Student Number ...

2011 TRIAL HIGHER SCHOOL CERTIFICATE

Mathematics Extension 2

- **• GDH**
- **• MRB**
- **• BHC***
- **• VAB***

50 copies

Staff Involved: PM THURSDAY 4TH AUGUST TIME: 3 HOURS

BLANK PAGE

Total marks – 120 Attempt Questions 1– 8

Answer each question on a **SEPARATE** sheet of paper

Marks Question 1 (15 marks) **[START A NEW PAGE]**

__

(a) (i) Find
$$
\int \frac{dx}{3 - 2x - x^2}
$$
 using partial fractions. 4

(ii) Hence, or otherwise find
$$
\int \frac{2+x}{3-2x-x^2} dx
$$
 2

(b) (i) Find
$$
\int \frac{dx}{\sqrt{3 - 2x - x^2}}
$$

(ii) Hence, or otherwise, find
$$
\int \frac{1+2x}{\sqrt{3-2x-x^2}} dx
$$
 3

(c) Find
$$
\int \sqrt{x^2 + a^2} dx
$$
 using integration by parts. 4

Question 2 (15 marks) **[START A NEW PAGE]**

(a) (i) Solve
$$
z^3 = \sqrt{2} + \sqrt{2}i
$$
, giving answers in the form $R \text{ cis } \theta$.

(ii) Hence prove that
$$
\cos\left(\frac{\pi}{12}\right) + \cos\left(\frac{9\pi}{12}\right) + \cos\left(\frac{-7\pi}{12}\right) = 0
$$

(b) Find the locus of
$$
Z
$$
 for the following:

You may give your answer as an equation or a graph, whichever you prefer.

(i)
$$
\frac{Z - i}{Z - 2}
$$
 is purely real.

(ii)
$$
\frac{Z - i}{Z - 2}
$$
 is purely imaginary.

(c) Let
$$
z = \cos \theta + i \sin \theta
$$
.

(i) Using de Moivre's Theorem and the Binomial Theorem, show that

$$
\cos 5\theta = 16\cos^5 \theta - 20\cos^3 \theta + 5\cos \theta
$$
 3

(ii) Hence solve:

$$
32x^5 - 40x^3 + 10x = 1
$$

(iii) Hence prove that:

prove that:
\n
$$
\cos\left(\frac{\pi}{15}\right) \cdot \cos\left(\frac{7\pi}{15}\right) \cdot \cos\left(\frac{11\pi}{15}\right) \cdot \cos\left(\frac{13\pi}{15}\right) = \frac{1}{16}
$$

Question 3 (15 marks) **[START A NEW PAGE]**

(a) These two diagrams show the same graph of $y = f(x)$

(i) Sketch $y = f(x^2)$ on diagram (i) above, showing *x* intercepts and other key features of this graph. **3**

(ii) Sketch $y = \log_e[f(x)]$ on diagram (ii) above, showing key features. **3**

DETACH THIS PAGE AND ATTACH IT TO YOUR SOLUTIONS.

Question 3 continues on page 5

Question 3 (continued)

(b) Find the *x***-coordinates** of the points on the curve

$$
2x^2 + 2xy + 3y^2 = 15
$$

where the tangents to the curve are vertical. **3**

- (c) (i) Sketch $y = x^2 2$ and $y = e^{-x}$ on the same number plane diagram. The diagram should be about one third of the page in size. **1**
	- (ii) Find the *x***-coordinates** of the stationary points on $y = e^{-x} (x^2 2)$ **2**
	- (iii) Hence, sketch the graph of $y = e^{-x} (x^2 2)$ on the same diagram as in (i), showing the *x*-intercepts and other key features of the graph. **3**

Question 4 (15 marks) **[START A NEW PAGE]**

(a) An ellipse has the equation
$$
\frac{x^2}{8} + \frac{y^2}{4} = 1
$$
 and $P(x_1, y_1)$ is a point on this ellipse.

- (i) Find its eccentricity, the coordinates of its foci, S and $S¹$, and the equations of its directrices. **3**
- (ii) Prove that the sum of the distances SP and $S¹P$ is independent of the position of P . 2
- (iii) Show that the equation of the tangent to the ellipse at *P* is

$$
x_1 x + 2y_1 y = 8.
$$

(iv) The tangent at $P(x_1, y_1)$ meets the directrix closest to *S* at *T*. Prove that \angle *PST* is a right angle. **3**

(b) The point
$$
T\left(ct, \frac{c}{t}\right)
$$
 lies on the hyperbola $xy = c^2$.
The normal at *T* meets the line $y = x$ at *R*.

Find the coordinates of *R*. 4

3

1

Question 5 (15 marks) **[START A NEW PAGE]**

(a) Given the polynomial $p(x) = ax^3 + bx^2 + cx + d$ $p(x) = ax^{x} + bx^{2} + cx + d$
where *a*, *b*,*c*, *d* and *β* are integers and $p(\beta) = 0$: (i) Prove that β divides *d* 2

(ii) Hence, or otherwise, prove that the polynomial equation

$$
q(x) = 2x^3 - 5x^2 + 8x - 3 = 0
$$
 does not have an integer root.

(b) The numbers α , β and γ satisfy the equations

 $\alpha^2 + \beta^2 + \gamma^2 = -2$ $\alpha + \beta + \gamma = 0$ $1 \t1 \t-1$ $1 \t-1$ $\frac{\overline{a}}{\alpha}$ + $\frac{\overline{a}}{\beta}$ + $\frac{\overline{a}}{\gamma}$ = $\frac{\overline{a}}{10}$ $+\frac{1}{2}+\frac{1}{2}=\frac{-}{11}$

(i) Find the values of $\alpha\beta + \beta\gamma + \alpha\gamma$ and $\alpha\beta\gamma$

(ii) Hence write down a cubic equation with roots α , β and γ in the form $ax^3 + bx^2 + cx + d = 0$

Question 5 continues on page 8

1

3

Question 5 (continued)

(c) The equation $x^3 + x^2 + 2x - 4 = 0$ has roots α , β , and γ .

- (i) Evaluate $\alpha \beta \gamma$
- (ii) Write an equation in the form

$$
ax3 + bx2 + cx + d = 0
$$

(A) with roots $\alpha2$, $\beta2$ and $\gamma2$

(B) with roots
$$
\alpha^2 \beta \gamma
$$
, $\alpha \beta^2 \gamma$ and $\alpha \beta \gamma^2$

Question 6 (15 marks) **[START A NEW PAGE]**

(a) Find the volume of the solid generated when the area bounded by

$$
y = 6 - x^2 - 3x
$$
 and $y = 3 - x$ is revolved about the line $x = 3$.

(b) (i) By rewriting

 $\cos((n + 2)x) \text{ as } \cos\{(n + 1) + 1\}x,$ and
 $\cos nx$ as $\cos \{(n + 1) - 1\}x$, and

show that
$$
cos(n + 2)x + cos nx = 2cos(n + 1)x \cdot cos(x)
$$

(ii) Hence prove that given
$$
u_n = \int_0^{\pi} \frac{1 - \cos nx}{1 - \cos x} dx
$$
 3

where *n* is a positive integer or zero,

then,

then,
\n
$$
u_{n+2} + u_n - 2u_{n+1} = \int_0^{\pi} \frac{2\cos((n+1)x)\{1 - \cos x\}}{1 - \cos x} dx
$$
\n
$$
= 0
$$

(iii) Evaluate u_0 and u_1 **directly**, and hence evaluate u_2 and u_3 3

(iv) Also show that
$$
\int_{0}^{\frac{\pi}{2}} \frac{\sin^2 3\theta}{\sin^2 \theta} d\theta = \frac{3\pi}{2}
$$
 4

End of Question 6

Marks

Question 7 (15 marks) **[START A NEW PAGE]**

(a) The acceleration due to gravity at a point outside the Earth is inversely proportional

to the square of the distance from the centre of the Earth, ie. $\frac{a}{1} \left| \frac{1}{2} v^2 \right|$ 2 1 2 $rac{d}{dx}$ $\left(\frac{1}{2}v^2\right) = \frac{-k}{x^2}$ $\left(1_{\ldots 2}\right)$ - $\left(\frac{1}{2}v^2\right)$ =

(i) Neglecting air resistance, show that if a particle is projected vertically upwards with speed *u* from a point on the Earth's surface, its speed *V* in any position *x* is given by

$$
V^{2} = u^{2} - 2gR^{2} \bigg(\frac{1}{R} - \frac{1}{x} \bigg),
$$

where R is the radius of the Earth, and g is the acceleration due to gravity at the Earth's surface. **3**

(ii) Show that the greatest height *H*, **above the Earth's surface**, reached by the particle is given by

$$
H = \frac{u^2 R}{2gR - u^2}
$$

(iii) Prove that if the speed of projection exceeds 12 km/sec, the particle will we that if the speed of projection exceeds 12 km/sec, the particle will
escape the Earth's influence. (Take $R = 6400 \text{ km}$ and $g = 10m/\text{sec}^2$) **3**

Question 7 continues on page 11

Question 7 (continued)

(b) Suppose that *x* is a positive number less than 1, and *n* is a non-negative integer.

(i) Explain why

plain why

$$
1 - x + x^2 - x^3 + \dots + (-1)^n x^n + \dots = \frac{1}{1 + x}
$$

and

$$
\log_e (1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots
$$

(ii) Hence, show that

Hence, show that
\n
$$
\log(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots
$$
\nand
\n
$$
\log(\frac{1+x}{1-x}) = 2\left(x + \frac{x^3}{3} + \frac{x^5}{5} + \dots\right)
$$

(iii) By letting
$$
x = \frac{1}{2m+1}
$$

\n(a) Show that $\log \left(\frac{1+x}{1-x} \right) = \log \left(\frac{m+1}{m} \right)$

 (β) Show that

Show that
\n
$$
\log\left(\frac{m+1}{m}\right) = 2\left(\frac{1}{2m+1} + \frac{1}{3(2m+1)^3} + \frac{1}{5(2m+1)^5} + \dots\right)
$$

(iv) Use a result from (i), (ii) or (iii) to find a simple fraction which approximates the value of $\log_e(1.001)$ correctly to 9 decimal places. **1**

Question 8 (15 marks) **[START A NEW PAGE]**

(a) You are trying to find the dimensions of the right circular cone of minimum volume which can be circumscribed about a **sphere of radius 20cm**, as shown below.

Let x cm = the radius of the base of the cone and let $(y + 20)$ cm = the altitude of the cone.

(i) Prove that
$$
x^2 = \frac{400(y + 20)}{y - 20}
$$
 using similar triangles.

(ii) Hence, find the dimensions of the cone which make its volume a minimum. **3**

Question 8 continues on page 13

Question 8 (continued)

(b) By using the formula for $tan(\alpha - \beta)$ in terms of $tan \alpha$ and $tan \beta$,

answer the following questions.

(i) If
$$
2x + y = \frac{\pi}{4}
$$
, show that

$$
\tan y = \frac{1 - 2\tan x - \tan^2 x}{1 + 2\tan x - \tan^2 x}
$$

(ii) Hence deduce that
$$
\tan \frac{\pi}{8}
$$
 is a root of the equation $t^2 + 2t - 1 = 0$
and find the exact value of $\tan \left(\frac{\pi}{8}\right)$

(c) For the series
$$
S(x) = 1 + 2x + 3x^2 + ... + (n + 1)x^n
$$
,

find $(1-x) S(x)$ and hence find $S(x)$

(d) Find
$$
\int_{-1}^{1} x^2 \sin^7 x \, dx
$$
, giving reasons.

End of Question 8

End of Paper

3

3

STANDARD INTEGRALS

NOTE: $\ln x = \log_e x$, $x > 0$

 $\int_{0}^{1} cos(4x^{2}) dx = cos(8x-4)$ $\int_{1}^{1} cos(4x-4) dx = 2$ ϵ_{grav} = ϵ_{av} + η_{max} $\binom{c}{\binom{c}{2}}$ $(\omega_0 \theta + \omega_0 \theta) = (\omega_0 \theta + \omega_0 \theta)$.. - (ar 8 + 5(ar, 40 in 0 + 10 (ar) 8 fil¹ a
- ' 0 cm ¹0 in 1³ = + 5 (are) in 19 + 1 in 5 $+5$ con $\Theta = 10$ (or $9 + 5$ con 3 $\frac{1}{2}$ 10 (1000-01-500) تے ری لائیا ہے ا ری لے اس اللہ اس اور اس
کا اس کا اس اور اس اللہ اس اور اس ای $z\xi = \frac{5!}{15!}$ 40 $\frac{5!}{11!}$ 40 $\frac{5!}{11!}$ 40 $\frac{5!}{11!}$ 40 $\frac{5!}{11!}$ $\frac{Q}{M_0}(\mathbf{w})^{-1}\frac{Q}{\mathbf{u}\mathbf{u}}(\mathbf{w})^{-1}\frac{Q}{\mathbf{u}\mathbf{u}}(\mathbf{w})^{-1}\frac{Q}{\mathbf{u}}(\mathbf{w})^{-1}\frac{Q}{\mathbf{u}}(\mathbf{w})^{-1}\mathbf{u}^{-1}$ $5 - 50$ we $(6.05)^{6} - 200$ and $3 - 3 = 5$ Able: $322 - k00^2 + 100k - 1 = 0$ has
foot of rest $= -(\frac{1}{3}t) = \frac{1}{3}t$ $=$ $(a_0, b_0 - 10ca, b_0 + 10ca, b_0$ $\begin{array}{ccc} \mathcal{P}_1 & \mathcal{P}_2 & \mathcal{P}_3 & \mathcal{P}_4 \\ \mathcal{P}_2 & \mathcal{P}_4^T(\mathcal{P}_3) & \mathcal{P}_4^T(\mathcal{P}_4) & \mathcal{P}_4^T(\mathcal{P}_4) & \mathcal{P}_5^T(\mathcal{P}_5) & \mathcal{P}_6^T(\mathcal{P}_6) & \mathcal{P}_6^T(\mathcal{P}_6) & \mathcal{P}_6^T(\mathcal{P}_6) & \mathcal{P}_7^T(\mathcal{P}_6) & \mathcal{P}_7^T(\mathcal{P}_6) & \mathcal{P}_8^T(\math$ $+\zeta\omega_0\vartheta\left(\log\vartheta\right)\left(\log\vartheta\right)$ $(e^{147})e^{(4700)-6540}$ = e^{160} = e^{160} (i) $16x^5 - 10x^3 + 5x = \frac{1}{2}$ $\int \frac{1}{2} \exp(\frac{1}{2} - \omega) \left(\frac{1}{2} - \omega \right) \, d\omega$ or $\int \frac{1}{2} \left(\frac{1}{2} - \omega \right) \, d\omega$ $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ $\vec{z} = 48$ ker \vec{z} $\frac{1}{2}z \frac{1}{24} \frac{1}{104}$ (b) $\omega = \nu$ (b) $i)$ if $\frac{z-1}{z-2}$ is purely easy, let $z = \infty$
isolar (blass) S_{1} in C_{2} S_{3} S_{4} $\begin{split} \left(\begin{matrix} \tilde{t}^{\prime} \\ \tilde{t}^{\prime} \end{matrix}\right) & \hspace{0.3cm} & \hspace{0.3cm} \text{for} \hspace{0.3cm} \tilde{t}^2 - \left(\frac{r_1}{r_1} \tilde{t}^{\prime} \tilde{t} \right)^{1 - \mathcal{O}}_{\mathcal{V}} \\ & \hspace{0.3cm} \therefore \hspace{0.3cm} \frac{\partial \tilde{t}}{\partial \tilde{t}} \left(\dot{\omega}_1 \frac{r_1}{r_1} + \dot{\omega}_1 \frac{r_1}{r_1} + \dot{\omega}_1 \frac$ $(5 - 32 - 62)$ $2 - 3\Omega \sin \left(\frac{\eta(i+8^{\mu})}{i^{2}} \right)$ z^3 = 2 in $(1 + l$ urt) $Cov_{p}(\frac{f-1}{f-1}) = 0$ or T $\left(\frac{1}{\epsilon}\right)$ arg $\left(\frac{e_i}{e-1}\right)$ = $\pm \frac{e_i}{2}$ \odot (a) \odot

 $\left(b\right) \left(\cdot\right) \int\limits_{\sqrt{-\left(x^2+x^2+3\right)}}\frac{dx}{\sqrt{-\left(x^2+x^2+3\right)}} \quad = \quad \left(\frac{c_1}{2}\right) + C \qquad \qquad +\alpha^2 \ln\left(x^2+\sqrt{x^2+x^2}\right).$ $\therefore \int \sqrt{x^1 a^2} dx = \frac{x \sqrt{x^2 a^2} + a^2 \sqrt{x^2 a^2}}{2}$ ں
+ $\int \frac{1}{x+1} = \int \frac{1}{x+2} = \frac{1}{x+3}$ of $z = \frac{1}{x+2}$ of $z = \frac{1}{x+1}$ of $\left(\frac{z+1}{2}\right) - 2$ for $\left(\frac{z+1}{2}\right) - \left[\frac{y+1}{2}\right]$. $\sqrt{r^2r^2}$
 $\sqrt{r^2r^2}$ $-\sqrt{r^2r^2}$ $\int_0^1 (1-h)$, $\sqrt{r^2}$ $-\sqrt{r^2}$ $-\sqrt{r^2}$ $-\sqrt{r^2}$ $-\sqrt{r^2}$ $-\sqrt{r^2}$ (c) $\int_{-2}^{1} \sqrt{x^{2} + x^{3}} dx$ = $\int x_{1}^{3} \frac{2x}{2 \sqrt{x^{2} + x^{3}}} dx$ = $\frac{1}{2}$ $\frac{1}{2}$ = $-s_1^1 \sim \left(\frac{y_1!}{t_1}\right) - 2 \sqrt{3-x_1} + C$: $2\int \sqrt{x^2 + a^2} dx = x\sqrt{x^2 + a^2}$ $= x\sqrt{x^2 + x^2} - \int \sqrt{x^2 + x^2} dx$
 $= x\sqrt{x^2 + x^2} - \int \sqrt{x^2 + x^2} dx$
 $= x\sqrt{x^2 + x^2} - \int \sqrt{x^2 + x^2} dx$
 $+ \int \frac{x^2}{x^2} dx$ $= 5\ddot{\omega}^{\prime}\left(\frac{x_{1}}{2}\right) + \int_{0}^{x_{1}} \left(3 \cdot 2x - x^{2}\right)^{2} \delta_{x}x$ $\bigoplus_{j=1}^n (a_j - 1) - \int_{\frac{1}{n}} \frac{4a_j}{1 + a_j - 3} = -\int_{\frac{1}{n}} \frac{4a_j}{(a+1)(a+1)} \qquad \text{(ii) } S_n^{-1} \left(\frac{b_1 + 1}{2}\right) + \int_{\frac{1}{n}} \frac{4a_j}{1 + a_j}$ 7. $| \leq A(x-1)+B(x+3)$

1. $A = A \cdot B$: $B = \frac{1}{4}$ $S_{1,-}(\frac{Ax}{2}) + \int \frac{2x+2-1}{\sqrt{3-x^2}} dx$ $= \pi \sqrt{x^2 + a^2} - \sqrt{\frac{x^2}{\sqrt{x^2} + a^2}}$ Fextonian a Trial Msc 2011 = $- \frac{1}{4}M\left(\frac{x}{x+3}\right) - \frac{1}{2}M\left(\frac{1}{3}2M-3\right) + C$ $= -\frac{1}{2}ln\left(\frac{x-1}{3+5}\right) - \int \frac{x}{3+2x-3} dx$ \therefore | \equiv A(x-1) $\left(\infty + 3 \right)$ $\frac{1}{(x+1)(x-1)} = \frac{A}{x+2} + \frac{B}{x-1}$ = $-\frac{1}{4}$ kn $\left[\frac{2}{2(1+2)}\right]$ + C $= -\frac{1}{4} \int \frac{1}{x-1} dx$ $= \int \frac{dx}{\sqrt{-(x^{2}+1)^{2}-4}}$ $(i) = \int_{\pi^{1}+\pi^{1}} \frac{2+\pi}{2} 4$ $\int \frac{dx}{\sqrt{4-(x+1)^2}}$ θ

 $\begin{array}{c}\n\chi(k+k') = C \cdot (k + \frac{1}{2}C(k)) \\
\chi = \frac{C}{2(k+1)} = \frac{C}{k} \left(1 + \frac{k^3}{2}\right)\n\end{array}$ $\frac{1}{2}\left(2\left(\frac{1}{2}\left(1+\epsilon^2\right)\right)^2+\frac{1}{2}\left(\frac{1}{2}+\epsilon^2\right)^2\right).$ $m_{\text{TS}} = 4.24. -0 = 4.24.$ = $\frac{9}{27}$ > $\frac{2(2-x)}{x-2}$
= $\frac{29}{x-1}$ x - 1 $y = \frac{4-4x_1}{2x_1} = \frac{4-2x_1}{x_1}$ $x^2 - y^2 = 1$
 $x^2 - y^2 = 1$ $V = \frac{3!}{1-5} = 51$
by $= \frac{3!}{0-1-5}$ $\therefore k^{3} (x - x)$ $\begin{align} \gamma_k &\times \mathbb{M}_k &\approx \frac{y_k}{x_{k-2}} \neq \frac{4 - 2x_k}{2}, \end{align}$ $\therefore x - \frac{c}{k} = k \frac{\eta(x - k)}{2},$ $\therefore y - \frac{c}{\ell} = k^{\alpha} (k - \ell^2)$ $\sum_{i=1}^{n} f(x_i) = \frac{1}{2} \sum_{i=1}^{n} f(x_i)$ For R : salve similareau $\therefore T\left(4, \frac{4\cdot u_1}{9},\right)$ $\mu\left(\begin{smallmatrix} \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} \\ \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} \\ \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} & \mathcal{L} \end{smallmatrix}\right)$ $249, 58 - 44,$ $4x_1 + 2y_2$, = 8 o yur o $4 - 2$ $2 - 5267$ $\mathcal{N}(\mathbb{R},\mathbb{R}^2)$ (1) For T : .
رچ Iron egr of
ellipse \therefore XX₁+2331=8 $\frac{x_1^2 + y_1^2}{8}$ $\frac{1}{8}$ + $\frac{1}{2}$ = 1 $b^{2}a^{1}(-e^{1})$
 $b^{2}a^{1}(-e^{1})$
 $c = 4(-e^{1})$
 $c = 4$
 $c = 2$
 $d = 2$
 $d = 2$ $\sum_{i=1}^{n-1} \frac{1}{2} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \frac{1}{2} \sum_{j=1}^{n} \$ $\frac{1}{2}$ $\gamma = 4$ Content to the property that is a subsequent for the subsequent of the subsequ $\sum_{i=1}^{n}$ $\sqrt{8c_1(1^2/c)}$ Now $\frac{P}{P} = \frac{1}{4}$ a $\frac{P}{PL} = \frac{1}{12}$ $\therefore P_{M} = \sqrt{2} \cdot P_{S}$ $\downarrow P_{L} = \sqrt{2} \cdot P_{S}'$
of $P_{M} + P_{L} = \frac{8}{2}$ $P(x, y, 1)$ $x x_1 + 2 y_2 = x_1^2 + 2 y_1^2$ \therefore 2-99 (-2-9) $\left(2 - \frac{3}{2}\right)$ $\frac{5}{8}$
 $\frac{2}{8}$ $\frac{3}{8}$ $\frac{3}{8}$ $\frac{3}{8}$ $\frac{5}{8}$ $\frac{3}{8}$ $\sum_{i=1}^{n} y_i = \frac{1}{n} \left(x - x_i \right)$ \bigoplus (e) $\frac{x^2}{8} + \frac{y^2}{4} = 1$ (i) $\frac{1}{4} + \frac{1}{4} + \frac{1}{4} = 0$ チュメ r
J (i) $\alpha = 2J_2$ $e^{2} = \frac{1}{2}$ اب
ابان
اب $ac = \lambda$ $\frac{4}{10}$ $x = -4$ لياج
أحراق: $\binom{1 + 17, 0.55...}{1 + 17, 0.55...}$ $124 - 72$ $\frac{1}{2}$ $\left[1\frac{1}{2}\right.$ $2.732...$ $\frac{d^{2}}{dt^{2}} = e^{x(x^{2}-x)} + 2\pi e^{x^{2}}$
 $\frac{dx}{dt} = e^{x^{2}}\Big[2\pi e^{-(x^{2}+x^{2})}$ $\left[\begin{matrix} \zeta_{-1} \\ \zeta_{-1} \end{matrix} \right]_{\mathbf{X}} = \mathcal{O} \left(\begin{matrix} \zeta_{-1} \\ \zeta_{-1} \end{matrix} \right)_{\mathbf{X}}$ $\therefore (x-1)^{k} = 3$
 $x-1 = \pm 5$ $7 = 115$ $2 - x^2 + \int_{0}^{x} x^2 dx - 2$ 4.9 $\left(\begin{matrix} \mathbf{1}_{\mathbf{1}_{1}} & \mathbf{1}_{\mathbf{1}_{1}} & \mathbf{1}_{\mathbf{1}_{1}} \\ \mathbf{1}_{\mathbf{1}_{1}} & \mathbf{1}_{\mathbf{1}_{1}} & \mathbf{1}_{\mathbf{1}_{1}} \\ \mathbf{1}_{\mathbf{1}_{1}} & \mathbf{1}_{\mathbf{1}_{1}} & \mathbf{1}_{\mathbf{1}_{1}} \end{matrix}\right)$ $\psi \circ \tilde{c}^{\prime\prime}(r_1)$ \vec{r} (C) $y = 1 \rightarrow x = -3$
 $y = 1 \rightarrow x = -3$
 $y = -1 \rightarrow x = 3$ For virtual tages, x+3y=0 $\frac{c}{a}$ $O = H_0^2$ + $(\frac{H_0}{H_0^2} + L_0)(1 + \nu + O_0)$ $24 - 34$ $\frac{dy}{dx} = -\frac{4x+y}{x+6} = -\frac{[m+y]}{x+7}$ $\begin{aligned} &A_{\{1,1\}\nu_{\mathbf{j}}\cdot\mathbf{m}}\sum_{i=1}^{M}\frac{1}{i}\nu_{\mathbf{j}}\mathbf{m}^{(i)}\sum_{i=1}^{M}\frac{1}{i}\mathbf{m}^{(i)}\mathbf{m}^{(i)}\end{aligned}$ $7\frac{1}{2}$ $5.2 - 2.6 - 1.6 - 1.68$ $2-(3)$ ²+2(-3) + m \therefore therefore \therefore $\partial_{\mathbf{r}}\left(\mathbf{r},\mathbf{r}\right)$ and $\mathbf{r}_{\mathbf{r}}\left(\mathbf{r},\mathbf{r}\right)$ $\label{eq:2.1} \text{Tr} \left(\text{Tr} \right) \mathcal{G} = f \left(\text{Tr} \right)$ (ii) see \bigcirc

 $\therefore \int_{0}^{\pi} \frac{1 - \frac{1}{2}}{1 - \frac{1}{2}} dx = \frac{1}{2} \int_{0}^{\pi} \frac{1 - \frac{1}{2}}{1 - \frac{1}{2}} dx$ $x + 24 + 7\frac{1}{2} + 4\frac{4}{2} + \ldots + 6 + 7 + 19 + 19$ e in this substatule. $\frac{1}{2}$ = $\frac{1 + (n+1)x}{2}$ $\frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \left\{ \mathbf{1}_{i} \mathbf{1}_{j} \mathbf{1}_{j} + \mathbf{1}_{i} \mathbf{1}_{j} + \mathbf{1}_{i} \mathbf{1}_{j} + \mathbf{1}_{i} \mathbf{1}_{j} \mathbf{1}_{j} \right\}$ $\begin{array}{c} \hbar \omega^2 \rightarrow 0 \ \hbar^2 \rightarrow 29 \end{array}$. $= \frac{1}{2} u_3 = \frac{3\pi}{2}$ $(1 - 1)^2$ To clay times, 4 Cen $3x = 60$ en $69 = 1.251, 39$ $0 = x^3$ $\frac{1}{6}$ = θ $\frac{1}{7}$
 $0 = 2$ θ $\frac{1}{2}$
 $0 = 3$ θ $\frac{1}{2}$ $= x^{0+1} - (n+1)^{n+1} + (n+1)^{n+1}$ $\begin{aligned} \n\left[\cos 2\theta + \cos 2\theta\right] &= 2\cos 2\theta - 1 \\ \n\left(\cos x - \cos 2\theta\right) &= \frac{1}{2}\left[-15\right] \cdot 26 \end{aligned}$ $\frac{1-x}{x^{\lambda-1}-1-\frac{(x+x)}{(x+1)x^{\lambda}}(x-1)}$ $\frac{1}{20} \int_{0}^{\frac{\pi}{3}} \frac{\sin^{3} \theta}{\sin \theta} d\theta$ $1.505 - 1.001$ $\frac{7}{3}$ (1/9 = 1-6) $(1-1)(1-x)$ $=$ $\frac{(y+1)^2}{(y+1)^3}$ $-(x-1)^2$ $-(1-1)$ $\begin{pmatrix} \mathbf{v} \\ \mathbf{v} \end{pmatrix}$ $z \int_1 \int_1 \frac{2 - \ln(\alpha + 1)z - \tan(\alpha + 2 + 2 \tan(\alpha + 1))z}{2 - \ln(\alpha + 1)} dx$ $\begin{cases} 1 + 1 & n \ -1 & n \end{cases}$
 $\begin{cases} -2 \left(1 - 2b \left(6 + 1\right)^{3} \right) \theta + 1 \\ -2 \left(1 - 2b \left(6 + 1\right)^{3} \right) \end{cases}$ \bar{D} $\begin{pmatrix} 70 & 0 & 0 \\ 0 & 2 \tan(n\sqrt{11} - \frac{(2 \cos(n\sqrt{11} \cos \kappa))}{2 \cos(n\sqrt{11} \cos \kappa)}) & \kappa \end{pmatrix}$ $\int_{0}^{1} 2\omega_{n}(hH)x - \omega_{n}(x+1)x - \omega_{n}x \in \delta_{n}$
= $\int_{0}^{1} 2\omega_{n}(hH)x - \omega_{n}(x+1)x - \omega_{n}x \in \delta_{n}$ $= \int_0^{\eta} 2 \cos(\alpha \tau) \frac{1}{\sqrt{2\pi}} \left[1 - \cos \nu \right] d\tau$ $\begin{bmatrix} 2 & 4 & 4 & 4 \ 2 & 3 & 1 & 1 \end{bmatrix}$ since $\begin{bmatrix} 3 & 4 & 4 \ 2 & 1 & 1 \end{bmatrix}$ $u_1 = \int_0^{\pi} (4 - \left[\mu\right]_0^{\pi} > \pi)$ \sum
con (n+i)z con x - fin(n+i)x fint $\frac{1}{2}$ control come + s-10 ks/22 = $\frac{1}{n+1} \left[\frac{n+1}{n(n+1)} - \frac{1}{n(n+1)} \right]$ $\left(\begin{array}{cc} b \\ c \end{array}\right)$ (i) $C\rightarrow (a_{1}c_{1})x + CD^{n}x + D$ (i) $V_0 = \int_0^{\pi} 0 dx = 0$ $1 -$ con the $C = 2r_1r_1 - r_1r_2$
 $C = 6r_1r_1 - r_1r_2$ (ii) $v_{n+1} + v_{n} - 2v_{n+1} =$ $x-\infty$ $T =$ $\int_{0}^{\pi} 2 \cos(\lambda \tau) \kappa \frac{\partial \tau}{\partial \tau}$ $U_1 + U_0 - 2U_1 = 0$ $1 \cos \pi$ $1-\cos t$ $=2$ con $(n+1)x$ conx $10^{12} = 5$

 72.14 $y-z_{\lambda}$ $\int_{0}^{\pi} \int_{0}^{\pi} \int_{0$ $2\int d^{2}+6d^{2}-917$ $\left(\bigodot \ \ \gamma^c - (x^1 + x^2) \right) = -(x^1)^2 + 2^2$ $y^3 + 2y^2 + 3z^2 - 2z^2 = 0$ - m (4x - - 2x) له - $\begin{array}{c} 7 \\ 7 \\ 7 \end{array}$
 $\begin{array}{c} 7 \\ 7 \end{array}$ $\therefore \frac{y^3}{64} + \frac{y^3}{16} + \frac{y}{2} - 4 = 0$ $Q=Q_1-72.7+\frac{75}{25}+\frac{7}{25}$ $= 4\pi$, 4β , 48
 $= 4\pi$, 4β , 48 $=2n\int_{-3}^{1} q^{-x}x^{2}-(x-3x+x^{2}+x^{2})dx$
 $=2n\int_{-3}^{3} q^{-x}x^{2}-(x+1)^{2}dx = 2n\int_{0}^{1} dx\frac{x^{2}}{2}dx$ 2^{n-1} 2^{n+2} 2^{n+2} 2^{n+2} 2^{n+1} $\left(\frac{1}{2} \cdot x\right)$ $2\pi(3\cdot n)$ $\int_{\mathbf{v}}^{1} (x^2)^{3} dx$ $y_{i} - y_{i}$ (New $y_1 - y_1 =$
 $6 - x^2 - 3x - (3 - x)$
 $= 3 - x^2 - 2x$ valuation mes .

(b) (i) α (h β) + γ (c) $+\beta + \delta$) - $\frac{c^2 + c^2 + \beta^3 + \delta^3}{2}$ $0.2 = \frac{1}{1}$ = $\frac{5}{2} = \frac{1}{2}$
 $\frac{1}{2} = \frac{1}{2}$ = $\frac{1}{2} = \frac{1}{2}$ $\begin{array}{lcl}\n\{8\} & \{8\} \\
\{1, 1, 2\} & \{1, 3\} \\
\{2, 1, 3\} & \{1, 2\} \\
\{3, 1, 3\} & \{1, 3\} \\
\{4, 1, 3\} & \{1, 3\} \\
\{5, 1, 3\} & \{1, 3\} \\
\{6, 1, 4\} & \{1, 3\} \\
\{7, 1, 2, 3\} & \{1, 3\} \\
\{8, 1, 3\} & \{1, 3\} \\
\{9, 1, 2, 3\} & \{1, 3\} \\
\{1,$ $\begin{pmatrix} 2d & a & -1 \\ c & -1 & -a+18d & -x \\ d & -1 & 0 & -a+8d \\ b & a & 0 & -a+8d \end{pmatrix}$ $\frac{1}{2}$, $\begin{pmatrix} 1 \\ \text{if } \\ \text{if } \\ \end{pmatrix}$ and $\begin{pmatrix} 1 \\ \text{if } \\ \text{if } \\ \text{if } \\ \end{pmatrix}$ $-5 - 6 + 14 + 6$ $\begin{pmatrix} \hat{\beta} & \hat{\beta} & \hat{\gamma} & \hat{\gamma} & \hat{\gamma} & \hat{\gamma} & \hat{\gamma} \\ \hat{\gamma} & \hat{\gamma} \\ \hat{\gamma} & \hat{\gamma} \end{pmatrix}$ $C = p + b^2 + d^2 + c^2$ $x + 4$ $= 1/2$
 $= 1/2$
 $= 1$ $\frac{1}{10}$ (b) let $\frac{1}{2}$ $x^2 - 5 = 5$ $\begin{cases}\n\theta(t) = 2 & \theta(t) = 30 \\
\theta(-t) = -18 & \theta(-3) = -126\n\end{cases}$ $[3] (3+1) = 4-3$ $3.34110 = 0$ $(5)(1)$ $\textcircled{1} \hspace{1mm} (a) \hspace{1mm} \textcircled{1} \hspace{1mm} \rho(b) = o$ where is no is the $\pm\sqrt{3}$ and ready $\int \alpha$ ball $\left(\tilde{h}\right)$

sice
Mynethia
Mynethia
Marchia $\int_{0}^{1}x^{2}sin^{2}x dx$ \therefore ALT = -2+14+4 = -1+22 = -1+52 O^{-2} $1 - 2\int_0^1 \frac{g}{u^2}v^2 + 2u + y^2 = 2\int_0^1 \frac{1}{2}v^2 + 2x + 2y = 2\int_0^1 \frac{1}{2}v^2$ x^{2} , $\frac{40 - 8}{40}$, 80
 x^{2} , $400 - 8$
 x^{3} , x^{2} , x^{4} , x^{5} , x^{6} $1 + \frac{y'_{max}}{1 + \frac{y'}{1 + \frac{y'}{1$ λ d'archient: Meight = 80 cm $\begin{array}{l} \left\{ \begin{array}{l} \left(\begin{array}{c} 1 \\ 1 \end{array} \right) \end{array} \right. \\ \left\{ \begin{array}{l} \frac{1}{2} \cdot \frac{1}{2$ $\begin{array}{ll} \therefore & |{-}1.4x_{-}^{\intercal} - 4x_{-}^{\intercal} - \frac{3}{2} \quad \cdots \quad \frac{3}{2} \\ \therefore & |x_{-}^{\intercal} \frac{1}{2} + 2.4x_{-}^{\intercal} \frac{3}{2} - 3 \\ \therefore & |x_{+}^{\intercal} \frac{1}{2} + 2.4x_{-}^{\intercal} \frac{1}{2} - 1 \quad \cdots \quad \frac{3}{2} \quad \frac{3}{2} \quad \frac{3}{2} \quad \cdots \quad \frac{3}{2} \quad \cdots \quad \frac{3}{2} \quad \cdots \quad \$ $2 + f(x) = f(x)$: 60% tendence c=(cg.h)(a+h) ' hydry ey $\left|\frac{z^{03}}{\sqrt{100}}\right|^{1/100}$ co se of = bis 20 $1 - \frac{1}{2} + 2\frac{1}{2} + 2\frac{1}{2}$ $= x^{2}(\mu)^{i}x$
 $= x^{2}(\mu)^{i}x$ $= 1 - \frac{1}{2} \frac{1}{2$ $\sqrt[3]{f(x)} = (-x)^3 \sin^3(x)$ care for no height rely -25.5 (d) Let $f(r) = x^2 \epsilon_1 r_2$ $\mathcal{C}_{\mathcal{O}}$ \circ Cleck for minimum **Contribution** $\frac{1}{\alpha}$ \overline{z} **SHS** $\widehat{\widetilde{\epsilon}}$ $\frac{1}{r}$ $\frac{dV}{dy} = \frac{4\omega_0}{3} \left[\frac{L(y_{1}w)(y_{1}w) - (y_{1}w)^2}{(y_{1}w)^2} \right]$ $=\frac{4}{3}\exp\left[\frac{(p_1\omega)}{(p_1\omega+\omega^2)}\frac{1}{2}\right]$ $x^2 = 4e^{-\alpha x}$ (articles $x = 1$ $x^2(y^2+q_{\rm oo}) = \frac{4a^2y^2+16a^2y+160000}{2}$ $\left(\cos\phi + \delta_0 e^{\frac{1}{2} + \frac{1}{2}} e^{\frac{1}{2}} e^{-\frac{1}{2}(\cos\phi - \frac{1}{2}} e^{\frac{1}{2}} e^{\frac{1}{2}(\cos\phi - \frac{1}{2}} e^{\frac{1}{2}}) \right)}$ $480 x^2 + 480 y^2 + 1600 y + 16000 = x^3 y^2$ $\sum_{\tau} \int_{0}^{1} \sigma_{\tau}(\sigma_{\tau}) \sigma_{\tau}(\sigma_{\tau}) = \int_{0}^{1} \sigma_{\tau}(\sigma_{\tau}) \sigma_{\tau}(\sigma_{\tau})$ $\left[\frac{1}{(\sigma\sigma-\hat{r})\left((\sigma\tau\hat{r})\right)}\left(\frac{\hat{r}}{\sigma\sigma\hat{r}}\right)\right]$ $\sqrt{(4.29)^2}$ \triangle ABE $\parallel \triangle$ ADC \triangle^{a} $(\gamma \cdot \omega)^2$ $\begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$
 $\begin{pmatrix} 5 & 7 \\ 7 & 1 \end{pmatrix}$
 $\begin{pmatrix} 6 & 7 \\ 1 & 1 \end{pmatrix}$ $\frac{1}{2} \int_{0}^{2} x^{2} f(x + t^{2}) + x^{2} dt$ $\frac{20}{\pi} = \frac{9}{\sqrt{x^2 + (9 + \omega)^2}}$ $\frac{3}{5}$ $V = \frac{1}{2}$ $\sqrt{2}$ = $\frac{1}{3}\pi \lambda^2 (y + 10)$ صر۔ \vec{r} اکل می مارلی
معلم ا \sum $\widehat{\widetilde{\mathbb{C}}}$ ē

ان (متعالی) + (استعمال +) + (استعمال)
ان (متعالی) + (استعمال +) + (متعالی) + (متعالی)
ان (متعالی) + (استعمال +) + (متعالی) $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ for the lineary (e) $\chi_{\{x_1, x_2\}, \{x_2^{\sum_{i=1}^{n} x_i\}} \geq 2 \left(\frac{1}{p^{n+1}} + \frac{1}{2(p^{n+1}}\right)^{1-2}\right)$ $\frac{1}{1}$ 108 \rightarrow $\frac{3}{4}$ \rightarrow $11.3...$ fm/sec
 \rightarrow 13 \rightarrow $11...$ fm/sec
 \rightarrow 11 \rightarrow 11 \rightarrow 11 \rightarrow 11 \rightarrow 11 i e 2π $(1-\alpha)$
 $i.e.$ 2α $(1-\alpha)$
 $i.e.$ $(1-\alpha)$
 $i.e.$ $(1-\alpha)$ مهلوم معالج المسلمان المتقطع المتقطع العام المعالج المعالج المعالج المعالج المعالج المعالج المعالج المعالج ال
1. المعالج ال
2 $2\left(\frac{1}{1001}+\frac{1}{3(401)^2}+\frac{1}{5(401)^5}+\frac{1}{7(401)^7}\right)$ $=$ $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$ L_{μ} + = 0, 0 = 0 + \

(, x - y + + x) - x + + - = 1 + (+ +) (i) (explore x v) - r

.. (n(1-x) = -x -r, -x, -x, -x, -x, -x, - ---

.. (1+x) = [n(1+x) = hn((rx) $= 2\kappa + \frac{1}{2}\kappa + \frac{2}{3}\kappa + \frac{1}{4}\kappa + \frac{1}{2}\kappa + \frac{$ ω μ \sim $\frac{1}{2}$
 ω \approx $\frac{1}{2}$
 $\frac{1}{2}$ -1
 $-\frac{1}{2}$
 $-\frac{1}{2}$
 $-\frac{1}{2}$
 $-\frac{1}{2}$
 $-\frac{1}{2}$
 $-\frac{1}{2}$ $= 1 - \sum_{i=1}^{n} \frac{x_i^2 + x_i^3 - x_i^4}{x_i^2 + x_i^3}$ $\frac{1}{2}$, $\frac{1}{2}$ $\frac{1}{2}$ \therefore (not (ii) To excepe, H ~ Santa Controller de La 1997 $= 9.995003331 \times 10^{-4}$ $\mathcal{L} \sim \mathcal{L} \int \frac{L}{L} \mathcal{L} \quad \mathcal{L}$ \approx 0.000997500 \overline{m}) leglace x \overline{b} or $\ell^{(1,4)}$ + ℓ , $\ell^{(1,4)}$, we convert in a set of $\frac{2\eta \ell^{1-1}q\hat{\ell}+q\alpha^{1}}{2q\ell^{1-1}q\hat{\ell}+q\alpha^{1}}$. If $> \frac{2\eta \ell^{1}}{2}$ yout x is distance for centre of earth.
Out x is distance for centre of earth. $\frac{2}{3}$
 $\frac{1}{4}$ 2^{16} = $\frac{1}{2}$ = $\frac{1}{2}$ = $\frac{1}{2}$ صة معلى الموزوما للمجمعين (ii) $v_1 = v_1 + \pi (1 - \frac{1}{2})$ $\sum_{i=1}^{n} v_i^2 = u_i \cdot \log_2 v_i \left(\frac{1}{2} + \frac{1}{k} \right)$ $\frac{1}{\sqrt{1-\frac{1}{1-\$ $v' = u^1 - 2gh'(\frac{1}{\rho}, \frac{1}{\lambda})$ $\frac{1}{7} - \frac{1}{7} + \frac{1}{7} - \frac{1}{7} + \frac{1}{7}$ $\mathbf{r}^{\mathbf{i}}$ $D(i)$ jut = $\int -i\epsilon^{2} d\epsilon$ $U \sim x = x / x = 3$ $\frac{1}{2} \int_{0}^{1} \frac{1}{2} \int_{0}^{1} d\theta_{1} = \int_{0}^{1}$ Now to find k : $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ when $x = R_y \vee z$ in $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{t} = \frac{1 - \frac{v_1^2}{|v_1|^2}}{t}$ $\frac{1}{x} = \frac{14^{k-x^2}}{2n^{2}}$ $\frac{y^2}{2g\lambda^2} > \frac{1}{\mu} > \frac{1}{\chi}$ Igh-u² 29R2 $\therefore n > \frac{2nk^2}{\sqrt{n}}$