APM 236H1F term test 1

13 October, 2010

FAMILY NAME	
GIVEN NAME(S)	
STUDENT NUMBER	
SIGNATURE	

Instructions: No calculators or other aids allowed.

This test has 3 questions whose values are given immediately after the question numbers. Total marks = 40.

Write solutions in the spaces provided, using the backs of the pages if necessary. (Suggestion: If you have to continue a question, you may use the back of the previous page.) Aspects of any question which are indicated in **boldface** will be regarded as crucial during grading. Show your work.

The duration of this test is 50 minutes.

Solution set x=0Solution set x-y=3Solution set of x-y=3, x-2y=4

The fearible region of the problem is the intersection of the two shaded regions. Since they do not intersect, the problem is infeasible.

2.(a) (4 marks) Which points in \mathbb{R}^n belong to the line segment having endpoints $x_1 \in \mathbb{R}^n$ and $x_2 \in \mathbb{R}^n$? One correct answer is: points of the form $(1-\lambda)x_1+\lambda x_2$ where 0 5 \ 51 A second correct consuler is: points of the form c,x,t cxx2 2.(b) (5 marks) Define the term convex set (in \mathbb{R}^n). While $C, +C, \geq 0, C, \geq 0$ One correct answer is: S is convex provided, for each X, and $x_0 \in S$, the line segment joining x, and x, lies in S. A second correct enswer is: S is convex provided, for each x_1 , $x_0 \in S$ and $x_0 \in S$ $(1-x)x_1 + x_0 \in S$. 2.(c) (5 marks) Let $S = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 \text{ s.t. } -x + 2y \le 2 \text{ and } x - y \le 0 \right\}$. Prove that $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ is not an extreme point of S. [-2] <5, since - (-2)+2.0=2 and -2-0=0 2 (65, since -2+2-2=2 and 2-2 =0 Also, [0] = \(\frac{1}{2} \] QED. the proof completed above.

This chagian is not party

the proof completed above.

The was used to

motivate the proof.

Page 2 of 3

- 3. (13 marks) Write one linear programming problem, $\mathcal P$, which satisfies all of the following:
- (1) \mathcal{P} has 2 decision variables, x and y.
- (2) \mathcal{P} is in standard form.
- (3) The feasible region of \mathcal{P} has $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ as extreme points.
- (4) $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ are the only extreme points of the feasible region of \mathcal{P} .
- (5) \mathcal{P} is unbounded.

One solution is:

A second solution is:

Maximize
$$2=y$$
 st.
 $2x-y \le 0$
 $x \le 1$
 $x \ge 0, y \ge 0$

A third solution is -

Maximize
$$z = x \text{ s.t.}$$

$$-2xy \le 0$$

$$-xy \le 1$$

$$x \ge 0, y \ge 0$$

Page 3 of 3

(Questions 2.(c) and 3 each have infinitely many solutions)