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1. Let V =U & W fom some subspaces U and W of a vector space V.

[4] (a) Show every vector ve V' can be written uniquely as v = v +w
for some v € U and w € W.

[4] (b) For v written uniquely as v = u + w as in part (a) , define
T:V —V by T(v) = w. Show that T is a linear transformation.

[4] (c¢) Show U = ker(7T") and W = Im(T").

4] (d) Show T? =T.

SOLUTION:

(a) Let v = uy + wy = ug + wy where uy, ug € Uwy, wy € W.

Therefore u; — uy = wy — wy, uy — uy € U,wy — wy; € W. But we
have a direct sum, thus the only vector in common is the zero vector.
Therefore, u; — us = wy — wy = 0.

Thus , u; = us and wy = wy. Therefore every vector can be written
uniquely in this way.

(b) Let v = ug + wa, m = uy + wy where uy, uy € Uwy, ws € W.

(1) T(v+m) = T(ug +wy +ug+wy) = T(ug +ug+wy +wsp) = wy +wp =
T(v)+T(m).

(ii) T(kv) = T(kuy + kwy) = kwy = kT (v)

Thus, T is a linear transformation.
(c)T(v)=T(u+w)=0=>w=0=ker(T)=U
fveW=Tw =v=W CImn(T)

Now , for any vector x, we have x = v + w and T(x) = w € W, thus
Im(T") C W.

Therefore Im(7") = W/

(d) For any vector z € V' we have x = u + w.

Now, T?(x) = T(T(z)) = T(w) = w. So T and T? act the same on
every vector in V. Thus, T' = T?.




2. Let a = {e¥, te3 t?e3 133!} be a basis of a vector space V of functions
f:R— R Let T:V — V be defined by T(f) = 4

dt -
8] (a) Find [TTaq
[8] (b) Let W be the T-cyclic subspace of V generated by f(t) = te.
Find a basis for W and the characteristic polynomial of Ty .
SOLUTION:
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(a) [T)aa = 00 3 3 | Just think of derivatives of each element
0003

to get this.

(b) T(te') = e' + te', T'(e' + te') = 2e’ + te
Thus W = span{te’, e’}
Notice T?(te?) = 2T (te) — tet = (T? — 2T + I)(te') = 0

Thus characteristic polynomial is f(z) = 22 — 2z + 1
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3. Let ( 2 2 2 ) be the matrix of a linear transformation T : R3 — R3
300

with respect to the standard basis of R3. Compute [T, for the basis
a={(1,0,1},(0,1,1),(1,1,0)} of R.

SOLUTION:

Find change of basis matrix from « to standard.

1 01 % _%
[M](o 1 1).,Now,[M]1(;

NI N

| N[0 [=
DO
\_/

110 %
1 11 1 3
5 —5 3 1 01 1 01 3 =5
Thus, [Tlaa=| —3 3 3 2 2 2 011 |=[3 3
1 1 1 3 5
5 5 3 300 110 55
-1 2 2
4. Suppose | 2 -1 2 in the matrix of a linear transformation
2 2 -1

T : R?® — R? with respect to the standard basis of R3.
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8] (a) Find an orthonormal basis a of R® consisting of eigenvectors of
T.

[6] (b) Determine [T, and give the spectral decompostion of T'.
SOLUTION:

—A—-1 2
(a) det | 2 -A—1 2

)
(1)

— 3+ ON+27=0

1
( ) Solution is : t( 1 )
1

—(A=3)(A+3)7=0= =43

=
—4 2
For \=3=1] 2 —4 2
2

2
2 2 2
For A\=-3=12 2 2 y | = 0 ,
2 2 2 z 0

-1
onal , so we must use gram-schmidt to orthogonalize them.

1 0 1 2
0 — % 1 = —% ,or | —1
-1 -1 —3 -1
0 2 1
so we have orthogonal basis {| 1 d -1 1.0 1 |}
—1 —1 1
0 2 1
Thus orthonormal basis is {% 1 1 ,% -1 ,% 1 |}=«

-3 0 0
(b) [T]acx: (0 -3 O>7

1 0
Solution is : ¢ ( 0 ) +w ( 1 ), these two vectors are not orthog-
1

o 0 3
0 % %\/-30 0 0
The spectral decomposition is % :/—é % 0 -3 0 %\/6
A | 1
24 0o 0 3 V3
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5. Let C[—m, ] be the vector space of continuous functions on [—, 7.

[5] (a) Show that < f,g >= 2 ["_f(z)g(z)dz defines an inner product
on Cl—m, .

[5] (b) Show that the set S = {%,Sin x,cosx} is an orthonormal set
in C|—m, w| with respect to the inner product in part (a).

[5] (c) Find the best least squares approximation to f(z) = |z| on
[—m, 7| by a trigonmetric function in span {S}.

SOLUTION:

(@) () < f,f>= 1 [7 fPx)dz 2 0

i) < f,f>=0&2[T fAz)de=0&f=0

(ili) < f+g,h>=L [T (f +g)hdz = 1 [7_fhdz + 1 [7_ghdx
=< f,h>+<g,h>

(iv) <kf,h>=2L [T kf(z)h(z)de =k < f,h >

(v) < f,h >= < h, f > (obviously true)

Thus, it is an inner product.

(b) < %,Sinm >=1 [T Si\‘gdx =0,< %,cosm >=1 " rdr =0
< cosz,sinz >= 1 [T coszsinadr =+ [T 2sin(2z)dr =0

Thus, it is an orthogonal set.

< %, % >= %ffw %da: =1,<sinz,sinx >= %ffw sin? zdx

=17 1(1—cos(2z))dz =1,< cosz,cosz >= = [T cos® zdx = 1
Thus, this is an orthonormal set.

(¢) The approximation will be:

< |x|,% > %—’— < |z|,sinz > sinz+ < |z|,cosx > cosx

=L gy 4 sin z(% 7 |z|sinzdz) + cosz (2 [T |z| cos zdx)

V2 2
= ﬁ o Zdr + (cosz)(2 [ zcoszdr) = m — 4°%L
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6. Let T : R? — R? be a linear transformation defined by T ( Y ) =

Y

2

T
6] (a) Show that T is an isometry of R>.

[6] (b) Determine if T is a rotation or reflection and find the axis of
rotation or the fixed plane of reflection.

SOLUTION:

010
(a) [T] = (O 0 1):>[T]*(
1 00
01
0 0

1

0

0
0\ /0 0 1

= [T)[T]* = ( 1)(1 0 o)(
1 00 010

Thus T is an isometry.

010
(b) det([T]) = det ( 001 ) = 1 = indicates a rotation.
1 00

To find what you are rotating about look for eigenvector directions.

-1 0 A

So , A =1 will give use direction.

1 -1 0 T 0 1
0o 1 -1 y | =1 0 |, Solutionis: ¢ | 1
-1 0 1 z 0 1

Thus we are rotating around the line z =y = 2.

A —10
det(O A 1)0:»A3—1(A—1)(A2+A+1)0

7. Let T : V — V be a normal linear transformation, that is T7T™* = T*T.
[4] (a) Shat that if v € ker(T'), then v € ker(T™).
[4] (b) Show that T'— AI is a normal linear transformation for all A € C.
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[4] (c) Show that if v is an eigenvector of T' with eigenvalue A, T'(v) =
Av, then v is an eigenvector of 7™ with eigenvalue A.

[4] (d) Show that if v and w are eigenvectors of 1" corresponding to
distinct eigenvalue, then v and w are orthogonal.

SOLUTION:

(a) v € ker(T) = T(v) =0 = ||[T(W)|| =0=<T(),T(v) >=0=<
v, T*T'(v) >=0

= <TT*(v),v >=0=<T*v),T*(v) > =0=<T*(v),T*(v) >=0
= [|[T*(v)|| =0=T*(v) =0 = v € ker(T%).

(b) (T = XI)(T = X)* = (T — X)(T* — X ) = TT* — NI — \XT* + A\I
(T —XD*(T = X) = (T* = X)(T —XI) = T*T — AT — NXT™* + DM\ =
TT* — NI — AT* + A\

Thus they are the same, thus normal.

(c) Let Tv = Av. First, ||Tv|| = /<Tv,Tv> = /<v,T"Tv> =
V<, TT* >

= \/< TT*v,v > = \/< T, T v > = /< T*v,T*v > = ||T*v|| for
any normal operator.

Now, since T'— Al is normal we have 0 = ||(T'— X )v|| = ||(T* — AI)v|].
Thus v is an eigenvector of 7" and A is an eigenvalue of T™.

(d) Let Tv = M, Tw = aw =< Tv,w >=< Av,w >= )\ < v,w >
But, < Tv,w >=< v, T*w >=<v,aw >=a < v,w >

Now, this implies a < v,w >= A < v,w >= (a — ) < v,w >=0 =<
v,w >= 0.

Thus v and w are orthogonal.



