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––––––––––––––––––––––—

1. (12 marks) Sketch and describe as accurately as possible the image of
the annulus A = {z|r1 ≤ |z| ≤ r2}, 0 < r1 < 1 < r2, under the mapping
z → log z where the log function is defined using the principal branch
−π < arg z ≤ π

SOLUTION:

First consider r1 ≤ |z| ⇒ z = r1e
iθ ⇒ log z = ln r1 + iθ,−π < θ ≤ π.

Since r1 < 1⇒ ln(r1) < 0. Thus this inner circle maps to the straight
line with x = ln r1 and y = θ with −π < θ ≤ π.

Thus, this maps the annulus to the square with ln(r1) ≤ x ≤ ln(r2)
and −π < y ≤ π.

–––––––––––––––––––––––––—

2. (12 marks) Show f(z) = z
1+|z| is not holomorphic anywhere.

SOLUTION:

Use Cauchy-Riemann conditions here.

f(z) = z
1+|z| =

x+iy

1+
√
x2+y2

= x

1+
√
x2+y2

+ i y

1+
√
x2+y2

= u+ iv

uy =
d
dy
( x

1+
√
x2+y2

) = − xy

1+
√
(x2+y2)

2√
(x2+y2)

vx =
∂
∂x
( y

1+
√
x2+y2

) = − xy

1+
√
(x2+y2)

2√
(x2+y2)

C-R⇒ uy = −vx ⇒ xy = 0⇒ x = 0 or y = 0.

But, these are straight lines. To be analytic at a point you need the
function to satisfy the cauchy riemann equations in a neighbourhood of
that point. There are no points which are analytic in a neighbourhood,
thus this is not holomorphic anywhere.

–––––––––––––––––––––––––––
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3. (12 marks) Classify all singularities, including at ∞, for the following
functions

a) f(z) = z5

z3+z

b) g(z) = ez−1
z(z−1)

SOLUTION:

a) f(z) = z5

z(z2+1)
⇒ singularities at z = 0,∓i

Now, as z5

z(z2+1)
= z4

(z2+1)
, z = 0.We can redefine f(0) = 0, thus z = 0 is

a removable singularity.

lim
z→i (z − i)

z5

z(z2+1)
=lim
z→i

z5

z(z+i)
= 1

2i
⇒ z = i is a simple pole.

lim
z→−i (z + i)

z5

z(z2+1)
= lim
z→−i

z5

z(z−i) =
−1
2i
⇒ z = −i is a simple pole.

For ∞ consider the function f(1
z
) = 1

z5( 1
z3
+ 1
z )
= 1

z2(z2+1)
. Now we just

have to consdier what happens for z = 0. Notice lim
z→0 z

2 1
z2(z2+1)

= 1.

Thus ∞ is a second order pole.

b) Notice lim
z→1 (z − 1)

ez−1
z(z−1) = e− 1 = 0. Thus z = 1 is a simple pole.

z = 0 a little tricker. ez − 1 = z + 1
2
z2 + 1

6
z3 + ...

Thus, e
z−1
z
= 1 + 1

2
z + 1

6
z2 + ...

Thus, lim
z→0

ez−1
z(z−1) = −1, thus z = 0 is a removable singularity.

For ∞ consider the limit lim
z→∞

1
zn
g(z), n = 0, 1, 2, 3, ... for any value of

n this limit goes to ∞. Thus z =∞ is an essential singularity.

––––––––––––––––––––––––

4. (12 marks) Expand the function f(z) = e
z

z−2 in a laurent series about
z = 2 and determine the region of convergence of this series. What is
the residue at z = 2.

SOLUTION:

f(z) = e
z

z−2 = f(z) = e
z−2+2
z−2 = f(z) = e1+

2
z−2 = ee

2
z−2 = e(1 + 2

z−2 +
( 2
z−2)

2 1
2!
+ ...)

= e ∞
n=1(

2
z−2)

n 1
n!

Use ratio test to find radius of convergence.
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lim
z→∞ |

an+1
an
| = lim

z→∞ |(
2
z−2)

n+1 1
(n+1)!

÷ ( 2
z−2)

n 1
n!
| = lim

n→∞
2
n+1

1
z−2 = 0, z = 2

Thus region of convergence is z = 2. (note...little trick here...look at
the point where function is not defined. The radius of convergence
will always be the distance from where you expand the it to the next
singularity. Since there are none (except the point of expansion), the
radius is infinity)

The residue at z = 2 is 2e.

––––––––––––––––––––––––

5. (12 marks) Evaluate 2π
0

1
2+cos t

dt

SOLUTION:

Let z = eit ⇒ cos t = eit+e−it
2

=
z+ 1

z

2
, dz = ieitdt = izdt

Thus 2π
0

1
2+cos t

dt = |z|=1
1

2+
z+1

z
2

1
iz
dz = −2 |z|=1

i
4z+z2+1

dz

Now, 4z + z2 + 1 = 0, Solution is : z = −2 +√3 , z = −2−√3
Only z = −2 +√3 is inside the unit circle , thus we need residue at
this point.

−2 |z|=1
i

4z+z2+1
dz = 2πi[ lim

z→−2+√3
(z + 2−√3) −2i

4z+z2+1
] =

2πi[ lim
z→−2+√3

−2i
z+2+

√
3
] = 4π

2
√
3
= 2

3

√
3π

––––––––––––––––––––––––

6. (12 marks) Evaluate ∞
−∞

1
x6+1

dx

SOLUTION:

Integrate this by forming a semi-circular path in the upper half plane.
This will give you upper half plane

1
z6+1

dz = ∞
−∞

1
x6+1

dx

z6 + 1 = 0⇒ z6 = −1 = eπi+2nπi ⇒ z = e
πi+2nπi

6

Therefore the poles in the upper half plane are e
π
6
i, e

π
2
i, e

5π
6
i (these are

simple poles).

Residue for these at z = a will equal 1
6a5

(this only works for simple
poles).

Thus ∞
−∞

1
x6+1

dx = 2πi( 1

6e
5π
6 i
+ 1

6i5
+ 1

6e
25π
6 i
) = 8

3
π
4
= 2

3
π

––––––––––––––––––––––––
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7. (14 marks) Evaluate using residues P.V. ∞
−∞

cosx
4−x2dx

SOLUTION:

We cannot simply replace ’x’ with ’z’ as the new function will blow up
in the upper half plane. So consider ∞

−∞
eix

4−x2dx

upper half plane
eiz

4−z2dz =
∞
−∞

eix

4−x2dx− around z=2
eiz

4−z2dz− around z=−2
eiz

4−z2dz

(note: we have negative around z = ±2 since path goes clockwise
around them)

upper half plane
eiz

4−z2dz = 0 as no singularities inside the path.

around z=2
eiz

4−z2dz = (
1
2
)(2πi) lim

z→2 (z − 2)
eiz

4−z2 = πi(−e
2i

4
)

around z=−2
eiz

4−z2dz = (
1
2
)(2πi) lim

z→−2 (z + 2)
eiz

4−z2 = πi(e
−2i
4
)

Thus, 0 = ∞
−∞

eix

4−x2dx− πi(−e
2i

4
)− πi(e

−2i
4
)⇒

∞
−∞

eix

4−x2dx = πi(−e
2i

4
) + πi(e

−2i
4
) = 1

2
π sin 2 (pure real)

Thus, ∞
−∞

cosx
4−x2dx =

1
2
π sin 2

–––––––––––––––––––––––

8. (14 marks) Evaluate using residues: ∞
0

log x
(1+x2)2

dx

SOLUTION:

Use a semi-circular path in the upper half plane.

upper half plane
log z

(1+z2)2
dz = ∞

0
log x

(1+x2)2
dx + 0

−∞
log x

(1+x2)2
dx + (integral that

goes around 0 - but this goes to 0 anyway).

upper half plane
log z

(1+z2)2
dz = 2πi(residue at z = i) = 2πi lim

z→i
d
dz
( log z
(z+i)2

)

= 2πi lim
z→i

(z+i)2

z
−2(z+i) log z
(z+i)4

= 2πi lim
z→i

(z+i)
z
−2 log z

(z+i)3
= 2πi

2−2(iπ
2
)

−8i = −1
2
π +

1
4
iπ2

For 0
−∞

log x
(1+x2)2

dx let x = reiπ thus 0
−∞

log x
(1+x2)2

dx = 0
∞

log reiπ

(1+r2)2
eiπdr

= ∞
0

log r+iπ
(1+r2)2

dr = ∞
0

log r
(1+r2)2

dr + i ∞
0

π
(1+r2)2

dr

Thus we have −1
2
π+ 1

4
iπ2 = ∞

0
log x

(1+x2)2
dx+ ∞

0
log r

(1+r2)2
dr+i ∞

0
π

(1+r2)2
dr

Which gives us ∞
0

log x
(1+x2)2

dx = −1
4
π

And ∞
0

π
(1+r2)2

dr = 1
4
π2
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