Transition from primitive jawless fish to sharks, skates, and rays:
- Cladoselache (late Devonian) -- Magnificent early shark fossils, found in Cleveland roadcuts during the construction of the U.S. interstate highways. Probably not directly ancestral to sharks, but gives a remarkable picture of general early shark anatomy, down to the muscle fibers!
- Tristychius & similar hybodonts (early Mississippian) -- Primitive proto-sharks with broad-based but otherwise shark-like fins.
- Ctenacanthus & similar ctenacanthids (late Devonian) -- Primitive, slow sharks with broad-based shark-like fins & fin spines. Probably ancestral to all modern sharks, skates, and rays. Fragmentary fin spines (Triassic) -- from more advanced sharks.
- Paleospinax (early Jurassic) -- More advanced features such as detached upper jaw, but retains primitive ctenacanthid features such as two dorsal spines, primitive teeth, etc.
- Spathobatis (late Jurassic) -- First proto-ray.
- Protospinax (late Jurassic) -- A very early shark/skate. After this, first heterodonts, hexanchids, & nurse sharks appear (late Jurassic). Other shark groups date from the Cretaceous or Eocene. First true skates known from Upper Cretaceous.
Transition from primitive jawless fish to bony fish:
- Acanthodians(?) (Silurian) -- A puzzling group of spiny fish with similarities to early bony fish.
- Palaeoniscoids (e.g. Cheirolepis, Mimia; early Devonian) -- Primitive bony ray-finned fishes that gave rise to the vast majority of living fish. Heavy acanthodian-type scales, acanthodian-like skull, and big notochord.
- Canobius, Aeduella (Carboniferous) -- Later paleoniscoids with smaller, more advanced jaws.
- Parasemionotus (early Triassic) -- "Holostean" fish with modified cheeks but still many primitive features. Almost exactly intermediate between the late paleoniscoids & first teleosts. Note: most of these fish lived in seasonal rivers and had lungs. Repeat: lungs first evolved in fish.
- Oreochima & similar pholidophorids (late Triassic) -- The most primitive teleosts, with lighter scales (almost cycloid), partially ossified vertebrae, more advanced cheeks & jaws.
- Leptolepis & similar leptolepids (Jurassic) -- More advanced with fully ossified vertebrae & cycloid scales. The Jurassic leptolepids radiated into the modern teleosts (the massive, successful group of fishes that are almost totally dominant today). Lung transformed into swim bladder.
Transition from primitive bony fish to amphibians:
- Paleoniscoids again (e.g. Cheirolepis) -- These ancient bony fish probably gave rise both to modern ray-finned fish (mentioned above), and also to the lobe-finned fish.
- Osteolepis (mid-Devonian) -- One of the earliest crossopterygian lobe-finned fishes, still sharing some characters with the lungfish (the other lobe-finned fishes). Had paired fins with a leg-like arrangement of major limb bones, capable of flexing at the "elbow", and had an early-amphibian-like skull and teeth.
- Eusthenopteron, Sterropterygion (mid-late Devonian) -- Early rhipidistian lobe-finned fish roughly intermediate between early crossopterygian fish and the earliest amphibians. Eusthenopteron is best known, from an unusually complete fossil first found in 1881. Skull very amphibian-like. Strong amphibian- like backbone. Fins very like early amphibian feet in the overall layout of the major bones, muscle attachments, and bone processes, with tetrapod-like tetrahedral humerus, and tetrapod-like elbow and knee joints. But there are no perceptible "toes", just a set of identical fin rays. Body & skull proportions rather fishlike.
- Panderichthys, Elpistostege (mid-late Devonian, about 370 Ma) -- These "panderichthyids" are very tetrapod-like lobe-finned fish. Unlike Eusthenopteron, these fish actually look like tetrapods in overall proportions (flattened bodies, dorsally placed orbits, frontal bones! in the skull, straight tails, etc.) and have remarkably foot-like fins.
Transitions among amphibians:
- Temnospondyls, e.g Pholidogaster (Mississippian, about 330 Ma) -- A group of large labrinthodont amphibians, transitional
between the early amphibians (the ichthyostegids, described above) and later amphibians such as rhachitomes and
anthracosaurs. Probably also gave rise to modern amphibians (the Lissamphibia) via this chain of six temnospondyl genera ,
showing progressive modification of the palate, dentition, ear, and pectoral girdle, with steady reduction in body size (Milner,
in Benton 1988). Notice, though, that the times are out of order, though they are all from the Pennsylvanian and early
Permian. Either some of the "Permian" genera arose earlier, in the Pennsylvanian (quite likely), and/or some of these genera
are "cousins", not direct ancestors (also quite likely).
- Dendrerpeton acadianum (early Penn.) -- 4-toed hand, ribs straight, etc.
- Archegosaurus decheni (early Permian) -- Intertemporals lost, etc.
- Eryops megacephalus (late Penn.) -- Occipital condyle splitting in 2, etc.
- Doleserpeton annectens or perhaps Schoenfelderpeton (both early Permian) -- First pedicellate teeth! (a classic trait of
modern amphibians) etc.
There are SO many more things I could list on here; for a complete overview of transitional fossils go to TheTalk.Origins Transitional Fossil Database. My brief examples are merely a small proof that transitional fossils DO exist.