
Math 224
Linear algebra
December 2005

–––––––––––––––––––––––––––––-

1. Let V = U ⊕W fom some subspaces U and W of a vector space V .

[4] (a) Show every vector v∈ V can be written uniquely as v = u + w
for some u ∈ U and w ∈W.
[4] (b) For v written uniquely as v = u + w as in part (a) , define
T : V → V by T (v) = w. Show that T is a linear transformation.

[4] (c) Show U = ker(T ) and W = Im(T ).

[4] (d) Show T 2 = T.

SOLUTION:

(a) Let v = u1 + w1 = u2 + w2 where u1, u2 ∈ U.w1, w2 ∈W.
Therefore u1 − u2 = w2 − w1, u1 − u2 ∈ U,w2 − w1 ∈ W. But we
have a direct sum, thus the only vector in common is the zero vector.
Therefore, u1 − u2 = w2 − w1 = 0.
Thus , u1 = u2 and w2 = w1. Therefore every vector can be written
uniquely in this way.

(b) Let v = u2 + w2,m = u1 + w1 where u1, u2 ∈ U.w1, w2 ∈W.
(i) T (v+m) = T (u1+w1+u2+w2) = T (u1+u2+w1+w2) = w1+w2 =
T (v) + T (m).

(ii) T (kv) = T (ku1 + kw1) = kw1 = kT (v)

Thus, T is a linear transformation.

(c) T (v) = T (u+ w) = 0⇒ w = 0⇒ ker(T ) = U

If v ∈W ⇒ T (v) = v ⇒W ⊆ Im(T )
Now , for any vector x, we have x = u + w and T (x) = w ∈ W, thus
Im(T ) ⊆W.
Therefore Im(T ) =W/

(d) For any vector x ∈ V we have x = u+ w.
Now, T 2(x) = T (T (x)) = T (w) = w. So T and T2 act the same on
every vector in V. Thus, T = T 2.

–––––––––––––––––––––––––––
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2. Let α = {e3t, te3t, t2e3t, t3e3t} be a basis of a vector space V of functions
f : R→ R. Let T : V → V be defined by T (f) = df

dt
.

[8] (a) Find [T ]αα
[8] (b) Let W be the T-cyclic subspace of V generated by f(t) = tet.
Find a basis for W and the characteristic polynomial of T |W .
SOLUTION:

(a) [T ]αα =


3 1 0 0
0 3 2 0
0 0 3 3
0 0 0 3

, just think of derivatives of each element
to get this.

(b) T (tet) = et + tet, T (et + tet) = 2et + tet

Thus W = span{tet, et}
Notice T 2(tet) = 2T (tet)− tet ⇒ (T 2 − 2T + I)(tet) = 0
Thus characteristic polynomial is f(x) = x2 − 2x+ 1
–––––––––––––––––––––––––-

3. Let

 1 0 1
2 2 2
3 0 0

 be the matrix of a linear transformation T : R3 → R3

with respect to the standard basis of R3. Compute [T ]αα for the basis
α = {(1, 0, 1}, (0, 1, 1), (1, 1, 0)} of R3.
SOLUTION:

Find change of basis matrix from α to standard.

[M ] =

 1 0 1
0 1 1
1 1 0

 ., Now, [M ]−1 =


1
2
−1
2

1
2−1

2
1
2

1
2

1
2

1
2
−1
2



Thus, [T ]αα =


1
2
−1
2

1
2−1

2
1
2

1
2

1
2

1
2
−1
2


 1 0 1
2 2 2
3 0 0


 1 0 1
0 1 1
1 1 0

 =


1
2
−3
2
0

5
2

3
2

3
3
2

5
2

1


––––––––––––––––––––––––

4. Suppose

 −1 2 2
2 −1 2
2 2 −1

 in the matrix of a linear transformation

T : R3 → R3 with respect to the standard basis of R3.
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[8] (a) Find an orthonormal basis α of R3 consisting of eigenvectors of
T.

[6] (b) Determine [T ]αα and give the spectral decompostion of T.

SOLUTION:

(a) det

 −λ− 1 2 2
2 −λ− 1 2
2 2 −λ− 1

 = −λ3 − 3λ2 + 9λ+ 27 = 0
⇒ − (λ− 3) (λ+ 3)2 = 0⇒ λ = ±3

For λ = 3⇒
 −4 2 2
2 −4 2
2 2 −4


 x
y
z

 =
 0
0
0

, Solution is : t
 1
1
1



For λ = −3⇒
 2 2 2
2 2 2
2 2 2


 x
y
z

 =
 0
0
0

,

Solution is : t

 1
0
−1

+ w
 0
1
−1

, these two vectors are not orthog-
onal , so we must use gram-schmidt to orthogonalize them. 1
0
−1

− 1
2

 0
1
−1

 =
 1
−1
2−1
2

 , or
 2
−1
−1



so we have orthogonal basis {
 0
1
−1

 ,
 2
−1
−1

 ,
 1
1
1

}

Thus orthonormal basis is { 1√
2

 0
1
−1

 , 1√
6

 2
−1
−1

 , 1√
3

 1
1
1

} = α

(b) [T ]αα =

 −3 0 0
0 −3 0
0 0 3

 ,

The spectral decomposition is


0 2√

6
1√
3

1√
2

−1√
6

1√
3−1√

2
−1√
6

1√
3


 −3 0 0
0 −3 0
0 0 3


 0 1

2

√
2 −1

2

√
2

1
3

√
6 −1

6

√
6 −1

6

√
6

1
3

√
3 1

3

√
3 1

3

√
3


––––––––––––––––––––
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5. Let C[−π,π] be the vector space of continuous functions on [−π,π].
[5] (a) Show that < f, g >= 1

π
π
−π f(x)g(x)dx defines an inner product

on C[−π,π].
[5] (b) Show that the set S = { 1√

2
, sinx, cosx} is an orthonormal set

in C[−π,π] with respect to the inner product in part (a).
[5] (c) Find the best least squares approximation to f(x) = |x| on
[−π,π] by a trigonmetric function in span {S}.
SOLUTION:

(a) (i) < f, f >= 1
π

π
−π f

2(x)dx ≥ 0
(ii) < f, f >= 0⇔ 1

π
π
−π f

2(x)dx = 0⇔ f = 0

(iii) < f + g, h >= 1
π

π
−π(f + g)hdx =

1
π

π
−π fhdx+

1
π

π
−π ghdx

=< f, h > + < g, h >

(iv) < kf, h >= 1
π

π
−π kf(x)h(x)dx = k < f, h >

(v) < f, h >= < h, f > (obviously true)

Thus, it is an inner product.

(b) < 1√
2
, sinx >= 1

π
π
−π

sinx√
2
dx = 0, < 1√

2
, cosx >= 1

π
π
−π

cosx√
2
dx = 0

< cosx, sinx >= 1
π

π
−π cosx sinxdx =

1
π

π
−π

1
2
sin(2x)dx = 0

Thus, it is an orthogonal set.

< 1√
2
, 1√

2
>= 1

π
π
−π

1
2
dx = 1, < sinx, sinx >= 1

π
π
−π sin

2 xdx

= 1
π

π
−π

1
2
(1− cos(2x))dx = 1, < cosx, cosx >= 1

π
π
−π cos

2 xdx = 1

Thus, this is an orthonormal set.

(c) The approximation will be:

< |x|, 1√
2
> 1√

2
+ < |x|, sinx > sinx+ < |x|, cosx > cosx

= 1√
2π

π
−π

|x|√
2
dx+ sinx( 1

π
π
−π |x| sinxdx) + cosx( 1π π

−π |x| cosxdx)
= 2√

2π

π
0

x√
2
dx+ (cosx)( 2

π
π
0 x cosxdx) =

1
2
π − 4cosx

π

––––––––––––––––––––—
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6. Let T : R3 → R3 be a linear transformation defined by T

 x
y
z

 =

 y
z
x


[6] (a) Show that T is an isometry of R3.

[6] (b) Determine if T is a rotation or reflection and find the axis of
rotation or the fixed plane of reflection.

SOLUTION:

(a) [T ] =

 0 1 0
0 0 1
1 0 0

⇒ [T ]∗ =

 0 0 1
1 0 0
0 1 0



⇒ [T ][T ]∗ =

 0 1 0
0 0 1
1 0 0


 0 0 1
1 0 0
0 1 0

 =
 1 0 0
0 1 0
0 0 1

⇒ TT ∗ = I

Thus T is an isometry.

(b) det([T ]) = det

 0 1 0
0 0 1
1 0 0

 = 1⇒ indicates a rotation.

To find what you are rotating about look for eigenvector directions.

det

 λ −1 0
0 λ −1
−1 0 λ

 = 0 ⇒ λ3 − 1 = (λ− 1) λ2 + λ+ 1 = 0

So , λ = 1 will give use direction. 1 −1 0
0 1 −1
−1 0 1


 x
y
z

 =
 0
0
0

, Solution is : t
 1
1
1


Thus we are rotating around the line x = y = z.

––––––––––––––––––––––––

7. Let T : V → V be a normal linear transformation, that is TT ∗ = T ∗T.

[4] (a) Shat that if v ∈ ker(T ), then v ∈ ker(T ∗).
[4] (b) Show that T−λI is a normal linear transformation for all λ ∈ C.
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[4] (c) Show that if v is an eigenvector of T with eigenvalue λ, T (v) =
λv, then v is an eigenvector of T ∗ with eigenvalue λ.

[4] (d) Show that if v and w are eigenvectors of T corresponding to
distinct eigenvalue, then v and w are orthogonal.

SOLUTION:

(a) v ∈ ker(T ) ⇒ T (v) = 0 ⇒ ||T (v)|| = 0 ⇒< T (v), T (v) >= 0 ⇒<
v, T ∗T (v) >= 0

⇒ < TT ∗(v), v > = 0⇒ < T ∗(v), T ∗(v) > = 0⇒< T ∗(v), T ∗(v) >= 0
⇒ ||T ∗(v)|| = 0⇒ T ∗(v) = 0⇒ v ∈ ker(T ∗).
(b) (T − λI)(T − λI)∗ = (T − λI)(T ∗ − λI) = TT ∗ − λT − λT ∗ + λλI

(T − λI)∗(T − λI) = (T ∗ − λI)(T − λI) = T ∗T − λT − λT ∗ + λλI =
TT ∗ − λT − λT ∗ + λλI

Thus they are the same, thus normal.

(c) Let Tv = λv. First, ||Tv|| = √< Tv, Tv > =
√
< v, T ∗Tv > =√

< v, TT ∗v >

= < TT ∗v, v > = < T ∗v, T ∗v > =
√
< T ∗v, T ∗v > = ||T ∗v|| for

any normal operator.

Now, since T −λI is normal we have 0 = ||(T −λI)v|| = ||(T ∗−λI)v||.
Thus v is an eigenvector of T ∗ and λ is an eigenvalue of T ∗.

(d) Let Tv = λv, Tw = αw⇒< Tv,w >=< λv, w >= λ < v,w >

But, < Tv,w >=< v, T ∗w >=< v,αw >= α < v,w >

Now, this implies α < v,w >= λ < v,w >⇒ (α− λ) < v,w >= 0⇒<
v,w >= 0.

Thus v and w are orthogonal.
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