of other
clinical findings.
If a bird is ELISA positive but appears clinically normal, other tests should be run to verify
the infection. Conversely, chlamydiosis cannot be ruled out in a clinically ill bird with a
negative ELISA result.
Antibodies generally react weakly with the chlamydial elementary body because the antigen is
often not readily accessible for interaction. False negative results will occur when
insufficient numbers of organisms exist in the clinical sample. Alternately, high levels of
certain contaminating bacteria (Staphylococcus) can cause false positive results. ELISA
methods, in general, are less sensitive than cell culture isolation.
Immunofluorescent Stains
Antibodies produced against Chlamydial antigens can be
combined with
fluorescein stains and used to identify elementary bodies in a test sample. Choanal, cloacal
or fecal smears from live birds or impression smears from necropsy tissues can be tested. This
method is most useful if large amounts of antigen are present in the sample. Non-specific
fluorescence in cloacal or fecal smears reduces the specificity of this test. The test does
have the advantage that it can aid in a rapid diagnosis of infection and does not require the
organism to be in a viable state.
Serologic Tests
Serology tests detect antibody produced by the bird in response to
chlamydial infection. Many
methods are available including direct complement fixation (DCF), indirect complement fixation,
latex agglutination (LA), blocking enzyme linked immunosorbent assay (BELISA) and elementary
body agglutination (EBA). The major problem with serologic testing is the interpretation of
results. A positive serologic test result is evidence that the bird probably was exposed to C.
psittaci in the past, but does not prove the bird is currently infected. Conversely, a negative
serologic test result is not proof that the bird is free of infection. (4)
Direct Complement Fixation
The DCF test has been the most commonly used method in the past. The test is sensitive in
detecting antibody activity but it only detects one type of antibody, IgG. IgG titers persists
for long periods of time and do not usually change dramatically.(5) They
indicate a possible past
exposure to chlamydia but are not very useful in differentiating an active, current infection.
DCF is diagnostic if a clinically ill bird is initially DCF negative, then shows a significant
increase in IgG levels 5-7 days later. The test is therefor useful, only if paired serum
samples are tested.
Another disadvantage is that some birds such as parakeets, lovebirds, and African Grey parrots
produce antibody very irregularly. They may not develop sufficient antibody levels that can be
readily detected. This will result in a false-negative test result.
The indirect or modified complement fixation test is more sensitive than the DCF however it has
the same disadvantages.
Latex agglutination
The LA test detects mainly serum IgM antibody.(6)
It is not as sensitive in
detecting IgG as DCF.
IgM usually is present during the acute and active stage of chlamydial infection and does not
persist for a long time like the DCF antibody. The LA test can be used to determine treatment
efficacy because IgM levels generally drop after the infection has been eliminated.
False-negative results are possible on specimens from birds with acute stage infections when
antibody activity is not yet detectable and for certain species that may not produce detectable
antibody (lovebirds, parakeets, cockatiels). While positive test results are usually accurate,
the LA has a low test senstivity.
BELISA
A chlamydia blocking antibody test has been developed in Europe. The BELISA test identifies
serum antibodies in the blood of the bird. It is extremely sensitive, but test specificity has
been questioned. (1) BELISA is not currently available or approved in the
U.S.
EBA
Like the latex agglutination test the elementary body agglutination test determines active
infection by detecting IgM antibody. It is however much more sensitive. It is an effective
test to screen for Chlamydia-infected birds especially in birds with low grade infections.
(4)
Although the specificity of EBA is lower than desired, it is probably the most useful current
serology test now available.
Molecular Based Diagnostics
Over the last 15 years, advances in the field of molecular biology have allowed for the
development of extremely sensitive and specific nucleic acid (DNA, RNA) detection methods.
The first applied use of viral specific DNA technology in avian disease diagnosis was marked by
the development of tests for the Psittacine Beak and Feather Disease (PBFD) and avian polyoma
(APV) viruses (Psittacine Research Group, University of Geaorgia). Research Associates
Laboratory (RAL) has commercially offered these tests since 1992.
These DNA based diagnostics use specific nucleic acid probes, to identify distinct nucleic acid
sequences, unique to the desired microorganisms' genome. The sequences are detected in DNA
extracts from submitted blood and tissue swab samples. DNA amplification techniques coupled
with internal sequence probe detection allows for diagnostic tests of extreme specificity and
sensitivity.(6,7)
The efficiency of molecular diagnostic techniques generally exceeds that of other methodologies.
With the goal of improved diagnosis of avian Chlamydial infections and detection of non-clinical
, "carrier" birds, RAL has developed an applied molecular based Chlamydia assay.
Materials and Methods
Molecular Based Assay
The RAL Chlamydia psittaci Assay was developed to quantify the amplification product derived
from a conserved major outer membrane protein (MOMP) gene segment of the avian strains of
Chlamydia psittaci.(8) DNA was extracted from blood, choanal swab, and
cloacal swab samples
utilizing a modification of standard methods.(2) Specific DNA primer
sequences were determined
from analysis of a conserved MOMP gene segment of the Chlamydia psittaci genome.
(8,10,11) The
MOMP gene sequence was selected as the target for PCR-based detection and differentiation of
C. psittaci as it comprises the major exposed structural protein of the infectious elementary
body.(8,12,13) A semi-nested polymerase chain reaction (PCR*) was
developed and used to
asymmetrically amplify a 199 base pair sequence of the MOMP gene fragment of Chlamydia
psittaci. An internal 58 bp fragment was further amplified and detected from within the
asymmetric amplification products. Based upon the limiting assay on serially diluted
positive samples, the assay sensitivity was optimized for the detection of 10 copies of
target DNA. The assay was further validated by comparison of results with known positive
test samples. Assay specificity was assessed by testing negative control samples containing
genomic DNA of human origin and that of major species of psittacine pet birds.
Controlled Infectivity Study
A controlled infectivity, pilot study was conducted at a university laboratory, to evaluate
the performance of the RAL chlamydia assay. Six cockatiels (Nymphicus hollandicus) were selected
for study based on normal findings on physical examination, choanal and cloacal cultures,
complete blood counts, and direct and flotation fecal examination. Choanal and cloacal swabs,
and whole, uncoagulated blood were tested for Chlamydia psittaci by the RAL assay.
All six birds were inoculated with a pathogenic strain of Chlamydia psittaci by an
intra-conjunctival route. Whole unclotted blood, choanal swabs, and cloacal swabs were
collected on days 5, 10, and 15 post-inoculation. All clinical samples were tested for
Chalamydia psittaci using the RAL molecular based assay. On day 15, the birds were
euthanitized and tissues collected for histopathological exam. Pooled organ samples the birds
were cultured for the presence of Chlamydia psittaci.
Results PCR assay
Within 43 cycles of each assay, nonspecific amplification was insignificant for negative
control samples containing genomic DNA of human origin or major species of psittacine pet
birds. The assay also consistently detected Chlamydia psittaci nucleic acid in positive
laboratory control samples. The observed target sensitivity of the RAL assay, based upon
the limiting assay on serially diluted positive samples, was consistently < 10 copies of
Chlamydia psittaci gene sequence with detection limits down to four copies. An independent,
molecular biology laboratory validated this assay sensitivity.
The molecular based assay results on clinical samples taken during the controlled infectivity
study are shown in Table 1. On day 5 post-infection, all the test birds showed positive choanal
swabs whereas all the cloacal swabs and blood samples tested negative. On day 10 testing, two
birds showed positive cloacal swab results. All remained positive on choanal swabs and
negative on blood sample testing. By day 15 post-infection, all birds showed positive choanal,
cloacal, and blood test results.
TABLE 1. Molecular based assay test results in study birdsDAY 5 DAY 10 DAY 15 ID Choanal Cloacal Blood Choanal Cloacal Blood Choanal Cloacal Blood -- ------------------------- ------------------------- ------------------------ A + - - + - - + + + B + - - + + - + + + C + - - + - - + + + D + - - + - - + + + E + - - + + - + + + F + - - + - - + + + (Days listed are days post infection) (-) = negative molecular based assay test result; (+) = positive test result
The six test birds remained clinically normal throughout the 15-day study period. Histopathology revealed splenomegaly resulting from lymphoid hyperplasia, fibrinoid necrosis of the spleen, and a mild necrotizing hepatitis. Several birds showed a few aggregates of leukocytes comprised of heterophils, lymphocytes, and mononuclear cells. No pulmonary lesions were identified. The abnormal lesions were consistent with a diagnosis of chlamydiosis. No significant bacteria were isolated on pooled tissue culture however the pooled sample was culture positive for Chlamydia psittaci.
Discussion
PCR amplification of chlamydial DNA using primers specific for conserved regions of the MOMP
gene has enabled the detection of fewer than 10 elementary bodies in clinical samples.8
The RAL molecular assay compares favorably with the results from other researchers as it
consistently detected <10 copies of target DNA sequence in positive control samples. Test
specificity was also very good, as the test did not show non-specific amplification of control
DNA or negative clinical samples.
The first post-infection clinical sampling taken on day 5 showed positive choanal swab test
results on all the study birds. This represents a logical progression of the infection as the
conjunctival fluids are naturally drained through to the oral cavity. The fact that all the
birds showed negative blood test results on day 5 & 10 most likely indicates that the infection
was still in the "localized phase" and had not yet become systemic. By day 10, two birds
showed positive cloacal swab results while the infection continued in the oral cavity (positive
choanal swab test) on all birds.
Although all the study birds remained clinically normal, they all showed evidence of systemic
infection by positive blood and swab test results on day 15. The molecular assay was consistent
in identifying sub-clinical chlamydial infection in these normal appearing birds. Pathology
examination revealed mild changes in some tissues that were compatible with chlamydial infection.
Pooled tissue samples supported systemic infection as they cultured positive for Chlamydia
psittaci at the end of the study period (Day 15).
The high degree of sensitivity and specificity of this test is consistent with the other avian
molecular based diagnostic assays. False positive test results are extremely unlikely. False
negative test results may occur but appear to be minimal.
Obtaining a confirmed diagnosis of chlamydial infection in pet birds has often been difficult
for the avian practitioner. While other current diagnostic methods can identify
chlamydia-infected birds, the molecular biology approach is a potentially superior technique.
It appears ideally suited to detecting states where infectivity is low or where a rapid assay
is desired. It can provide a confirmed diagnosis of Chlamydial infection in the clinically
inapparent and/or persistent infected state. It also has the advantage of providing a sensitive
method for chlamydia detection, which is not dependent upon a host immune response.
The pilot study demonstrates the potentiality of molecular techniques in the diagnosis and
differentiation of Chlamydia psittaci infection. Due to the initial localized phase of
chlamydia infections, a combined choanal/cloacal swab may be the best sample to submit in
early exposures. The blood test appears to reliably detect the non-clinical, infected
individual within a short time (15 days) following infection. Further correlation of test
results with other diagnostic methods and observed clinical cases in the field are needed to
further validate this test.
REFERENCES General: Arnstein,P. and Meyer, K. Psittacosis and Ornithosis. In, Petrak, M. Diseases of Cage and Aviary Birds. Lea & Febiger, Philadelphia. 1982;528-534. Compendium of Psittacosis (Chlamydiosis)Control. National Association of State Public Health Veterinarians Inc. 1995. Flammer, K. An update on the diagnosis and treatment of avian chlamydiosis. Kirk RW and Bonagura JD (eds.), in: Current Veterinary Therapy ,VI. Philadelphia, W.B. Saunders Co. 1992;1150-1153. Gerlach, H. Chlamydia. In, Ritchie, B., Harrison, G., and Harrison, L. (eds). Avian Medicine, Principles and Application. Lake Worth, Florida, Wingers Publishing. 1994; 984-996. Tully, T.N., et al. Chlamydiosis. Seminars in Avian and Exotic Animal Medicine. 1993; 2:153-189. Listed: 1. Ley DH, Flammer K, Cowen P and Whitt D. Performance characteristics of diagnostic tests for avian chlamydiosis. J Assoc Avian Vets. 1993; 7:203-207. 2. Pearson, J.E. et.al. Isolation and identifiaction of Chlamydia psittaci from pet birds. J. Am. Vet. Med. Assoc. 1989; 195:1564-1567. 3. Kingston RS. Evaluation of tile Kodak SureCell chlamydia test kit in companion birds. J. Assoc. Avian. Vets. 1992; 6:155-157. 4. Grimes, J.A. Evaluation and Interpretation of Serologic Responses in Psittacine Bird Chlamydiosis and Suggested Complementary Diagnostic Procedures. J. Assoc. Avian Vets. 1996; 10:75-82. 5. Grimes, J.A. and Arizmendi, F. Basis for interpretation of chlamydia serology results. Proc. Annu. Conf. Assoc. Avian Vets. 1992:59-71. 6. Grimes, J.A., Phalen, D.N., and Arizmendi, F. Chlamydia latex agglutination antigen and protocol improvement and psittacine bird anti-chlamydial immunoglobulin reactivity. Avian Dis. 1993;37:817-824. 7. Dahlhausen RD, Radabaugh CS. Update on psittacine beak and feather disease and avian polyomavirus testing. Proceedings Annu Conf Avian Vet 1993;5-7. 8. Rasmussen,S. and Timms, P. Detection of Chlamydia psittaci using DNA probes and the polymerase chain reaction. FEMS Microbiology Letters 1991; 169-174. 9. Sambrook J, Fritsch EF, Maniatias T. Molecular cloning: a laboratory manual. New York, NY: Cold Spring Harbor Press, 2nd Ed, 1989. 10. Herring, A., Tan, t., et.al. Sequence analysis of the major outer membrane protein gene of an ovine abortion strain of Chlamydia psittaci. FEMS Microbiol.Lett. 1989; 65:153-158. 11. Pickett, M., Everson, J., and Clarke, I. Chlamydia psittaci ewe abortion agent: complete nucleotide sequence of the major outer membrane protein gene. FEMS Microbiol.Lett. 1988; 55:229-234. 12. Baghian,A., Shaffer, L., and Storz, J. Antibody response to epitopes of chlamydial major outer membrane proteins on infectious elementary bodies and of the reduced polyacrylamide gel electrophoresis-separated form. Infect.Immun. 1990; 58:1379-1383 13. Kaltenboek, B., Kousoulas, K., and Storz, J. Detection and Strain Differentiation of Chlamydia psittaci mediated by a two-step polymerase chain reaction. J. Clin. Microbiol. 1991; 29:1969-1975.
Return to FAQ