Math 224
Linear algebra
December 2006

1. (10 marks) Let $W_{1}=\left\{A \in M_{22}(R) \mid A=A^{T}\right\}$. Let $W_{2}=\{(x, y, z, w) \in$ $\left.R^{4} \mid x+y-z=0\right\}$. Show W_{1} and W_{2} are isomorphic and find (define) an isomorphism $T: W_{1} \rightarrow W_{2}$.
SOLUTION:
If $A=A^{T} \Rightarrow\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right) \Rightarrow b=c$.
Thus W_{1} is the set of all matrices of the form $\left(\begin{array}{ll}a & b \\ b & d\end{array}\right)$.
Now, W_{2} consists of the points of the form $(x, y, x+y, w)$.
There are many choices for the isomorphism, so here is one.
$f\left(\left(\begin{array}{ll}a & b \\ b & d\end{array}\right)\right)=(a, d, a+d, b)$. To prove this is a isomorphism we need to show this is linear, 1-1 and onto.
a) linear:
i) $f\left(k\left(\begin{array}{ll}a & b \\ b & d\end{array}\right)\right)=f\left(\left(\begin{array}{cc}k a & k b \\ k b & k d\end{array}\right)\right)=(k a, k d, k a+k d, k b)=k f\left(\left(\begin{array}{cc}a & b \\ b & d\end{array}\right)\right)$
ii) $f\left(\left(\begin{array}{ll}a & b \\ b & d\end{array}\right)+\left(\begin{array}{ll}e & f \\ f & g\end{array}\right)\right)=f\left(\left(\begin{array}{ll}a+e & b+f \\ b+f & d+g\end{array}\right)\right)=(a+e, d+g, a+$ $d+e+g, b+f)$
$=(a, d, a+d, b)+(e, g, e+g, f)=f\left(\left(\begin{array}{ll}a & b \\ b & d\end{array}\right)\right)+f\left(\left(\begin{array}{ll}e & f \\ f & g\end{array}\right)\right)$
so linear
b) onto:

Pick $v \in W_{2} \Rightarrow v=(x, y, x+y, w)$.
Thus $\left(\begin{array}{ll}x & w \\ w & y\end{array}\right) \in W_{1}$ and $f\left(\left(\begin{array}{ll}x & w \\ w & y\end{array}\right)\right)=v$. Thus f is onto.
c) $1-1$:

Just have to show kernel is zero vector in W_{1}.
$f\left(\left(\begin{array}{ll}a & b \\ b & d\end{array}\right)\right)=(0,0,0,0) \Rightarrow(a, d, a+d, b)=(0,0,0,0) \Rightarrow a=b=c=$ $d=0$
$\Rightarrow\left(\begin{array}{ll}a & b \\ b & d\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right) \Rightarrow$ kernel is zero vector.
Therefore f is an isomorphism and thus the two spaces are isomorphic.
2. (11 marks) Let V be an inner product space and $T: V \rightarrow V$ a linear operator. Prove that if T is normal, then T and T^{*} have the same image and the same kernel.
SOLUTION:
i) proof that kernels are the same. (Recall that normal means $T^{*} T=$ $T T^{*}$)
Let $v \in \operatorname{ker}(T) \Leftrightarrow T v=0 \Leftrightarrow<T v, T v>=0$. But $<T v, T v>=<$ $v, T^{*} T v>=<v, T T^{*} v>=\overline{<T T^{*} v, v>}=\overline{<T^{*} v, T^{*} v>}=<T^{*} v, T^{*} v>$ Thus $<T^{*} v, T^{*} v>=0 \Leftrightarrow T^{*} v=0 \Leftrightarrow v \in \operatorname{ker}\left(T^{*}\right)$. Thus T and T^{*} have the same kernels.
ii) proof that images are the same.
(assuming that V is finite dimensional) We can use dimension theorem.
$\operatorname{dim} V=\operatorname{dim}($ Kernel $)+\operatorname{dim}($ Image $)$
so we have $\operatorname{dim} V=\operatorname{dim}($ Kernel T$)+\operatorname{dim}($ Image T$)=\operatorname{dim}($ Kernel $\left.\mathrm{T}^{*}\right)+\operatorname{dim}\left(\right.$ Image $\left.T^{*}\right)$
Thus we have $\operatorname{dim}(\operatorname{Image} T)=\operatorname{dim}\left(\operatorname{Image} T^{*}\right)$
We can form a basis for V consisting of basis of kernel and extend this to basis of V.
Since they both have same kernel the extension is a basis for Image of both. Thus images are the same.
3. (10 marks) Let α and β be the standard bases of $P_{3}(R)$ and $P_{2}(R)$ respectively. Suppose the linear transformation $T: P_{3}(R) \rightarrow P_{2}(R)$ is given by

$$
[T]_{\beta \alpha}=\left(\begin{array}{llll}
1 & -1 & 1 & 2 \\
2 & -2 & 1 & -1 \\
-1 & 1 & 0 & 3
\end{array}\right)
$$

Find a basis β^{\prime} of $P_{2}(R)$ such that the matrix $[T]_{\beta^{\prime} \alpha}$ is the reduced row echlon form of $[T]_{\beta \alpha}$.

SOLUTION:
Determine the matrix which puts $[T]_{\beta \alpha}$ into row reduced echelon form.
Think of the elementary operations that perform this operation.

$$
\begin{aligned}
& \left(\begin{array}{llll}
1 & -1 & 1 & 2 \\
2 & -2 & 1 & -1 \\
-1 & 1 & 0 & 3
\end{array}\right) \text {, row echelon form: }\left(\begin{array}{cccc}
1 & -1 & 0 & -3 \\
0 & 0 & 1 & 5 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
-2 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{llll}
1 & -1 & 1 & 2 \\
2 & -2 & 1 & -1 \\
-1 & 1 & 0 & 3
\end{array}\right)=\left(\begin{array}{llll}
1 & -1 & 0 & -3 \\
0 & 0 & 1 & 5 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
-2 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
-1 & 1 & 0 \\
2 & -1 & 0 \\
-1 & 1 & 1
\end{array}\right)
\end{aligned}
$$

So this matrix takes us from the β basis to the β^{\prime} basis. The inverse of this is more useful as we can read the β^{\prime} basis directly from it.

$$
\left(\begin{array}{ccc}
-1 & 1 & 0 \\
2 & -1 & 0 \\
-1 & 1 & 1
\end{array}\right) \text {, inverse: }\left(\begin{array}{ccc}
1 & 1 & 0 \\
2 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right)
$$

So $\beta^{\prime}=\{(1,2,-1),(1,1,0),(0,0,1)\}$
or $\beta^{\prime}=\left\{1+2 x-x^{2}, 1+x, x^{2}\right\}$.
4. Consider the inner product space $C[0,1]$, the set of all continuous functions on $[0,1]$, with inner product defined by $<f(x), g(x)>=$ $\int_{0}^{1} f(x) g(x) d x$.
[2] (a) Show that 1 and $2 \mathrm{x}-1$ are orthogonal.
[4] (b) Determine $\|1\|$ and $\|2 \mathrm{x}-1\|$.
[6] (c) Find a function from the subspace $W=\operatorname{span}\{1,2 x-1\}$ that best approximates the function $f(x)=\sqrt{x}$.

SOLUTION:

(a) $<1,2 x-1>=\int_{0}^{1}(2 x-1) d x=\left.\left(x^{2}-x\right)\right|_{0} ^{1}=0$

Therefore they are orthogonal.
(b) $\|1\|^{2}=<1,1>=\int_{0}^{1} d x=\left.x\right|_{0} ^{1}=1 \Rightarrow\|1\|=1$
$\|2 x-1\|^{2}=<2 x-1,2 x-1>=\int_{0}^{1}(2 x-1)^{2} d x=\frac{1}{3} \Rightarrow\|2 x-1\|=\frac{1}{\sqrt{3}}$
(c) The best approximation would be
$\frac{\leq \sqrt{x}, 1>}{1}+\frac{\langle\sqrt{x}, 2 x-1>}{\frac{1}{3}}(2 x-1)=\int_{0}^{1} \sqrt{x} d x+3\left(\int_{0}^{1}(\sqrt{x})(2 x-1) d x\right)(2 x-1)$
$=\frac{2}{3}+\frac{2}{5}(2 x-1)=\frac{4}{15}+\frac{4}{5} x$
5. Consider C^{2} with the standard inner product. Let $T: C^{2} \rightarrow C^{2}$ be given by
$T(x, y)=(x+(1-i) y,(1+i) x+2 y)$.
[2] (a) Find $T^{*}(x, y)$
[8] (b) Find an orthonormal basis of C^{2} consisting of eigenvectors of T.
SOLUTION:
a) $[T]=\left(\begin{array}{ll}1 & 1-i \\ 1+i & 2\end{array}\right) \Rightarrow[T]^{*}=\left(\begin{array}{ll}1 & 1-i \\ 1+i & 2\end{array}\right)$

Thus $T=T^{*}$
b) $\operatorname{det}\left(\left(\begin{array}{ll}1 & 1-i \\ 1+i & 2\end{array}\right)-\lambda\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right)=-3 \lambda+\lambda^{2}=0$

Thus we have eigenvalues 0 and 3 .
So for $\lambda=0$ we must solve $\left(\begin{array}{ll}1 & 1-i \\ 1+i & 2\end{array}\right)\binom{x}{y}=\binom{0}{0}$, Solution is : $\binom{-t_{1}+i t_{1}}{t_{1}}=t_{1}\binom{-1+i}{1}$
For $\lambda=3$ we must solve $\left(\begin{array}{ll}-2 & 1-i \\ 1+i & -1\end{array}\right)\binom{x}{y}=\binom{0}{0}$, Solution is $:\binom{t_{1}-i t_{1}}{2 t_{1}}=t_{1}\binom{1-i}{2}$

So we have basis $\left\{\binom{-1+i}{1},\binom{1-i}{2}\right\}$ which is orthogonal but they are not necessarily of length one.
$\left\|\binom{-1+i}{1}\right\|^{2}=(-1+i)(-1-i)+(1)(1)=3$
$\left\|\binom{1-i}{2}\right\|^{2}=(1-i)(1+i)+(2)(2)=6$
Thus our orthonormal basis is $\left\{\frac{1}{\sqrt{3}}\binom{-1+i}{1}, \frac{1}{\sqrt{6}}\binom{1-i}{2}\right\}$
6. Let W_{1} and W_{2} be subspaces of a vector space V. Suppose $V=W_{1} \oplus W_{2}$ and let $v=w_{1}+w_{2}$ denote the decompostion of each $v \in V$ with $w_{1} \in W_{1}$ and $w_{2} \in W_{2}$. For $i=1,2$ let $P_{i}: V \rightarrow V$ be defined by $P_{i}(v)=w_{i}$.
Prove the following statements.
[3] (a) $P_{i}^{2}=P_{i}$ for $i=1,2$.
[3] (b) $P_{1} P_{2}$ is the zero transformation.
[3] (c) $P_{1}+P_{2}$ is the identity transformation.
[3] (d) Each eigenvalue of $P_{i}, i=1,2$ is either 0 or 1 .

SOLUTION:

(a) Consider $P_{1}^{2} v=P_{1}^{2}\left(w_{1}+w_{2}\right)=P_{1}\left(P_{1}\left(w_{1}+w_{2}\right)\right)=P_{1}\left(w_{1}\right)=w_{1}$

This is true for all $v \in V \Rightarrow P_{1}^{2}=P_{1}$. Similary $P_{2}^{2}=P_{2}$.
(b) $P_{1} P_{2}(v)=P_{1} P_{2}\left(w_{1}+w_{2}\right)=P_{1}\left(w_{2}\right)=P_{1}\left(0+w_{2}\right)=0 \Rightarrow P_{1} P_{2}$ is the zero transformation.
(c) $\left(P_{1}+P_{2}\right)(v)=P_{1}(v)+P_{2}(v)=P_{1}\left(w_{1}+w_{2}\right)+P_{2}\left(w_{1}+w_{2}\right)=$ $w_{1}+w_{2}=v$
$\Rightarrow P_{1}+P_{2}$ is the identity transformation.
(d) Consider $P_{1}(v)=\lambda v \Rightarrow P_{1}\left(w_{1}+w_{2}\right)=\lambda\left(w_{1}+w_{2}\right) \Rightarrow w_{1}=$ $\lambda\left(w_{1}+w_{2}\right)$
$\Rightarrow w_{1}(1-\lambda)=\lambda w_{2}$. Now since the only common vector W_{1} and W_{2} have in common is the zero vector we must have $w_{1}(1-\lambda)=0, \lambda w_{2}=0$.

Thus we have solutions $\lambda=1$ with $w_{2}=0$ or $\lambda=0$ with $w_{1}=0$.
Similary with P_{2} we will only get these two eigenvalues again.
7. Let $T: R^{4} \rightarrow R^{4}$ be a linear transformation whose matrix relative to the standard basis of R^{4} is given by
$A=\left(\begin{array}{llll}4 & -1 & -19 & 3 \\ -3 & 0 & 12 & -2 \\ 1 & 0 & -4 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$
[7] (a) Find a basis for the T-cyclic subspace W generated by $X=$ $(1,1,0,-1)$.
[3] (b) Find the characteristic polynomial $\left.T\right|_{W}$.
SOLUTION:
(a) $\left(\begin{array}{llll}4 & -1 & -19 & 3 \\ -3 & 0 & 12 & -2 \\ 1 & 0 & -4 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)\left(\begin{array}{l}1 \\ 1 \\ 0 \\ -1\end{array}\right)=\left(\begin{array}{c}0 \\ -1 \\ 0 \\ 0\end{array}\right)$
$\left(\begin{array}{llll}4 & -1 & -19 & 3 \\ -3 & 0 & 12 & -2 \\ 1 & 0 & -4 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)\left(\begin{array}{l}0 \\ -1 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)$
$\left(\begin{array}{llll}4 & -1 & -19 & 3 \\ -3 & 0 & 12 & -2 \\ 1 & 0 & -4 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{c}4 \\ -3 \\ 1 \\ 0\end{array}\right)$
$\left(\begin{array}{llll}4 & -1 & -19 & 3 \\ -3 & 0 & 12 & -2 \\ 1 & 0 & -4 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)\left(\begin{array}{l}4 \\ -3 \\ 1 \\ 0\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right)$
Thus a basis for the cyclic subspace is $\left\{\left(\begin{array}{l}1 \\ 1 \\ 0 \\ -1\end{array}\right),\left(\begin{array}{c}0 \\ -1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)\right.$,

$$
\left.\left(\begin{array}{c}
4 \\
-3 \\
1 \\
0
\end{array}\right)\right\}
$$

(b)

Now, these four vectors span the original space!
Thus no linear combination of these will give the zero vector (except the trivial case).
But, $T^{4} v=0$. This implies the minimal polynomial is $m(x)=x^{4}$.

