

Name:					

Teacher: _____

Class: _____

FORT STREET HIGH SCHOOL

2007

HIGHER SCHOOL CERTIFICATE COURSE

ASSESSMENT TASK 4: TRIAL HSC

Mathematics Extension 2

TIME ALLOWED: 3 HOURS (PLUS 5 MINUTES READING TIME)

Outcomes Assessed	Questions	Marks
Determines the important features of graphs of a wide variety of	3, 5	
functions, including conic sections		
Applies appropriate algebraic techniques to complex numbers and	2,4	
polynomials		
Applies further techniques of integration, such as slicing and	1,6	
cylindrical shells, integration by parts and recurrence formulae, to		
problems		
Synthesises mathematical solutions to harder problems and	7, 8	
communicates them in an appropriate form		

Question	1	2	3	4	5	6	7	8	Total	%
Marks	/15	/15	/15	/15	/15	/15	/15	/15	/120	

Directions to candidates:

- Attempt all questions
- The marks allocated for each question are indicated
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Board approved calculators may be used
- Each new question is to be started on a new page

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$

NOTE : $\ln x = \log_e x$, x > 0

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1. (15 marks) Use a SEPARATE writing booklet. Marks Find $\int \cos^5 x \sin x \, dx$. 2 (a) Find $\int \frac{2x}{\sqrt{x^2-4}} dx$ using the substitution $u = x^2 - 4$. (b) 3

(c) (i) Express
$$\frac{2-x^2}{(x^2+1)(x^2+4)}$$
 as a sum of partial fractions. 2

(ii) Hence show that
$$\int_0^3 \frac{2-x^2}{(x^2+1)(x^2+4)} dx = \tan^{-1}\left(\frac{3}{11}\right).$$
 4

(d) Use the substitution
$$t = \tan \frac{x}{2}$$
 to evaluate $\int_{0}^{\frac{\pi}{2}} \frac{dx}{2 - \sin x}$.

(a) Let z = 1 + i and w = 1 - 2i. Find in the form x + iy,

(i) $z\overline{w}$ 1

(ii)
$$3z + iw$$
 1

(iii)
$$\frac{w}{z}$$
 1

(b) Let $\beta = -1 + i$

(i)	Express β in modulus-argument form.	2
(ii)	Express β^4 in modulus-argument form.	1
(iii)	Hence evaluate β^{20}	1

(c) (i) Sketch, on the same Argand diagram, the locus specified by, 4

- $1. \qquad |z-9| = |z+1|$
- $2. \qquad |z-2+i|=2$

(ii) Hence write down all the values of z which satisfy simultaneously

|z-9| = |z+1| and |z-2+i| = 2

(d) Prove $|z_1 - z_2|^2 + |z_1 + z_2|^2 = 2|z_1|^2 + 2|z_2|^2$ and interpret this result geometrically. **3**

Question 3. (15 marks) Use a SEPARATE writing booklet.

(a) The diagram bellows shows the graph of y = f(x)

Draw separate one-third page sketches of the graphs of the following:

(i)
$$y = f(x-1)-1$$
 2
(ii) $y = |f(x)|$ 2
(iii) $y = e^{f(x)}$ 2

(iv)
$$y = \log_e(f(x))$$
 2

(b) $P(a\cos\theta, b\sin\theta)$, where $0 < \theta < \frac{\pi}{2}$, is a point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ where a > b > 0.

The normal at *P* cuts the *x* axis at *A* and the *y* axis at *B*.

(i) Show that the normal at *P* has the equation

$$ax\sin\theta - by\cos\theta = (a^2 - b^2)\sin\theta\cos\theta$$

(ii) Show that triangle *OAB* has areas
$$\frac{(a^2 - b^2)^2 \sin \theta \cos \theta}{2ab}$$
 2

(iii) Find the maximum area of the triangle *OAB* and the coordinates of *P* when this maximum occurs.

2

- (a) Given that α , β and γ are the roots to the equation $x^3 x^2 + 5x 3 = 0$, find the equation whose roots are $\alpha\beta$, $\alpha\gamma$ and $\beta\gamma$
- (b) Let α be the complex root of the polynomial $z^7 = 1$ with the smallest possible argument.

Let $\theta = \alpha + \alpha^2 + \alpha^4$ and $\phi = \alpha^3 + \alpha^5 + \alpha^6$

- (i) Explain why $\alpha^7 = 1$ and $1 + \alpha + \alpha^2 + \alpha^3 + \alpha^4 + \alpha^5 + \alpha^6 = 0$ 2
- (ii) Show $\theta + \phi = -1$ and $\theta \phi = 2$ **3**

Hence write a quadratic equation whose roots are θ and ϕ

(iii) Show that
$$\theta = -\frac{1}{2} + \frac{i\sqrt{7}}{2}$$
 and $\phi = -\frac{1}{2} - \frac{i\sqrt{7}}{2}$ **2**

(iv) Write α in modulus argument form and show

$$\cos\frac{4\pi}{7} + \cos\frac{2\pi}{7} - \cos\frac{\pi}{7} = -\frac{1}{2}$$
 and $\sin\frac{4\pi}{7} + \sin\frac{2\pi}{7} - \sin\frac{\pi}{7} = \frac{\sqrt{7}}{2}$

(c) The polynomial P(z) is defined by $P(z) = z^4 - 2z^3 - z^2 + 2z + 10$.

Given that z-2+i is a factor of P(z), express P(z) as a product of real quadratic factors.

Marks

3

2

Question 5. (15 marks) Use a SEPARATE writing booklet.

(a) Consider the curve given by $5y - xy = x^2 - x - 2$

- (i) Show that the curve has stationary points at $5\pm 3\sqrt{2}$ 2
- (ii) Explain why the curve approaches that of y = -x 4 as $x \to \pm \infty$ 2

(b) For the hyperbola
$$\frac{x^2}{4} - \frac{y^2}{5} = 1$$
, find

(i)	The eccentricity.	1
(ii)	The coordinates of the foci.	1
(iii)	The equations of the directrices.	1
(iv)	The equations of the asymptotes.	1
(v)	Sketch the hyperbola indicating the foci, the directrices and the asymptotes.	1
(vi)	Show that the point $P(2 \sec \theta, \sqrt{5} \tan \theta)$ lies on the hyperbola and prove that the	2

tangent to the hyperbola at *P* has the equation

$$\frac{x \sec \theta}{2} - \frac{y \tan \theta}{\sqrt{5}} = 1$$

(vii) If the tangent at *P* cuts the asymptotes at *L* and *M*, prove that LP = PM and the area of triangle *OLM* is independent of the position of *P*.

(a) The plan of a steeple is bounded by the curve $y = \frac{1}{|x|}$ and the lines y = 4 and y = 1.

Each horizontal cross-section is a square.

Find the volume of the steeple.

4

(b) The circle $x^2 + y^2 = 9$ is rotated about the line x = 6 to form a ring.

- (i) When the circle is rotated, the line segment *S* at height *y* sweeps out an annulus.2Find the area of the Annulus.
- (ii) Hence find the volume of the ring

(c) The region under the curve $y = e^{-x^2}$ and above the x-axis is rotated about the y axis for $-a \le x \le a$ to form a solid as shown below.

- (i) Divide the resulting solid into cylindrical shells S of radius t as shown in the diagram and show each shell S has an approximate volume given by $\delta V = 2\pi t e^{-t^2} \delta t$, where δt is the thickness of the shell.
- (ii) Hence calculate the volume of the solid.
- (iii) What is the limiting value of the volume of the solid as $a \rightarrow \infty$?

2

2

Question 7.

- (a) Let $I_n = \int_0^1 (1-x^2)^n dx$.
 - (i) Show by using integration by parts $I_n = \frac{2n}{2n+1}I_{n-1}$ for n = 0, 1, 2, 3, ... 3

(ii) Hence evaluate
$$\int_{0}^{1} (1 - x^{2})^{4} dx$$
 3

- (b) A special dish is designed by rotating the region bounded by the curve $y = 2\cos x$ ($0 \le x \le 2\pi$) and the line y = 2 through 360° about the y axis.
 - i) Use the method of cylindrical shells to show that the volume of the dish is given by

$$4\pi\int_{0}^{2\pi}x(1-\cos x)dx.$$

- ii) Hence find the volume.
- (c) The polynomial P(x) is given by $P(x) = 2x^3 9x^2 + 12x k$, where k is real. **3**

Find the range of values for k for which P(x) = 0 has 3 real roots.

3

Question 8. (15 marks) Use a SEPARATE writing booklet.

(a) Use integration by parts to find $\int \sin^{-1} x \, dx$.

(b) (i) Use De Moivre's Theorem to show that
$$\cos 4\theta = 8\cos^4 \theta - 8\cos^2 \theta + 1$$
 3

(iv) Show that the equation
$$16x^4 - 16x^2 + 1 = 0$$
 has roots

$$x_1 = \cos\frac{\pi}{12}, \ x_2 = -\cos\frac{\pi}{12}, \ x_3 = \cos\frac{5\pi}{12}, \ x_4 = -\cos\frac{5\pi}{12}$$

(iii) Hence show that
$$\cos\frac{\pi}{12} = \frac{\sqrt{2+\sqrt{3}}}{2}$$
 2

(c) P(x) is a polynomial of degree *n* with rational coefficients.

If the leading coefficient is a_0 and $\alpha_1, \alpha_2, \alpha_3, ..., \alpha_n$ are the roots of P(x) = 0 prove that:

$$P'(x) = \frac{P(x)}{x - \alpha_1} + \frac{P(x)}{x - \alpha_2} + \frac{P(x)}{x - \alpha_3} + \dots \frac{P(x)}{x - \alpha_n}$$

Marks

3

4