Math 224
Linear algebra
December 2005

1. Let $V=U \oplus W$ fom some subspaces U and W of a vector space V.
[4] (a) Show every vector $\mathrm{v} \in V$ can be written uniquely as $v=u+w$ for some $u \in U$ and $w \in W$.
[4] (b) For v written uniquely as $v=u+w$ as in part (a), define $T: V \rightarrow V$ by $T(v)=w$. Show that T is a linear transformation.
[4] (c) Show $U=\operatorname{ker}(T)$ and $W=\operatorname{Im}(T)$.
[4] (d) Show $T^{2}=T$.

SOLUTION:

(a) Let $v=u_{1}+w_{1}=u_{2}+w_{2}$ where $u_{1}, u_{2} \in U . w_{1}, w_{2} \in W$.

Therefore $u_{1}-u_{2}=w_{2}-w_{1}, u_{1}-u_{2} \in U, w_{2}-w_{1} \in W$. But we have a direct sum, thus the only vector in common is the zero vector. Therefore, $u_{1}-u_{2}=w_{2}-w_{1}=0$.
Thus, $u_{1}=u_{2}$ and $w_{2}=w_{1}$. Therefore every vector can be written uniquely in this way.
(b) Let $v=u_{2}+w_{2}, m=u_{1}+w_{1}$ where $u_{1}, u_{2} \in U . w_{1}, w_{2} \in W$.
(i) $T(v+m)=T\left(u_{1}+w_{1}+u_{2}+w_{2}\right)=T\left(u_{1}+u_{2}+w_{1}+w_{2}\right)=w_{1}+w_{2}=$ $T(v)+T(m)$.
(ii) $T(k v)=T\left(k u_{1}+k w_{1}\right)=k w_{1}=k T(v)$

Thus, T is a linear transformation.
(c) $T(v)=T(u+w)=0 \Rightarrow w=0 \Rightarrow \operatorname{ker}(T)=U$

If $v \in W \Rightarrow T(v)=v \Rightarrow W \subseteq \operatorname{Im}(T)$
Now, for any vector x, we have $x=u+w$ and $T(x)=w \in W$, thus $\operatorname{Im}(T) \subseteq W$.
Therefore $\operatorname{Im}(T)=W /$
(d) For any vector $x \in V$ we have $x=u+w$.

Now, $T^{2}(x)=T(T(x))=T(w)=w$. So T and T^{2} act the same on every vector in V. Thus, $T=T^{2}$.
2. Let $\alpha=\left\{e^{3 t}, t e^{3 t}, t^{2} e^{3 t}, t^{3} e^{3 t}\right\}$ be a basis of a vector space V of functions $f: R \rightarrow R$. Let $T: V \rightarrow V$ be defined by $T(f)=\frac{d f}{d t}$.
[8] (a) Find $[T]_{\alpha \alpha}$
[8] (b) Let W be the T-cyclic subspace of V generated by $f(t)=t e^{t}$. Find a basis for W and the characteristic polynomial of $\left.T\right|_{W}$.
SOLUTION:
(a) $[T]_{\alpha \alpha}=\left(\begin{array}{llll}3 & 1 & 0 & 0 \\ 0 & 3 & 2 & 0 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 3\end{array}\right)$, just think of derivatives of each element to get this.
(b) $T\left(t e^{t}\right)=e^{t}+t e^{t}, T\left(e^{t}+t e^{t}\right)=2 e^{t}+t e^{t}$

Thus $W=\operatorname{span}\left\{t e^{t}, e^{t}\right\}$
Notice $T^{2}\left(t e^{t}\right)=2 T\left(t e^{t}\right)-t e^{t} \Rightarrow\left(T^{2}-2 T+I\right)\left(t e^{t}\right)=0$
Thus characteristic polynomial is $f(x)=x^{2}-2 x+1$
3. Let $\left(\begin{array}{lll}1 & 0 & 1 \\ 2 & 2 & 2 \\ 3 & 0 & 0\end{array}\right)$ be the matrix of a linear transformation $T: R^{3} \rightarrow R^{3}$ with respect to the standard basis of R^{3}. Compute $[T]_{\alpha \alpha}$ for the basis $\alpha=\{(1,0,1\},(0,1,1),(1,1,0)\}$ of R^{3}.
SOLUTION:
Find change of basis matrix from α to standard.
$[M]=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0\end{array}\right)$., Now, $[M]^{-1}=\left(\begin{array}{ccc}\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2}\end{array}\right)$
Thus, $[T]_{\alpha \alpha}=\left(\begin{array}{ccc}\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2}\end{array}\right)\left(\begin{array}{lll}1 & 0 & 1 \\ 2 & 2 & 2 \\ 3 & 0 & 0\end{array}\right)\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0\end{array}\right)=\left(\begin{array}{ccc}\frac{1}{2} & -\frac{3}{2} & 0 \\ \frac{5}{2} & \frac{3}{2} & 3 \\ \frac{3}{2} & \frac{5}{2} & 1\end{array}\right)$
4. Suppose $\left(\begin{array}{lll}-1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1\end{array}\right)$ in the matrix of a linear transformation $T: R^{3} \rightarrow R^{3}$ with respect to the standard basis of R^{3}.
[8] (a) Find an orthonormal basis α of R^{3} consisting of eigenvectors of T.
[6] (b) Determine $[T]_{\alpha \alpha}$ and give the spectral decompostion of T.
SOLUTION:
(a) $\operatorname{det}\left(\begin{array}{lll}-\lambda-1 & 2 & 2 \\ 2 & -\lambda-1 & 2 \\ 2 & 2 & -\lambda-1\end{array}\right)=-\lambda^{3}-3 \lambda^{2}+9 \lambda+27=0$
$\Rightarrow-(\lambda-3)(\lambda+3)^{2}=0 \Rightarrow \lambda= \pm 3$
For $\lambda=3 \Rightarrow\left(\begin{array}{lll}-4 & 2 & 2 \\ 2 & -4 & 2 \\ 2 & 2 & -4\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$, Solution is : $t\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$
For $\lambda=-3 \Rightarrow\left(\begin{array}{lll}2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$,
Solution is : $t\left(\begin{array}{l}1 \\ 0 \\ -1\end{array}\right)+w\left(\begin{array}{l}0 \\ 1 \\ -1\end{array}\right)$, these two vectors are not orthog-
onal, so we must use gram-schmidt to orthogonalize them.
$\left(\begin{array}{l}1 \\ 0 \\ -1\end{array}\right)-\frac{1}{2}\left(\begin{array}{l}0 \\ 1 \\ -1\end{array}\right)=\left(\begin{array}{c}1 \\ -\frac{1}{2} \\ -\frac{1}{2}\end{array}\right)$, or $\left(\begin{array}{l}2 \\ -1 \\ -1\end{array}\right)$
so we have orthogonal basis $\left\{\left(\begin{array}{l}0 \\ 1 \\ -1\end{array}\right),\left(\begin{array}{l}2 \\ -1 \\ -1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$
Thus orthonormal basis is $\left\{\frac{1}{\sqrt{2}}\left(\begin{array}{l}0 \\ 1 \\ -1\end{array}\right), \frac{1}{\sqrt{6}}\left(\begin{array}{l}2 \\ -1 \\ -1\end{array}\right), \frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}=\alpha$
(b) $[T]_{\alpha \alpha}=\left(\begin{array}{lll}-3 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 3\end{array}\right)$,

The spectral decomposition is $\left(\begin{array}{lll}0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{3}}\end{array}\right)\left(\begin{array}{lll}-3 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 3\end{array}\right)\left(\begin{array}{ccc}0 & \frac{1}{2} \sqrt{2} & -\frac{1}{2} \sqrt{2} \\ \frac{1}{3} \sqrt{6} & -\frac{1}{6} \sqrt{6} & -\frac{1}{6} \sqrt{6} \\ \frac{1}{3} \sqrt{3} & \frac{1}{3} \sqrt{3} & \frac{1}{3} \sqrt{3}\end{array}\right)$
5. Let $C[-\pi, \pi]$ be the vector space of continuous functions on $[-\pi, \pi]$.
[5] (a) Show that $<f, g>=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) g(x) d x$ defines an inner product on $C[-\pi, \pi]$.
[5] (b) Show that the set $S=\left\{\frac{1}{\sqrt{2}}, \sin x, \cos x\right\}$ is an orthonormal set in $C[-\pi, \pi]$ with respect to the inner product in part (a).
[5] (c) Find the best least squares approximation to $f(x)=|x|$ on $[-\pi, \pi]$ by a trigonmetric function in span $\{\mathrm{S}\}$.
SOLUTION:
(a) (i) $<f, f\rangle=\frac{1}{\pi} \int_{-\pi}^{\pi} f^{2}(x) d x \geq 0$
(ii) $<f, f>=0 \Leftrightarrow \frac{1}{\pi} \int_{-\pi}^{\pi} f^{2}(x) d x=0 \Leftrightarrow f=0$
(iii) $<f+g, h>=\frac{1}{\pi} \int_{-\pi}^{\pi}(f+g) h d x=\frac{1}{\pi} \int_{-\pi}^{\pi} f h d x+\frac{1}{\pi} \int_{-\pi}^{\pi} g h d x$
$=<f, h>+<g, h>$
(iv) $<k f, h>=\frac{1}{\pi} \int_{-\pi}^{\pi} k f(x) h(x) d x=k<f, h>$
(v) $<f, h>=\overline{<h, f>}$ (obviously true)

Thus, it is an inner product.
(b) $<\frac{1}{\sqrt{2}}, \sin x>=\frac{1}{\pi} \int_{-\pi}^{\pi} \frac{\sin x}{\sqrt{2}} d x=0,<\frac{1}{\sqrt{2}}, \cos x>=\frac{1}{\pi} \int_{-\pi}^{\pi} \frac{\cos x}{\sqrt{2}} d x=0$
$<\cos x, \sin x>=\frac{1}{\pi} \int_{-\pi}^{\pi} \cos x \sin x d x=\frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2} \sin (2 x) d x=0$
Thus, it is an orthogonal set.
$<\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}>=\frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2} d x=1,<\sin x, \sin x>=\frac{1}{\pi} \int_{-\pi}^{\pi} \sin ^{2} x d x$
$=\frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2}(1-\cos (2 x)) d x=1,<\cos x, \cos x>=\frac{1}{\pi} \int_{-\pi}^{\pi} \cos ^{2} x d x=1$
Thus, this is an orthonormal set.
(c) The approximation will be:
$<|x|, \frac{1}{\sqrt{2}}>\frac{1}{\sqrt{2}}+<|x|, \sin x>\sin x+<|x|, \cos x>\cos x$
$=\frac{1}{\sqrt{2} \pi} \int_{-\pi}^{\pi} \frac{|x|}{\sqrt{2}} d x+\sin x\left(\frac{1}{\pi} \int_{-\pi}^{\pi}|x| \sin x d x\right)+\cos x\left(\frac{1}{\pi} \int_{-\pi}^{\pi}|x| \cos x d x\right)$
$=\frac{2}{\sqrt{2} \pi} \int_{0}^{\pi} \frac{x}{\sqrt{2}} d x+(\cos x)\left(\frac{2}{\pi} \int_{0}^{\pi} x \cos x d x\right)=\frac{1}{2} \pi-4 \frac{\cos x}{\pi}$
6. Let $T: R^{3} \rightarrow R^{3}$ be a linear transformation defined by $T\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=$ $\left(\begin{array}{l}y \\ z \\ x\end{array}\right)$
[6] (a) Show that T is an isometry of R^{3}.
[6] (b) Determine if T is a rotation or reflection and find the axis of rotation or the fixed plane of reflection.
SOLUTION:
(a) $[T]=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right) \Rightarrow[T]^{*}=\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$
$\Rightarrow[T][T]^{*}=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \Rightarrow T T^{*}=I$
Thus T is an isometry.
(b) $\operatorname{det}([T])=\operatorname{det}\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)=1 \Rightarrow$ indicates a rotation.

To find what you are rotating about look for eigenvector directions.
$\operatorname{det}\left(\begin{array}{lll}\lambda & -1 & 0 \\ 0 & \lambda & -1 \\ -1 & 0 & \lambda\end{array}\right)=0 \Rightarrow \lambda^{3}-1=(\lambda-1)\left(\lambda^{2}+\lambda+1\right)=0$
So , $\lambda=1$ will give use direction.
$\left(\begin{array}{lll}1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$, Solution is : $t\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$
Thus we are rotating around the line $x=y=z$.
7. Let $T: V \rightarrow V$ be a normal linear transformation, that is $T T^{*}=T^{*} T$.
[4] (a) Shat that if $v \in \operatorname{ker}(T)$, then $v \in \operatorname{ker}\left(T^{*}\right)$.
[4] (b) Show that $T-\lambda I$ is a normal linear transformation for all $\lambda \in C$.
[4] (c) Show that if v is an eigenvector of T with eigenvalue $\lambda, T(v)=$ λv, then v is an eigenvector of T^{*} with eigenvalue $\bar{\lambda}$.
[4] (d) Show that if v and w are eigenvectors of T corresponding to distinct eigenvalue, then v and w are orthogonal.

SOLUTION:

(a) $v \in \operatorname{ker}(T) \Rightarrow T(v)=0 \Rightarrow\|T(v)\|=0 \Rightarrow<T(v), T(v)>=0 \Rightarrow<$ $v, T^{*} T(v)>=0$
$\Rightarrow \overline{<T T^{*}(v), v>}=0 \Rightarrow \overline{<T^{*}(v), T^{*}(v)>}=0 \Rightarrow<T^{*}(v), T^{*}(v)>=0$
$\Rightarrow\left\|T^{*}(v)\right\|=0 \Rightarrow T^{*}(v)=0 \Rightarrow v \in \operatorname{ker}\left(T^{*}\right)$.
(b) $(T-\lambda I)(T-\lambda I)^{*}=(T-\lambda I)\left(T^{*}-\bar{\lambda} I\right)=T T^{*}-\bar{\lambda} T-\lambda T^{*}+\bar{\lambda} \lambda I$ $(T-\lambda I)^{*}(T-\lambda I)=\left(T^{*}-\bar{\lambda} I\right)(T-\lambda I)=T^{*} T-\bar{\lambda} T-\lambda T^{*}+\bar{\lambda} \lambda I=$ $T T^{*}-\bar{\lambda} T-\lambda T^{*}+\bar{\lambda} \lambda I$

Thus they are the same, thus normal.
(c) Let $T v=\lambda v$. First, $\|T v\|=\sqrt{<T v, T v>}=\sqrt{\left\langle v, T^{*} T v>\right.}=$ $\sqrt{<v, T T^{*} v>}$
$=\sqrt{\overline{<T T^{*} v, v>}}=\sqrt{\overline{<T^{*} v, T^{*} v>}}=\sqrt{<T^{*} v, T^{*} v>}=\left\|T^{*} v\right\|$ for any normal operator.
Now, since $T-\lambda I$ is normal we have $0=\|(T-\lambda I) v\|=\left\|\left(T^{*}-\bar{\lambda} I\right) v\right\|$. Thus v is an eigenvector of T^{*} and $\bar{\lambda}$ is an eigenvalue of T^{*}.
(d) Let $T v=\lambda v, T w=\alpha w \Rightarrow<T v, w>=<\lambda v, w>=\lambda<v, w>$

But, $\left.\left.\langle T v, w\rangle=<v, T^{*} w\right\rangle=<v, \bar{\alpha} w\right\rangle=\alpha\langle v, w\rangle$
Now, this implies $\alpha<v, w>=\lambda<v, w>\Rightarrow(\alpha-\lambda)<v, w>=0 \Rightarrow<$ $v, w>=0$.
Thus v and w are orthogonal.

