Chapter Outline: Ceramics

Chapter 13: Structure and Properties of Ceramics

- **≻ Crystal Structures**
- \triangleright Silicate Ceramics
- \triangleright Carbon
- \triangleright Imperfections in Ceramics

Optional reading: 13.6 – 13.10

Ceramics

- ÿ *keramikos* burnt stuff in Greek desirable properties of ceramics are normally achieved through a hightemperature heat treatment process (firing).
- \triangleright Usually a compound between metallic and nonmetallic elements
- \triangleright Always composed of more than one element (e.g., Al_2O_3 , NaCl, SiC, SiO₂)
- \triangleright Bonds are partially or totally ionic, can have combination of ionic and covalent bonding
- \triangleright Generally hard and brittle
- \triangleright Generally electrical and thermal insulators
- ÿ Can be optically opaque, semi-transparent, or transparent
- \triangleright Traditional ceramics based on clay (china, bricks, tiles, porcelain), glasses.
- ÿ "New ceramics" for electronic, computer, aerospace industries.

Bonding in Ceramics (Review of Chapter 2)

Electronegativity - a measure of how willing atoms are to accept electrons (subshells with one electron - low electronegativity; subshells with one missing electron high electronegativity). Electronegativity increases from left to right.

The atomic bonding in ceramics is mixed, ionic and covalent, the degree of ionic character depends on the difference of electronegativity between the cations (+) and anions (-).

Crystal Structures in Ceramics with predominantly ionic bonding

Crystal structure is defined by

- \triangleright Magnitude of the electrical charge on each ion. Charge balance dictates chemical formula $(Ca^{2+}$ and F form CaF_2).
- \triangleright Relative sizes of the cations and anions. Cations wants maximum possible number of anion nearest neighbors and vice-versa.

Stable ceramic crystal structures: anions surrounding a cation are all in contact with that cation. For a specific coordination number there is a critical or minimum cationanion radius ratio r_C/r_A for which this contact can be maintained.

University of Stable Stable And America

University of Virginia, Dept. of Materials Science and Engineering 5

Crystal Structures in Ceramics Example: Rock Salt Structure

NaCl structure: $r_C = r_{Na} = 0.102$ nm, $r_A = r_{Cl} = 0.181$ nm \Rightarrow r_C/r_A = 0.56 From the table for stable geometries we see that $C.N. = 6$

University of Virginia, Dept. of Materials Science and Engineering 6

More examples of crystal structures in ceramics (will not be included in the test)

Cesium Chloride Structure: $r_C = r_{Cs} = 0.170$ nm, $r_A = r_{Cl}$ 0.181 nm

$$
\Rightarrow r_C/r_A = 0.94
$$

From the table for stable geometries we see that $C.N. = 8$

More examples of crystal structures in ceramics (will not be included in the test)

Zinc Blende Structure: typical for compounds where covalent bonding dominates. $C.N. = 4$

ZnS, ZnTe, SiC have this crystal structure

More examples of crystal structures in ceramics (will not be included in the test)

Fluorite (CaF₂): $r_C = r_{Ca} = 0.100$ nm, $r_A = r_F = 0.133$ nm \Rightarrow r_C/r_A = 0.75

From the table for stable geometries we see that $C.N. = 8$

FCC structure with 3 atoms per lattice point

University of Virginia, Dept. of Materials Science and Engineering 9

Density computation (similar to Chapter 3.5 for metals)

$\mathbf{r} = \mathbf{n}'(\mathbf{SA}_{C} + \mathbf{SA}_{A}) / (\mathbf{V}_{c}\mathbf{N}_{A})$

- **n'**: number of formula units in unit cell (all ions that are included in the chemical formula of the compound $=$ formula unit)
- **SA**_C: sum of atomic weights of cations in the formula unit
- **SA^A** : sum of atomic weights of anions in the formula unit
- V_c : volume of the unit cell
- N_A: Avogadro's number, 6.023×10^{23} (formula units)/mol

Example: NaCl

n' = 4 in FCC lattice $\mathbf{SA}_{\mathbf{C}} = A_{\mathbf{Na}} = 22.99$ g/mol $\mathbf{SA}_{A} = A_{C1} = 35.45 \text{ g/mol}$ $V_c = a^3 = (2r_{Na} + 2r_{Cl})^3 =$ $=(2 \times 0.102 \times 10^{-7} + 2 \times 0.181 \times 10^{-7})^3$ cm³

University of Virginia, Dept. of Materials Science and Engineering 10

Silicate Ceramics

- \triangleright Composed mainly of silicon and oxygen, the two most abundant elements in earth's crust (rocks, soils, clays, sand)
- \blacktriangleright Basic building block: SiO₄⁴⁻ tetrahedron
- \triangleright Si-O bonding is largely covalent, but overall SiO₄ block has charge of –4
- \triangleright Various silicate structures different ways to arrange $SiO₄⁻⁴ blocks$

$Silica = silicon dioxide = SiO₂$

- \triangleright Every oxygen atom is shared by adjacent tetrahedra
- \triangleright Silica can be crystalline (e.g., quartz) or amorphous, as in glass (fused or vitreous silica)

3D network of SiO_4 tetrahedra in cristobalite High melting temperature of 1710 °C

Window glasses

Most common window glasses are produced by adding other oxides (e.g. CaO, $Na₂O$) whose cations are incorporated within $SiO₄$ network. The cations break the tetrahedral network and glasses melt at lower temperature than pure amorphous SiO_2 because. A lower melting point makes it easy to form glass to make, for instance, bottles. Some other oxides (TiO_2, Al_2O_3) substitute for silicon and become part of the network

University of Virginia, Dept. of Materials Science and Engineering 13

Carbon

Carbon is **not a ceramic**

Carbon exists in various polymorphic forms: $sp³$ diamond and amorphous carbon, sp^2 graphite and fullerenes/nanotubes, one dimensional sp carbon…

Carbon: Diamond

- \triangleright Has diamond-cubic structure (like Si, Ge)
- \triangleright One of the strongest/hardest material known
- \triangleright High thermal conductivity (unlike ceramics)
- \triangleright Transparent in the visible and infrared, with high index of refraction, looks nice, costs \$\$\$
- \triangleright Semiconductor (can be doped to make electronic devices)
- \triangleright Metastable (transforms to carbon when heated)

Hydrogenated diamond {111} surface with the dangling bonds or radicals terminated by hydrogen atoms

Diamond turning into graphite at elevated temperature

Figures from http://www.people.virginia.edu/~lz2n/Diamond.html

Carbon: Graphite

- \triangleright Layered structure with strong bonding within the planar layers and weak, van der Waals bonding between layers
- \triangleright Easy interplanar cleavage, applications as a lubricant and for writing (pencils)
- \triangleright Good electrical conductor
- \triangleright Chemically stable even at high temperatures
- \triangleright Applications include furnaces, rocket nozzles, welding electrodes

Carbon: buckyballs and nanotubes

Buckminsterfullerenes (buckyballs) and carbon nanotubes are expected to play an important role in future nanotechnology applications (nanoscale materials, sensors, machines, and computers).

Carbon nanotube T-junction

Nanotubes as reinforcing fibers in nanocomposites

Nano-gear

Nanotube holepunching/etching

Figures from http://www.nas.nasa.gov/Groups/SciTech/nano/

Imperfections in Ceramics (I)

Point defects in ionic crystals are charged. The Coulombic forces are very large and any charge imbalance has a strong tendency to balance itself. To maintain charge neutrality several point defects can be created:

Frenkel defect is a pair of cation (positive ion) vacancy and a cation interstitial. It may also be an anion (negative ion) vacancy and anion interstitial. However anions are larger than cations and it is not easy for an anion interstitial to form.

Schottky defect is a pair of anion and cation vacancies

Imperfections in Ceramics (II)

- Frenkel and Schottky defects do not change ratio of cations to anions \rightarrow the compound is **stoichiometric**
- **Non-stoichiometry** (composition deviates from the one predicted by chemical formula) may occur when one ion type can exist in two valence states, e.g. Fe^{2+} , Fe^{3+}
- For example, in FeO, usual Fe valence state is 2+. If two Fe ions are in 3+ state, then a Fe vacancy is required to maintain charge neutrality \rightarrow fewer Fe ions \rightarrow non-stoichiometry

Impurities in Ceramics

- \triangleright Impurity atoms can exist as either substitutional or interstitial solid solutions
- \triangleright Substitutional ions substitute for ions of like type
- \triangleright Interstitial ions are small compared to host structure formation of anion interstitials is unlikely
- \triangleright Solubilities higher if ion radii and charges match closely
- \triangleright Incorporation of ion with different charge state requires compensation by point defects

Mechanical Properties of Ceramics

- \triangleright Ceramics are brittle. For brittle fracture stress concentrators are very important. (Chapter 8: measured fracture strengths are significantly smaller than theoretical predictions for perfect materials due to the stress risers)
- \triangleright Fracture strength of ceramic may be greatly enhanced by creating compressive stresses in the surface region (similar to shot peening, case hardening in metals, chapter 8)
- \triangleright The compressive strength is typically ten times the tensile strength. This makes ceramics good structural materials under compression (e.g., bricks in houses, stone blocks in the pyramids).

Plastic Deformation in Ceramics

- ÿ **Crystalline ceramics**: Slip (dislocation motion) is very difficult. This is because ions of like charge have to be brought into close proximity of each other \rightarrow large barrier for dislocation motion. In ceramics with covalent bonding slip is not easy as well (covalent bonds are strong) \Rightarrow ceramics are brittle.
- ÿ **Non-crystalline ceramic:** there is no regular crystalline structure \rightarrow no dislocations. Materials deform by **viscous flow**, i.e. by breaking and reforming atomic bonds, allowing ions/atoms to slide past each other (like in a liquid).

Viscosity is a measure of glassy material's resistance to deformation.

Viscosity

Viscosity is a measure of a non-crystalline (glass or liquid) material's resistance to deformation. High-viscosity fluids resist flow; low-viscosity fluids flow easily.

How readily a moving layer of fluid molecules drags adjacent layers of molecules along with it determines its viscosity.

Units are Pa-s, or Poises (P) $1 P = 0.1 Pa-s$

Viscosity of water at room temp is $\sim 10^{-3}$ P Viscosity of typical glass at room temp $\gg 10^{16}$ P

Summary

Make sure you understand language and concepts:

- ÿ Anion
- \triangleright Cation
- \triangleright Defect structure
- \triangleright Frenkel defect
- \triangleright Electroneutrality
- \triangleright Schottky defect
- \triangleright Stoichiometry
- ÿ Viscosity

Reading for next class:

Chapter 14: Applications and Processing of Ceramics

 \triangleright Short review of glass/ceramics applications and processing (14.1 - 14.4)

Optional reading: 14.3, 14.5 – 14.18