Site hosted by Angelfire.com: Build your free website today!

 

 You  are here:    Home > Electronics > Transistor > NPN Transistor Operation

Transistor 

NPN Transistor Operation

Just as in the case of the PN junction diode, the N material comprising the two end sections of the NP N transistor contains a number of free electrons, while the center P section contains an excess number of holes. The action at each junction between these sections is the same as that previously described for the diode; that is, depletion regions develop and the junction barrier appears. To use the transistor as an amplifier, each of these junctions must be modified by some external bias voltage. For the transistor to function in this capacity, the first PN junction (emitter-base junction) is biased in the forward, or low-resistance, direction. At the same time the second PN junction (base-collector junction) is biased in the reverse, or high-resistance, direction. A simple way to remember how to properly bias a transistor is to observe the NPN or PNP elements that make up the transistor. The letters of these elements indicate what polarity voltage to use for correct bias. For instance, notice the NPN transistor below:

The emitter, which is the first letter in the NPN sequence, is connected to the negative side of the battery while the base, which is the second letter(NPN), is connected to the positive side. However, since the second PN junction is required to be reverse biased for proper transistor operation, the collector must be connected to an opposite polarity voltage(positive) than that indicated by its letter designation(NPN). The voltage on the collector must also be more positive than the base, as shown below:

We now have a properly biased NPN transistor.

In summary, the base of the NPN transistor must be positive with respect to the emitter, and the collector must be more positive than the base.