Site hosted by Angelfire.com: Build your free website today!

 

You  are here:    Home > Electricity > Electromagnetism > Fundamentals - Coulomb's Law

Electromagnetism 

 

 

Fundamentals
 

Coulomb's law


Many of these devices and phenomena are complex, but they derive from the same fundamental laws of electromagnetism. One of the most important of these is Coulomb's law, which describes the electric force between charged objects. Formulated by the 18th-century French physicist Charles-Augustin de Coulomb, it is analogous to Newton's law for the gravitational force. Both gravitational and electric forces decrease with the square of the distance between the objects, and both forces act along a line between them. In Coulomb's law, however, the magnitude and sign of the electric force are determined by the charge, rather than the mass, of an object. Thus, charge determines how electromagnetism influences the motion of charged objects. (Charge is a basic property of matter. Every constituent of matter has an electric charge with a value that can be positive, negative, or zero. For example, electrons are negatively charged, and atomic nuclei are positively charged. Most bulk matter has an equal amount of positive and negative charge and thus has zero net charge.)
 

According to Coulomb, the electric force for charges at rest has the following properties:
(1) Like charges repel each other; unlike charges attract. Thus, two negative charges repel one another, while a positive charge attracts a negative charge.
(2) The attraction or repulsion acts along the line between the two charges.
(3) The size of the force varies inversely as the square of the distance between the two charges. Therefore, if the distance between the two charges is doubled, the attraction or repulsion becomes weaker, decreasing to one-fourth of the original value. If the charges come 10 times closer, the size of the force increases by a factor of 100.
(4) The size of the force is proportional to the value of each charge. The unit used to measure charge is the coulomb (C). If there were two positive charges, one of 0.1 coulomb and the second of 0.2 coulomb, they would repel each other with a force that depends on the product 0.2 0.1. If each of the charges were reduced by one-half, the repulsion would be reduced to one-quarter of its former value.
 

Static cling is a practical example of the Coulomb force. In static cling, garments made of synthetic material collect a charge, especially in dry winter air. A plastic or rubber comb passed quickly through hair also becomes charged and will pick up bits of paper. The synthetic fabric and the comb are insulators; charge on these objects cannot move easily from one part of the object to another. Similarly, an office copy machine uses electric force to attract particles of ink to paper.