
NCSTTechnicalReport(December2000)

Signal Processing over Triangle Meshes

DineshShikhare

NationalCentrefor SoftwareTechnology
�

Abstract

Trianglemeshmodelshave becomeestablishedasthemost
generaland flexible schemeto representcomplex surface
modelsin theareasof architecturaldesign,mechanicalCAD,
heritagesculptures,etc. for variousapplicationssuchasin-
teractive visualization,FEM analysis,progressive transmis-
sion for collaborative exchangeof modelsin networkeden-
vironments.With thearrival of powerful rangeimagescan-
ners,acquisitionof very detailedand accuratedatarepre-
sentingthesemodelshasbecomecommon. Thesedataare
alsorepresentedastrianglemeshes.In therecentyearsa lot
researchhastakenplacein theuseof surfacemeshes.

In this reportwe presentour studyof the state-of-the-art
in developmentof signalprocessingtechniquesover thedo-
mainof unstructuredtrianglemeshes.Thesetechniquesin-
cludefairing of surfaces,filtering of modelsfor denoising,
smoothing,detail suppression,featureenhancement,spec-
tral decomposition.We alsostudytheapplicationsthathave
driventhesedevelopments:compressionof 3D models,wa-
termarkingof models,multi-resolutionediting, interactive
geometricmodelingandprogressivetransmission.

1 BACKGROUND

Signal processingtoolkits on spatialdataentities like dis-
crete 1D signals, 2D signals (images),3D signals(volu-
metric data) are well understoodand utilized extensively.
Various mathematicaltechniqueslike Fourier transform,
Wavelets,andotherseparabletransforms[2] have beende-
velopedto treat datalike vectors,images,volumetric data
assignals. Many signalprocessingtransformationsareap-
plied on thesedatalike denoising,low-pass,high-passand
band-passfiltering, convolutionwith varioustransformation
kernels,andso on. Signalprocessingtransformshave also
beenrecentlyusedfor applicationslike compressionof im-
ages[2], watermarkingof digital contentlike images,audio
signal,digital videoandprogressivetransmissionschemefor
thesemediaelements.

Thecommonfeatureamongall thesedatais thatthey have
aregularstructure.One-dimensionaldigital signalsaresam-
pledatregularintervalsandarerepresentedin aregularfash-
ion in the sensethat

�
-th dataelementhasa neighbourat�
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-th positionandaneighbourat
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-th position(ex-

cept the boundaryelements).This regular structurelets us
easilythink of thedatain termsof a weightedsumof some
basisfunctions.For example,a one-dimensionaldigital sig-
nal can be decomposedinto harmonicsof sinusoidalbasis
functions. It could alsobe decomposedandrepresentedas
a “coefficient – basisfunction” summationusing the Haar
basis.In general,thedecompositionmayberepresentedas� ��� 
���� �������
where,

� ��� 

is the original function,

���
arethe coefficients

for thecorrespondingbasisfunctions
���

.
Mostof themathematicaltoolsof thesekind easilyextend

from their one-dimensionalstatementto higher-dimensional
formulations. For example,discreteFourier transformation
extendsto higher dimensionaldatamodels; Haar wavelet
transformsareeasilyextendedfor useonhigherdimensional
datalike 2D imagearrays,3D volumetricdata. Again, the
structureamongthe elementsof thesedata is uniform in
termsof their neighbourhood.This structureallows aneasy
parameterizationof the dataalongthe directionsof the in-
herentindexesthedataelementshave.

Figure1: Trianglemesh– notethe differentdegreeof con-
nectivity for eachvertex

Trianglemeshesrepresentingsurfacesof arbitrarytopolo-
gies have now becomevery popular in many applications
in 3D graphicsandotherrelatedfields. Thesemesheslack
a regular structurethat is seenin someof the mediaele-
mentsdiscussedabove. A triangle meshis denotedas a
pair

��� �"! 

,
�

is a setof # pointspositions
� �%$'& �)(*,+
- �/.0�1. #32 , in Euclidianspace,
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is an abstract simplicial complex which containsall the
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topological(akaconnectivity) information.Thecomplex
!

is a set of subsetsof
$
� �:9;9<9;� #32 . Thesesubsetsare called

simplicesandcomein threetypes: vertices = �>$�� 2 (@? ,
edgesA �B$�� �DC 2 (FE andfaces

� �G$H� �ICJ�LK 2 (NM , so that! � ?FOPEFOPM
. Two verticesareneighbours if

$H� �IC 2 (QE .
The numberof neighbouringverticesfor the

�
-th vertex is

denotedasits degree. Theneighbourhoodof a
�
-th vertex is

denotedas
�IR

. The meshin Figure1 shows a samplemesh
having 14 vertices,28 edgesand16 triangles.Notethatthis
meshhasverticeswith varyingdegrees.

Given this definition of neighbourhoodbetweenany two
dataelements,we know that generaltriangle mesheswill
have varyingstructureacrossdifferentvertices.Theearlier
developmentsin thesignalprocessingtechniquescannotbe
easilyextendedto thesedatasets.Last few years’research
in the handlingof trianglemeshmodelshasseendevelop-
ment of a new classof techniquesfor carrying out signal
processingtransformswhichareintuitively identicalto those
appliedon the “structured”models,but the detailedformu-
lationsvarysubstantially.

In this report, we presentour study of the various ap-
proachesresearchershave taken to treatunstructuredtrian-
gle meshesassignalsfor carryingout globalandlocal oper-
ationson thesemodels.Sincethefield is still youngit may
not beeasyto createa cleartaxonomyof techniques,sowe
just presentthecontributionsof variousresearchersanddis-
cusstherelationshipamongtheseefforts in theend.

2 FAIRING OF SURFACE DESIGN

Surfacesobtained from volumetric medical data by iso-
surfacegenerationalgorithms[12] or constructedby inte-
grationof multiple rangeimages[19] usuallyhave a large
numberof triangles.During theacquisionandintegrationof
thesesurfaces,somepartsbecomenoisyeitherdueto errors
in registrationor dueto noisein theacquisitionprocess.Fair-
ing thesesurfacesautomaticallyandefficiently hasattracted
someattentionrecently.

Fairingasurfacemodelrefersto removalof geometricdis-
continuitiesin the given triangle meshmodel. The signal
processingapproachviews this problemin termsof signal
smoothing.Thespaceof signals– functionsdefinedon cer-
tain domain– is decomposedinto orthogonalsubspacesas-
sociatedwith differentfrequencies,with the low frequency
componentsof thesignalregardedasthesubjacentdataand
thehigh frequency contentasnoiseto beremoved.

Taubin [16] haspresentedan efficient signal processing
schemefor fairingsurfacedesigns.His approachis basedon
theclassicalresult:

Fourier transformcan be seenas the decomposi-
tion of thesignal into a linear combinationof the
eigenvectorsof theLaplacianoperator.

Karni andGotsman[7] give a detailedformulation of this
decomposition.Think of trianglemeshasa graphconsist-

ing of # vertices.The adjacency matrix S of this graphis
populatedby placing S �UT��V�

if
$H� �DC 2 (/E and0 otherwise.

TheLaplacianoperatorassociatedwith S is W �YXP�FZ S ,
where

Z
is a diagonalmatrix suchthat

Z �;� �[�]\]^ �
, where^ �

is thedegreeof
�
-th vertex. Theeigenvectorsof W form an

orthogonalbasisof
*,_

. Theassociatedeigenvaluesmaybe
consideredfrequencies1 andthethreeprojectionsof eachof
thecoordinatevectorsof a 3D meshgeometryvectoron the
basisfunctionsarethespectrumof thegeometry. Note that
thereis a separatespectrumfor eachof

�
,
7

and
8

compo-
nentsof thegeometryandthey behavedifferently, depending
on thegeometricproperties(e.g.curvature)of themesh.

The essentialobservation is that geometriesthat are
smoothrelative to the meshtopology shouldyield spectra
dominatedby the low frequency components.By “smooth
relative to the meshtopology” we meanthat the local ge-
ometry, asdefinedby thetopologicalneighbourhoodsof the
mesh,is suchthatthecoordinatesof thevertex areveryclose
to theaveragecoordinatesof thevertex’sneighbours.Hence,
theLaplacianoperator, whenappliedto themeshgeometry,
will yield verysmallvalues.

It is interestingto notethatthebasisusedfor thedecompo-
sition of thetrianglemeshsignalis independentof thegeo-
metricrealizationof thesurfacein termsof coordinatevalue
of the vertices. The basisis entirely derived by using the
connectivity informationof themesh.Usingthisformulation
asthe basictool for filtering of surfacegeometryhassome
limitations. The biggestlimitation is the time complexity
of computationof the eigenvectors,which runsinto ` �6a + 

steps,whichmeansthatcomputingthebasisfor meshescon-
tainingeven1000verticesis unthinkable.Hencethisscheme
of signalprocessingis usableonly for smallmeshes.Appli-
cationof sucha methodfor large meshesmustbe doneby
first partitioning the meshinto smallerpiecesand then re-
constructingthe modelafter the applicationof the filtering
processto thesmallpieces.

In order to avoid this computationallimitation, Taubin
[16] proposedan efficient schemethat usesrepeatedappli-
cationof aspatialdomainoperatoronthemeshto obtainfair
surface.He usesthefirst order neighbourhoodstructurefor
theformulationof theoperator.

A discretesurfacesignalis a function
� � �cb��H9<9;9;�d� _fe de-

finedon theverticesof a polyhedralsurface.TheLaplacian
of thesignalis aweightedaverageovertheneighbourhoods:g � �h�B�TjiJ�lknm �UT ��� �o� � T�

wherethe weights m �UT arepositive numbersthat addup to
one.Theweightscanbechosenin many differentwaystak-
ing into considerationtheneighbouringstructures.Onepar-
ticularly simplechoiceis to set m �pT equalto theinverseof the

1The caveat hereis that treatingthe eigenvaluesas the frequenciesis
only anotionalconcept.Sincetheunderlyingmeshis unstructured,theidea
of somefrequency beingassociatedwith somediscretefeatureis very hard
to establish.However for theapplicationat hand,this questionis not very
bothersome,althoughit is interestingto investigate.
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numberof neighbours
�]\ - �DR -

of vertex = � , for eachelement
C

of
�IR

. A moregeneralwayof choosingweightsfor a surface
with the first orderneighbourhoodstructureis usinga pos-
itive function q � = � � = T 
,� q � = T � = � 
 definedon the edgesof
thesurface

m �pT�� q � = � � = T�
rts iJ�lk q � = � � = T 

For example,the functioncanbe thesurfaceareof the two
facesthat sharethe edge,or somepower of the length of
the edge q � = � � = T 
u�%v = � � = T v:w . The exponent x �y�z�
works in orderto positioneachvertex in the centroidof its
neighbourhood.

If { � � m �pT�
 is the matrix of weights,with m �pT|�%}
when

C
is not a neighbourof

�
, matrix W cannow bedefined

as W �~X�� { . Sincethe decompositioninto eigenvec-
tors is infeasible,an approximateprojectionis appliedfor
achieving low-passfiltering. This is formulatedasthemulti-
plicationof function

� � W 
 of matrix W by theoriginal signal�4� � � � W 
 ���
andthisprocesscanbeiteratedmultiple times�c� � � � W 
 ���

The functionof onevariable
� ��� 


is the transferfunction
of the filter. In thecaseof Gaussiansmoothingthe transfer
functionis

� ��� 
��V���Q� �
. To definea low-passfilter, wened

to find apolynomialsuchthat
� ��� ��
 �z� �

for low frequencies
and

� ��� �D
 � � }
for high frequenciesin theregionof interest,

say
� (3� } �"�]�

. Taubinchose� ��� 
�� � ����� � 
 � ����� � 

where,

�	�t}
, and

�
is a new negativescalefactorsuchthat�����5�

. That is, after performingthe Gaussiansmooth-
ing stepwith thepositive scalefactor

�
for all vertices– the

shrinkingstep–, performanothersimilar step� � � � � � �N� g � �
for all thevertices,but with negativescalefactor

�
– theun-

shrinkingstep. The valueof the band-passfrequency
�����

,
suchthat

� ������� 
����
. Thevalueof

�����
is� ��� � �� � �� �|} 9

This algorithmis linear in bothtime andspace,simpleto
implementandproducessmoothingwithout shrinkage.The�

value must be chosenso as to minimize
K
, the number

of iterationsof the filter. Taubin[16] claimsthat the algo-
rithm producesacceptablefaringwithin 50 iterations.Most
of theliteratureon fair surfacedesigncombinessubdivision
schemeswith smoothingformulations[10, 4]. Subdivision
of the meshis done to createmore points to capturethe
smoothlocal geometryfeatures.Fairing procedureandsub-
division stepsalternateuntil a surfacesatisfyingthedesired
propertiesis obtained.

Guskov et al [4] presenta toolbox of signal processing
utilities on triangle meshmodels. In addition to Taubin’s
work, they illustrateenhancementof features,generationof
texture coordinatesfor the filtered and refinedmodels(us-
ing subdivision). They call theLaplacianfilter a relaxation
operator,

* * &4�h�B�TjiJ�;knm �UT'&�T 9
The weights m �UT are functions of not only the degree of
connectivity in the locality but alsothe geometricpositions
of the vertices. This relaxationoperatoris usedto achieve
smoothing.

Enhancementof featuresis achievedto emphasizecertain
frequency ranges.Theenhancementof pointsis achievedbyE &4�h�N&4�4�N� � &n�o� * � &n�D

where

�Q���
. This techniqueenhancesthe featuresthatare

suppressedby low passfiltering of themodel.

3 COMPRESSION

Many compressionschemesfor traditional media,suchas
images,employ spectralmethodsto achieveimpressivelossy
compressionratios, for example,the popularJPEG method
[13] which relieson thediscretecosinetransform.Thesein-
volve expressingthedataasa linearcombinationof a setof
orthogonalbasisfunctions,eachfunctioncharacterizedby a
“frequency.” The underlyingassumptionis thata relatively
goodapproaximationmaybeobtainedby usingonly asmall
numberof low-frequency basisfunctions. The coefficients
of theseselectedbasisfunctionsmaythenbecompactlyen-
codedby usinga varietypredictive encoders,lossyquantiz-
ersandsymbolencoderslikeHuffmancompressionor arith-
meticencoderscheme.

Karni andGotsman[7] usethis basicidea for the com-
pressionof trianglemeshgeometry. They usethe formula-
tion describedin the previoussectionfor decompositionof
meshgeometrysignalinto its spectralcomponents.Only a
few low-frequency coefficientsareselectedfor achieving a
highcompressionratio. Theconnectivity of themeshis then
compressedusingbestof the earlier compressionschemes
[18, 3, 1, 17, 15].

For largemeshes,computationof eigenvectorsis veryex-
pensive. Hencethey partition the meshinto smallersub-
meshes,eachof which is then treatedseparately. This, of
course,resultsin degradationof codingquality andcanbe
seenafterreconstructionin theform of “edge-effects”along
the sub-meshboundaries,but hasthe advantagethat local
propertiesof themesharecapturedbetter. In orderto mini-
mizethedamage,thepartitionsshouldbewell balanced,that
is, eachsub-meshshouldcontainapproximatelythe same
numberof vertices,andalso,thenumberof edgesstraddling
the differentsub-meshes,the edge-cutbe minimized. Op-
timal solution to this problemis NP-complete. Karni and
GotsmanuseanalgorithmcalledMeTiS [8].
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The encodingof the coefficients of the spectraare uni-
formly� quantizedto finite pricision. This, of course,intro-
ducesfurther lossin theencodingof themodel. Theresult-
ingsetof integersis thenentropy codedusingHuffmancoder
[13]. Quantizationerrorscanbeminimizedby usingsophis-
ticatedquantizationschemeslike median-cutquantization.

Khodakovsky et. al. [9] introducea wavelet basedtech-
niquefor progressive compressionof geometry. This algo-
rithm requiresthe sourcemeshto have a regular structure.
They have definedwaveletbasisover manifoldsurfacesfor
multi-resolutionanalysis. The multi-resolutionanalysisof
the the surfacenaturally provides levels of detail progres-
sively. The datastoredto representthe modelbegins with
a coarsemodelandsubsequentdatastoresthe detail coef-
ficientsto refinethe model. Compressionis achievedsince
thedetailcoefficientsareincrementallystoredandaremuch
smallerin magnitude.Thesesmallvaluescanbeencodedef-
ficiently usingverysmallnumberof bits. Also, many higher
order detail coefficients can be ignoreddue to their negli-
gible values. The limitation of this approachis that it only
worksfor manifoldsurfacesandhasastrongrequirementof
a regularconnectivity in themesh.

Both theseapproacheswork effectively on meshesthat
modelsmoothsurfacegeometrysincea largeamountof ge-
ometricinformationis capturedby the low frequency com-
ponentsof thespectralanalysisandin multi-resolutionanal-
ysis. Thesemethodsdo not work sufficiently well on engi-
neeringmodelscontainingsharpedgesandfolds. Thesharp
edgescorrespondto the high frequeciesin the decomposed
signal,forcing thecodingof largenumberof coefficients.

Sinceboththeseschemesarelossy, theissueof controlling
lossinessandalso that defining lossinessis very important
for usein precisionapplications.

4 FOURIER TRANSFORM BASED
TECHNIQUES FOR SUPPRES-
SION OF DETAILS

In trianglemeshmodels,the geometricfeaturesthat repre-
sentdetailslike smallnotches,protuberances,slots,sockets,
fairedcornersrequirea lot of triangularelementsfor accu-
raterepresentation.InteractivevisualizationandFEM analy-
sisapplicationsdonotrequirethesedetailedfeaturesin mod-
els because:(a) the visual or numericalresultsobtainedby
having thosefeaturesin themodelarenot significantdiffer-
ent from thoseobtainedby simplifying the models,(b) the
computationalload increasessignificantlyin having to pro-
cessthe additional large numberof triangle presentin the
modelto representthefeatures.Hencea lot of researchhas
takenplaceto simplify themodelto reducethetrianglecount
[5]. Thecriteria for selectionof verticesandtrianglesto be
removeddeterminesthe usability of a particularsimplifica-
tion algorithmfor thegivenapplication.

LeeandLee[11] havepresentedaFouriertransformbased

schemefor suppressionof geometricdetailsin polygonmesh
modelsthatrepresentsolids.Their schemeis basedon low-
passfiltering in the frequency domain. The detail suppres-
sionprocedureconsistsof thefollowing steps:

1. Constructa bounding volume for the triangle mesh
model.

2. Discretizethisboundingvolumeinto �@���Q� � number
of elementsin

�
,
7

and
8

directions.Thesevolumetric
elements(voxels) arethenlabelledwith colour values
asfollows:

(a) if thevoxel liesinsidethesolidobject,labelit with
a largepositivevalue,

K
,

(b) if the voxel lies on the boundaryof the solid
model, label it with a positive value

�
suchthat� � K

, and

(c) if the voxel lies outsidethe solid, label it with a
negativevalue.

This givesa volumetricdatarepresentingthesolid ob-
ject, � �6���d7c�'8 
 .

3. Obtaina Fouriertransformof thevolumetricdata:�o U¡�¢�£L¢�¤¦¥]§�¨Y¨�¨0©ª U«j¢�¬L¢�­®¥<¯±°³²�´�µ  U¡j«'¶
£®¬d¶
¤�­®¥�· « · ¬ · ­
4. Apply a low-passfilter ¸ �6¹�� = � m 
 to this the trans-

formedvolumetricdatato obtain:º � ��¹�� = � m 
�� ¸ �6¹�� = � m 
h» º �6¹�� = � m 

This will eliminatethe high-frequency componentsin
thesignalcorrespondingto the small anddetailedfea-
turesin themodel.

5. Apply inverseFourier transformto obtainlow-passfil-
teredmodelin its volumetricrepresentation.

©"¼l U¡�¢�£L¢6¤¦¥]§ ¨Y¨Y¨ �n¼� p¡�¢�£L¢6¤�¥½¯®°³²�´�µ  p¡j«"¶J£®¬'¶J¤�­®¥I· ¡ · £ · ¤
6. Reconstructthevertices,edgesandfacesof thepolyg-

onalmodelto obtainthesimplifiedpolygonmesh.This
stepof the algorithmis the hardestto implement.The
geometryis recoveredasfollows:

(a) After the transformand low-passfiltering there
may be somegapsin the boundaryin the volu-
metric data. Fill the gapsin the boundarycolour
to ensurethatthedatarepresentsa solidmodel.

(b) Project the verticesof the original model onto
the filtered volumetric model to obtain the new
positionsof the vertices. There may be cases
when the verticescan not be projectedbecause
theboundaryrepresentingsomesmallfeaturehas
completelyvanished. In suchcasesthere is no
needto project thesevertices– the small feature
hasbeencompletelyremoved.

4
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(c) Constructedges,facesusing the connectivity in
theoriginalmodel.

(d) Decimatethethoseverticesthatcorrespondto lin-
earedgesandplanarcollectionof faces.

LeeandLeehave demonstratedthis techniqueof simpli-
fication on solidsthatareformedby graphfunctionsof the
type

8 � � �6�h�'7 

. This methodis necessarilyinteractive in

its use.Theselectionof thecut-off frequency of thelow-pass
filter playsa crucialrole in thekind of detail that is retained
in theresultingmodel.

5 WATERMARKING

Watermarkingprovidesa robust methodfor copyright pro-
tectionof digital mediaby embeddingin the datainforma-
tion identifying the owner. The bulk of researchon digital
watermarkinghasfocusedon mediasuchasimages,video
andtext. Robustwatermarksmustbeabletosurviveavariety
of “attacks”, including resizing,croppingandfiltering. For
resilienceto suchattacks,recentwatermarkingschemesem-
ploy aspread-spectrumapproach– they transformthedocu-
mentto thefrequency domainandperturbthecoefficientsof
theperceptuallymostsignificantbasisfunctions.

Emil Praunet al [14] extend this spreadspectrumap-
proach to work for watermarking of arbitrary triangle
meshes.They transformthe trianglemeshgeometryby de-
composingit into the basisthey definedusingthe Progres-
sive Meshesscheme[6]. A randomly chosenwatermarkm � � m b �H9<9;9<� m�¾ 
 is insertedby scalingthe ¿ largestcoeffi-
cientsby smallperturbations

� �À� x m �N�®
 . Givena suspect
document,anextractedwatermarkm R is computedasthedif-
ferenceonthesamesetof frequency coefficientsbetweenthe
suspectdataandtheoriginal watermarkeddata.Thewater-
markis declaredto bepresentbasedonthestatisticalcorrela-
tionof m R andm . Therobustnessof thisschemederivesfrom
hiding thewatermarkin many differentfrequencieswith the
mostenergy.

They use the multi-resolutionschemeof [6] to decom-
pose the the mesh geometry into basis functions Á �� q b �:9;9<9;� q ¾ 
 . Theseareselectedby identifying the ¿ refine-
mentoperationsthatthatcausethegreatestgeometricchange
to themodel. For eachof these¿ refinements,we definea
scalarbasisfunction over its correspondingneighbourhood
in theoriginal mesh.To embedthewatermarkin themodel,
thevertex correspondingto thecentreof eachof theselected
neighbourhoodsis thenperturbedby a productof vectordi-
rectionof thevertex computedwithin theneighbourhoodand
thewatermarkelementtakenfrom thevector m .

To extract the embeddedwatermarkfrom possibly “at-
tacked” model,thesuspectmeshmustberegisteredby find-
ing the similarity transform(consistingof uniform scaling,
rotationandtranslation)to coincidewith theoriginalmodel.
The registeredgeometryis thenresampledin order to pro-
ducea meshwith thesameconnectivity astheoriginal. By

takingthedifferencebetweenthe3D coordinatesof thever-
ticesof this resampledmeshandthoseof theoriginal,avec-
tor of 3D residualsis accumulated.The watermarkis then
extractedby recovering the positionsof thoseverticesthat
wereperturbedin the multi-resolutionrepresentationof the
mesh.

While the processof embeddingof the watermark is
automatic,detectionof watermarkcannotalways be non-
interactive. The interactionis neededto specify an initial
registrationbetweentheoriginalmeshandthesuspectmesh.
Theregistrationis thenrefinediterativelybeforefurthersteps
areperformed.

6 DISCUSSION AND SUMMARY

Wehavepresentedourstudyof how thebasicsignalprocess-
ing toolscanbeextendedto unstructuredtrianglemeshes.So
far, variousformulationshave beendevelopedfor decom-
position of the meshgeometryinto componentsignalsfor
furtheroperationslike fairing, featureenhancement,feature
detection,suppressionbasedon globalanalysisof themod-
els. In addition to transformingthe triangle meshmodels
into frequency domain,therehavebeenefforts to createspa-
tial domainfilters to apply local operatorsfor achieving the
sameeffects.Thesetoolshavebeenthenusedin applications
suchascompressionof geometryandwatermarking.

Thefurtherresearchin thisareais neededin thefollowing
directions:

1. The currentformulationstendbe in the form of trans-
formationsand filters that get appliedglobally on all
elementsof the trianglemesh. The userof thesetools
doesnot have the control on their applicationin a de-
siredlocality. To achievelocalisedapplicationof signal
processingoperators,oneneedsa mechanismof spec-
ifying the locality of interestin termsof geometricor
topologicalfeaturesandalsoaprovisionin theformula-
tion to applytheoperationonly in thespecifiedregion.

2. Most of thework hasconcentratedon trianglemeshes.
However, in practice, many meshesare available as
quadrilateralmeshes,meshesconsistingof amix of dif-
ferenttypesof polygons. Also many practicalmodels
have non-manifoldtopology. Handling thesespecial
modelswill requireextensionof theformulation.

3. Efficiency andscalability is anotherissuein handling
very large modelsthat arebeingacquirednow a days.
Spectralanalysisof large modelscan be a very time
consumingtask. For suchmodel,differenttypesof al-
gorithmsmay be needed. One direction could be to
do a multi-resolutionanalysisof the modelandapply
thespectralanalysisto a low-resolutionmodelanduse
theresultto refinetheanalysisfor the increasingcom-
plete model. Multi-grid techniquesusedin FEM and

5
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CFD communitiescould be adaptedherefor handling
thevery largemodels.
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