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1 Introduction

There are many economic examples of long running organizations managed
by a succession of agents. Firms, nations and unions are all organizations
that can all outlive the tenure of a single administrator. Our intuition sug-
gests that there must be some way to ensure long run cooperation among
those organizations in spite of agents short term goals. This is exactly the
question that folk theorems in overlapping generations(OLG) games ad-
dress.

To do so a model of a repeated stage game played by overlapping gener-
ations of players is used. The model is similar to that of the folk theorem in
repeated games [3] in that a set of players repeatedly interact in a station-
ary strategic environment defined by a triple of the set of players, payoff
functions and strategies in the usual way. However in OLG games it is or-
ganizations that repeatedly interact in each period of the repeated game,
and the decision making agent of each organization changes over time. So
each player in the stage game only represents his organization for a finite
number of periods.

One early model of OLG’s with short lived agents acting in the long run
interest can be found in Samuelson’s 1958 paper[8]. He found that pareto
optimal equilibria in his model were not necessarily stable given the best
response of each generation of agents. Indeed he stated

“The Golden Rule or Kant’s Categorical Imperative (enjoining like
people to follow the common pattern that makes each best off) are
often not self enforcing: if all but one obey, the one may gain selfish
advantage by disobeying - which is where the sheriff comes in: we
politically invoke force on ourselves, attempting to make an unstable
equilibrium a stable one.”

This began an ongoing interest in modelling behaviour among OLG’s strate-
gically because in doing so the precise requirements of the stability of equi-
libria in Samuelson’s and similar models could be examined.

The first to formalize Samuelson’s problem was Hammond[4] who’s model
used strategies that obtain a sub-game perfect result. Cremer[2] broadened
the setting away from Samuelson’s model by using a generalized prisoners’
dilemma in the stage game to obtain more general results. He also argued
that OLG games provide a natural theory of long-lived organizations.

Kandori[5], Smith[10], and Salant[9] each presented variants of the folk
theorem in OLG games. Their results utilized a fully generalized stage game
which in the case of Kandori and Smith held for any finite number N of
players in each generation. A notable recent result is Breton et al.[1], who
study an overlapping generations game of team production in which the
question of the revelation of individual worker productivity is addressed.

Unfortunately the generalized folk theorem’s equilibrium strategy re-
quires that perfect information of the entire game be available to all play-
ers. In an OLG setting this is demanding a lot of players upon their entry
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to the game. Consequently Lagunoff and Matsui[6] restrict players to only
what they themselves have observed in the game. That is, players enter the
game with no memory of previous play in the stage game. This restriction
causes the generalised folk theorem to fail. However by giving the memo-
ryless agents communication and altruism the result can be reversed. They
found that where agents are altruistic to those that replace them in the
stage game and where agents send messages to their successors, a folk theo-
rem obtained. This folk theorem has the natural interpretation of conditions
that ensure long run cooperation among organizations of short lived agents.

As outlined in their own paper, Lagunoff and Matsui’s folk theorem is
limited because it obtains for stage games of only two players. That is for
OLG games among only two organizations.1 They state

“...we are confident a modification of the model to finite numbers of
organizations can be done. What makes the modification nontrivial
is that it is not only the length of the lifetimes, but also the overlap
between any two individuals’ lifetimes that matter.”

In this paper the folk theorem is extended to N-organizations, broaden-
ing the applicability of previous results. The result obtains by reformulating
the equilibrium strategies to specifically cater for heterogeneous players and
by redefining the nature of the cost of sending each message. With respect
to Lagunoff and Matsui’s concern regarding the overlap between players
lifetimes, the model also carefully specifies the phases of each agents life,
and follows Kandori[5] in doing so.

It also seems natural to explore the nature of communication in this
model and in doing so further restrict the information available to each
player. As such, the model is extended to imperfect communication. This
is the case where players observe with some positive probability a message
other than the one intended. We find that in this case a folk theorem obtains
with payoffs arbitrarily close to any equilibrium payoff profile of the perfect
communication case.

Both folk theorems rely on public perfect equilibrium (PPE), although
payoffs in the perfect communication case are strongly stationary in that
they are the same each period, whereas payoffs in the imperfect communi-
cation case can vary.

This paper is constructed as follows. Section 2 outlines the OLG game.
Section 3 presents the folk theorem for N organizations and its proof, which
largely consists of the construction of equilibrium strategies. A section con-
structing a short numerical example then follows. Section 5 further gener-
alizes the model to imperfect communication and presents a folk theorem,
followed by its proof. Section 6 constructs a short numerical example for
this case. Section 7 summarizes the paper’s findings and concludes.

1 Also their folk theorem only applies to games with homogeneous agents. These
are games where all players either receive payoffs above or below their equilibrium
payoffs when they sanction other players.
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2 The Model

2.1 The Stage Game

The repeated stage game played between the organizations each period is
defined here in a general way. That is, no particular game such as the pris-
oner’s dilemma is used. This broadens the scope of the models applicability
to any suitable strategic setting. This stage game is the most basic element
of the OLG game defined later.

The stage game is defined as G = 〈N, (Ai), (ui)〉. Under this definition
N denotes the finite set of players where i ∈ N is some player. Each i has
a non-empty set Ai of actions and a payoff function ui : A → < where
A = ×j∈NAj . The set ∆(Ai) denotes the set of probability distributions
over (Ai) with a member of this set referred to as a mixed strategy.2 The
probability that αi ∈ ∆(Ai) assigns to a pure strategy ai ∈ Ai is denoted
by αi(ai) and the support of αi are those elements for which αi(ai) > 0.
Finally some profile (αj)j∈N will induce a probability distribution over the
set A. Note that α = (αj)j∈N . Assuming players independently randomize,
an evaluation by i is then defined as Σa∈A(

∏
j∈N αj(aj))ui(a). This is also

known as i’s expected payoff and will be represented by ui in the same
manner as the payoff and will be simply referred to as the payoff from here
on, no confusion should arise from this.

The payoff profile is defined as u = (u1, u2, ..., uN ) where u ∈ <N . A
player i’s minimax payoff denoted ui is defined as the highest payoff he can
guarantee himself regardless of the other N − 1 players’ choices. Further
ui = ui(αi) where

ui(αi) = ui(αi
i, α

i
−i)

αi
−i ∈ arg min

α−i

max
αi

ui(αi, α−i)

αi
i ∈ arg max

αi

ui(αi, α
i
−i)

Under the definition above then, the minimax payoff ui is the minimum
payoff level any i ∈ N can be held down to. Of course for some player
j ∈ N where j 6= i holding i down to his minimax level will give him
a related payoff as well. This is known as the payoff from minimaxing or
sanctioning i and is denoted uj(αi).

The set of all payoff profiles in the stage game G is known as the feasible
payoff set. We denote by V the set of feasible payoffs for which each player
i receives strictly greater than his minimax payoff. Note V ∈ <N . The stage
game G is repeatedly played every period of the OLG game below. The
nature of the N players that participate in each period is also formally
given below.

2 This will be abbreviated to simply strategy from here on.
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2.2 The Overlapping Generations

In an OLG game the players of the stage game change over time. In effect
each organization plays the infinitely repeated game, but in the stage game
are only represented by an agent for a finite number of periods. After that
time the player’s successor in his organization replaces him. How and when
players replace each other is outlined below.

In the OLG game time is discrete and is denoted t = 1, 2, 3, .... In each
period from the first onwards G is played by N players. These N players are
finitely lived representatives drawn from N infinitely lived organizations. So
the OLG game is played between N sequences of players. Each player from
each organization plays the stage game for T periods after entering the game
in some period t. They are then replaced by a successor after period t + T
who possesses the same payoff function and action set in the stage game.
So while players enter and exit the game, the stage game itself remains the
same. We indicate by i(k) the kth agent of the ith organization.

We refer to the normal phase as those periods where all players are from
the same generation and no player is going to exit soon. This is further
defined below, but for example the normal phase consists of periods where
1(4), the 4th agent of organization 1, plays 2(4), the 4th agent of organization
2, and so on. As the kth agent from each organization interacts with the
kth agents of the other organizations during the normal phase, we use k to
represent a particular generation of agents.

The complete set of agents is denoted {1(k), 2(k), ..., N(k)}, where k =
1, 2, .... In what follows note that when no confusion will arise an agent i(k)
will often be denoted simply by their organization i for convenience.

The games overlapping nature is forced by letting the players of the first
generation live longer than T periods. This should not cause confusion and
will not be referred to again. The number of periods from the exit of player
i−1(k) to the exit of player i(k) is given by a vector K = {K1,K2, ...,KN}.

Fig. 1 An OLG Game with 3 Organizations
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The interpretation of K1 is that K1 refers to the number of periods from
the start of the overlap phase to the exit of player i(k). This overlap phase
is of length K = K1 +K2 + ...+KN and is a phase in the OLG game where
players of generation k are slowly replaced by those of the generation k +1.
Now refining the definition above, the other phase known as the normal
phase lasts for T − K periods. During the normal phase all players from
generation k play the stage game, and 1(k) has at least K1 periods of play
left before he is replaced by his successor.

Fig. 2 The Phases in an OLG Game

2.3 The Overlapping Generations Game

There are three reasons why an OLG game is played among organizations.
Firstly, players feel altruistic towards their successors, but only their suc-
cessors. Secondly, players communicate to their memoryless successors by
sending public messages, in fact they communicate to all the players along-
side their successor as well. Finally, players share the same ’type’ as their
successors, that is the same payoff function and action set in the stage game.
Only the third of these considerations has been mentioned as yet, how the
model incorporates the first two will now be shown.

Players are altruistic as by assumption i(k) takes as his payoff in the
OLG game the sum of his T payoffs while playing the stage game G and the
discounted sum of his successor’s stage game payoffs. The discount factor
δ ∈ (0, 1) measures the degree of altruism.

Incoming players are also defined as being memoryless. As such they
depend on their predecessor’s message to condition their strategy. Formally
an agent i(k) entering the OLG game in some period e has a personal
history of the strategies played in the stage games up to period t given
by ht

i(k) = (αe, αe+1, ...αt−2, αt−1), where t > e. In period e itself i(k)’s
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personal history is the null history, h0. The full set of personal histories at
t is then given by Ht

i(k) where ht
i(k) ∈ Ht

i(k).
Signals sent by outgoing agents enter agents’ histories. The first of these

comes from an agents predecessor i(k − 1) and is received in i(k)’s first
period of play, some period e. For the remainder of that overlap phase i(k)
will continue to receive messages from outgoing agents. This is due to the
public nature of communication in these games. Player i(k) will receive his
next message in Ki+1 periods, when player i + 1(k − 1) leaves the game.
Another message will be received after Ki+2 periods and so forth until all
players of generation k − 1 have left the game. After this the overlap phase
ends and T − K periods in the normal phase follow where no player will
exit and hence no messages will be received. The overlap phase will then
restart and K1 periods later the player 1(k) will exit, sending a message
to his successor. K2 periods later 2(k) will exit and send a message and so
on until agent i(k) finally exits the game himself. In all i(k) will therefore
receive N messages.

The messages received by i(k) are denoted

mi(k−1),mi+1(k−1),mi+2(k−1), ...mN(k−1),m1(k), ...,mi−1(k)

Where the subscript indicates the sender. We incorporate these messages
into i(k)’s history denoted h

t

i(k), which is given by

h
t

i(k) = (mi(k−1),mi+1(k−1), ..,mj , h
t
i(k))

Here j is the most recent message received and N ≥ j ≥ 1. The full set of
i(k)’s histories in period t, H

t

i(k) is now given by H
t

i(k) = M j ×Ht
i(k) given

j messages have been received. Note that M is the message space and that
each message is an element of this such that m ∈ M .

There are two messages that can be sent by outgoing agents. The first
is m0, indicating that no organization has deviated from the equilibrium
strategy, the other is the message mi which indicates that organization i
has deviated, where i ∈ N . The choice of which message to send is associ-
ated with various costs, with the cost to organization i of sending mj given
by cj

i ≥ 0. The precise value of cj
i for all i and for all j will be determined

alongside the other parameters of the model. The cost of m0 for all organi-
zations is given by 0, that is c0

i = 0 for all i. This assumption represents that
sending m0 in fact corresponds to sending no message, which we assume is
costless.

Given the above a strategy profile in the OLG game denoted (g, µ) is
made up of a profile of both behavioral and reporting strategies of the
players. The behavioral strategy of i(k) maps from the set of player i(k)’s
histories at period t to his strategies in the stage game, gi(k) : H

t

i(k) →
∆(Ai). The reporting strategy of a player i(k) maps from his history after
his final period, denoted κ, to the set of messages, µi(k) : H

κ

i(k) → M .
The strategy profile (g, µ) = {(g1(k), µ1(k)), (g2(k), µ2(k)), ..., (gN(k), µN(k))}
therefore represents an equilibrium if and only if no player i(k) has an
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incentive to deviate from it given any history, h
t

i(k). Such an equilibrium
strategy is constructed below for the folk theorem.

3 Folk Theorem and Proof

In the OLG game defined above the following folk theorem obtains.

Theorem 1 OLG Folk Theorem with N Organizations: Suppose that the
stage game G = 〈N, (Ai), (ui)〉 is of full dimension, i.e., int(V ) 6= ∅ where
int(V ) is the interior of V . For all v∗ ∈int(V ) and all δ ∈ (0, 1), there exists
ε > 0 and there exists T such that for all T ≥ T , v∗ is attained by a strongly
stationary, perfect public, sequential equilibrium of this OLG game.

Proof To prove the above folk theorem holds in the OLG game model out-
lined the equilibrium strategy denoted (g∗, µ∗) must compel agents to play
the equilibrium strategy in the stage game each period and then to send a
truthful message upon retirement. This is difficult because players face dif-
ferent incentives depending on whether they are young or old and whether
there is a player from a different organization who is old. We denote an old
agent here as one with P or fewer periods remaining before he exits the
game and we denote as young all those players with fewer than P periods
left before they exit the game. Given this only one agent can be old in any
given period as by assumption we define Ki such that Ki > P .

Thus there are three cases a player i(k) can find himself in:

1. He is young and all other players are young
2. He is young and there is one old player
3. He is old and all other players are young

Given this the equilibrium strategy dictates the following path of play.
Each period every i(k) plays a strategy α∗i , together these strategies attain
the profile α∗ and i(k) attains a payoff of v∗i . After his last stage game, i(k)
then additionally sends the signal m0, indicating that no organization has
deviated from the equilibrium path. The v∗i above is the payoff to i(k) from
the payoff profile v∗. Notice that the payoff profile v∗ in the folk theorem
is defined such that v∗ ∈ int(V ). The interior of V here consists of those
payoff profiles with a neighborhood of profiles within V of radius ε > 0.
Further note that by assumption int(V ) 6= ∅.

Naturally an opportunity might exist for a player i(k) to unilaterally
deviate from the above path of play if there are no contingencies built into
the equilibrium strategy. For this reason the equilibrium strategy addresses
each of the three possible scenarios where i(k) can deviate, that is when he
is in cases 1, 2 and 3.

We define d = maxi di, where di = maxα,α′(ui(α) − ui(α′)), as the
maximum gain of any player from a deviation from the equilibrium strategy
in the stage game. It will be shown below that players will not deviate from
the equilibrium strategy, however there is one caveat, that is the parameters
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in the OLG game, which must be integers and positive, must be chosen to
satisfy the bounds below.

The last three of these parameters, ci
j ,Ki and T have been mentioned

above. Respectively, they refer to the cost of organization j sending mi, the
number of periods in the overlap phase between i − 1(k) exiting the game
and i(k) exiting the game, and the length of each players lifetime in the
game.

The first four parameters will now be briefly defined. In the equilibrium
strategy, P ′ is the number of periods of minimaxing some i(k) if he deviates
when all the players are young. P ′′ is the number of periods of rewarding the
N − 1 other players, after minimaxing i(k). This bound is found by looking
at only players minimaxing i(k) that receive a lower payoff from doing so
than v∗j . This is further outlined below, and note that P = P ′ + P ′′.

We define Q′
i as the number of periods i(k) is minimaxed if mi is re-

ceived by players. Q′′
i is the number of periods the other players receive

reward payoffs for carrying out the minimaxing of i(k) in this case. Because
the number of minimax and reward periods must be large enough to deter
deviations and to make minimaxing deviators rational, the parameters of
the OLG game, ci

j ,Ki and T , must be carefully chosen such that enough
periods exist for these minimaxing and reward phases to be implemented.
To ensure this, bounds have been derived from the equilibrium strategy
for these parameters. Given some stage game G, by simply choosing values
that fulfil the bounds, we can ensure that the OLG game will be such that
equilibrium strategy will hold.

Given that, the bounds on P ′, P ′′, Q′
i, Q

′′
i , ci

j ,Ki and T which must be
hold for all i, j ∈ N where i 6= j are:

P ′ >
d

δ(v∗i − ui)
∀i (Bound A)

P ′′ >
d

wj
i − v∗i

+ P ′ui − ui(αj)
wj

i − v∗i
∀i, j s.t. ui(αj) ≤ v∗i (Bound B)

Q′
i > PP ′∀i (Bound C)

Q′
i(uj(αi)− v∗j ) + Q′′

i (wi
j − v∗j ) =

ci
j

δ
∀i, j (Bound D)

Ki > Qj + P ∀i, j (Bound E)
T ≥ K = K1 + K2 + ... + KN (Bound F)

Note that the parameter being chosen is on the left hand side of the
expression except for the case of bound D where Q′′

i and ci
j are chosen

concurrently to fulfil the expression for all combinations of j ∈ N and
i ∈ N where j 6= i. Further note that ci

j need not be an integer but must
be non-negative. Also, bound B on P ′′ is found by looking at only those i
for whom sanctioning j give them a payoff below their equilibrium payoff
and thus ui(αj) ≤ v∗i . This is done because those other players for which
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ui(αj) > v∗i also have wj
i = v∗i , and including these players when choosing

bound B would make the bound undefined.
Case 1 Here a deviation from α∗i by i(k) is responded to by the other

N − 1 players choosing to minimize i(k)’s maximum payoff for P ′ periods.
In this way the other players sanction i(k). This will give i(k) a payoff
below v∗i as v ∈ int(V ). This is done to reduce i(k)’s payoff, unfortunately
during the sanctioning of i(k) other players may receive payoffs under their
equilibrium payoff v∗j . These players will require a reward to induce them to
sanction i. Of course some players may receive more than their equilibrium
payoff while sanctioning and these players will require no reward as they’re
happy to do the job.

As such, after P ′ periods have passed a reward period is played for P ′′

periods where players choose a strategy profile that attains a reward payoff
profile denoted wi ∈ V , where i(k) was the deviator. The payoffs to each
player i ∈ N in this profile are denoted as wi

j and are as follows; wi
i = v∗i for

the deviator i(k), also wi
j = v∗j for players where uj(αi) > v∗j , so players for

whom sanctioning i(k) increases their payoffs, and a payoff of wi
j > v∗j for

players where uj(αi) ≤ v∗j , so for players for whom sanctioning i(k) lowers
their payoffs. Note that in the equilibrium strategy the original deviator does
not require a reward payoff greater than v∗i to prevent further deviations as
while he is being sanctioned he is expected to play his best response and by
definition has no incentive to deviate from this. We know that the profile
wi exists as v ∈ int(V ), so wi ∈ V exists.

This indicates that for i(k) to be constrained not to deviate from the
usual equilibrium path of play, his maximal payoffs from deviating must be
less than his payoffs from playing according to the equilibrium strategy. For
this to be the case, the following incentive constraint must hold, where the
payoffs for the next P = P ′+P ′′ periods are contrasted for the cases of i(k)
deviating and i(k) not deviating.

di + P ′ui + P ′′v∗i < Pv∗i (1)

And 1 does hold as it can be derived from bound A.
The above incentive constraint prevents a young agent choosing to devi-

ate but the sanctioners must weigh up their alternatives as well. First note
that if j(k) is constrained from deviating from his normal payoff path by
(1) then he will not deviate from sanctioning the deviator if uj(αi) > v∗j
and thus raises his payoffs. On the other hand if uj(αi) ≤ v∗j and sanction-
ing lowers his payoffs then during the reward phase the sanctioner will not
deviate if (1) holds as he receives above his normal payoff. Further as the
number of future periods of sanctioning declines while minimaxing the devi-
ator his equilibrium strategy payoffs over the next P periods increase. So he
will deviate in the first period he must sanction the deviator, or not at all.
In that period the incentive constraint that must hold for the equilibrium
strategy to be chosen is

dj + P ′uj + P ′′v∗j < P ′uj(αi) + P ′′wi
j (2)
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This can be derived from

dj < P ′[uj(αi)− uj ] + P ′′[wi
j − v∗j ] (3)

Which in turn can be derived from bound B.
As will be outlined later old agents must send truthful messages in equi-

librium. If the message mi is sent this denotes organization i deviated. The
equilibrium strategy then dictates that i(k) will be minimaxed for Q′

i pe-
riods and then wi will be played for Q′′

i periods, before play reverts to the
usual continuation. Analogously to the scenario explored above, players for
whom sanctioning i(k) is its own reward have no incentive to deviate from
this path. Again though for players for which sanctioning i(k) hurts, they
must be constrained from deviating in the first period of sanctioning i(k).
Observing Qi = Q′

i + Q′′
i is such that Qi > P , then for the payoffs of not

deviating to be more attractive here the following must hold,

dj + P ′uj + P ′′v∗j + [Qi − P ]v∗j < Q′
iuj(αi) + Q′′

i wi
j (4)

(4) can be derived from the following

dj < P ′[v∗j − uj ] + Q′
i[uj(αi)− v∗j ] + Q′′

i [wi
j − v∗j ] (5)

Which in turn is derived from bound A and bound D.
Case 2 Here to prevent a young agent deviating an immediate P period

punishment strategy cannot be invoked as there are fewer than P periods
left before the old agent exits the game. The equilibrium strategy therefore
has the players play some Nash equilibrium of the stage game each period
until the old agent retires, the old agent upon retirement sends the message
mi indicating organization i deviated and i is then minimaxed for Q′

i periods
which is followed by Q′′

i periods of the reward payoff profile wi. At most
then a deviator can increase his payoff by di for P periods before being
punished. Thus for i(k) to have no incentive to deviate the following must
hold

Pdi + Q′
iui + Q′′

i v∗i < Qiv
∗
i (6)

We can derive (6) from
Pdi < Q′

i[v
∗
i − ui] (7)

(7) holds as it can be derived from bound A and bound C.
Note that no player has an incentive to deviate from the Nash equilib-

rium by definition, and that the punishment of i(k) will occur as after mi

is received all agents are young and case 1 holds.
Case 3 An old agent must be dissuaded from deviating both from the

equilibrium strategy in the stage game and from sending a truthful message
when he exits. The first of these tasks involves understanding what occurs
in the equilibrium strategy if an old player i(k) deviates in the stage game.
If i(k) deviates a Nash equilibrium will be played until he exits the game as
before. Now however the message he sends, which is truthful in equilibrium,
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is m0. This signifies that no other organization has deviated while mention-
ing nothing about his own deviation.3 Following this the agents play α∗ in
the stage game until the next agent retires. This agent then sends the mes-
sage mi and the successor of the deviator will be minimaxed for Q′

i periods
which will be followed by a Q′′

i period reward phase where wi is played.
The players will not deviate from this path in the Nash equilibrium

stage as by definition it is a best response. Neither will any player have
an incentive to deviate after the deviator retires and α∗ is played, as they
will be in one of the three cases and receive the usual payoff v∗i . Players
also have no incentive to deviate during the eventual punishment of the
deviator’s organization, as at that point all players will be young.

Given this an old player weighs up the gain from deviating for at most
P periods and increasing his payoff in the stage game, against the loss of
payoffs which his successor receives due to being sanctioned, which he eval-
uates at a discounted rate. Therefore in the first period of being old, when
he could gain the most from deviating, the following incentive constraint
must hold for each player j = 1, 2, 3...N − 1 but not j = N .

Pdj + δ[Kj+1v
∗
j + Q′

juj + Q′′
j v∗j ] < δ[Kj+1v

∗
j + Qjv

∗
j ] (8)

In the case of player N there is no player N +1 so he must wait T −K +K1

periods before the next player after him retires. That is player 1. So for
player j = N the following constraint must hold

Pdj + δ[(T −K + K1)v∗j + Q′
juj + Q′′

j v∗j ] < δ[(T −K + K1)v∗j + Qjv
∗
j ]

Both of these equations can be derived from the following

Pdj < δQ′
j [v

∗
j − uj ] (9)

In turn 9 can be derived from bound A and bound C.
Old players upon leaving the game must be constrained to send a truthful

message. This means sending mi if organization i deviated and sending m0

if no other organization deviated. To make sure a truthful message is always
sent the payoffs from both mi and m0 must be the same for j(k). Recall that
j(k) discounts the payoffs of his successor and that sending mi indicates that
his successor will receive the payoffs from punishing i then being rewarded,
whereas by sending m0 j(k)’s successor will receive the normal payoff of v∗i
instead. Further note that in the case of a player for whom sanctioning is
its own reward wi

j = v∗j . So for truthful messages to be sent the following
must hold

δQiv
∗
j = δ[Q′

iuj(αi) + Q′′
i wi

j ]− ci
j (10)

This can be derived from bound D.
Finally note that by setting T ≥ K, we can ensure that the OLG model

is set up so that players lives are sufficiently long for the overlap phase to
be constructed as outlined. If T > K is chosen then the additional T − K

3 Even in OLG games players have the right to remain silent!
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periods will become part of the normal phase. Further notice that as Ki >
Qj + P for all j the overlap phase will involve players that are young and
old while in the normal phase players are only ever young.

As no player has any incentive to deviate from the equilibrium strategy
and every period the payoff profile v∗ ∈ int(V ) will be attained the folk
theorem holds. ut
Remark 1 In the above folk theorem, it is meant by strongly stationary that
the payoffs to every agent in an organization i are in fact the same for
every period. This follows Lagunoff and Matsui[6]. Further notice that the
equilibrium concept is that of a perfect public sequential equilibrium. By
this it is meant that the folk theorem in the OLG game relies on equilibrium
strategies wherein the players condition their stage game strategies on only
publicly available information. Also note that players limited information
of past play in the game means that the equilibrium must be sequential.
Notice though that because it is a PPE there are shared beliefs in what
constitutes the equilibrium play in the stage game.

4 A Numerical Example

One example of the OLG game presented above can be found in a price
fixing game amongst an oligopoly of three firms. Each firm is run by a
manager who’s payoffs are his salary, which is a proportion of the profits
of his organization during his tenure. After retirement he receives the same
salary as his successor, although it is discounted by δ. This represents his
original contract with the firm including shares of that firm which cannot
be disposed of until his successor retires.

A retiring manager communicates publicly with his successor, although
informing him that another firm deviated is costly. After all informing his
successor that something significant occurred during his tenure requires time
and effort, but saying nothing, and letting his successor believe nothing
occurred is costless.

The game is a form of prisoner’s dilemma, where if the firms collude and
set high prices they all benefit. However each firm then has an incentive to
set low prices and undercut the others.
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Fig. 3 The game in normal form. Player 1 chooses the row, player 2 chooses the
column, and player 3 chooses the table.

In the OLG game we will set v∗1 = v∗2 = v∗3 = 10. If we assume ε = 0.5
then v∗ ∈ int(V ). We now let wi

j = 11∀, i, j where j 6= i. The stage game
then implies the players can receive the following payoffs:

For all players d = 7
Player 1 u1 = 8 w2

1 = 11 w3
1 = 11 u1(α2) = 8 u1(α

3) = 8
Player 2 u2 = 8 w1

2 = 11 w3
2 = 11 u2(α1) = 8 u2(α

3) = 8
Player 3 u3 = 8 w1

3 = 11 w2
3 = 11 u3(α1) = 8 u3(α

2) = 8

The players payoffs then, are as follows.
INSERT 3D PAYOFF SPACE
The folk theorem implies that v∗ ∈ int(V ) can be attained each period

of this game. For the equilibrium strategy to hold though, the parameters
it uses must be chosen to satisfy Bounds A to F. This can be ensured by
simply working through them. One set of choices that satisfy the equilibrium
strategies requirements are given below.

Bound A P ′ = 8
Bound B P ′′ = 8
Bound C Q′

1 = 130 Q′
2 = 130 Q′

3 = 130
Bound D Q′′

1 = 270 c2
1 = 5 c3

1 = 5
Q′′

2 = 270 c1
2 = 5 c3

2 = 5
Q′′

3 = 270 c1
3 = 5 c2

3 = 5
Bound E K1 = 420 K2 = 420 K3 = 420
Bound F T = 1300

Given these choices of Ki and T , the overlapping generations are as
follows.
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Fig. 4 The OLG game chosen above.

Utilizing the equilibrium strategy with these parameters the folk theorem
indicates v∗ is attained each period of the stage game. Each players payoff is
therefore the T = 1600 payoffs from his time as manager, plus the discounted
1600 payoffs of his successor. In total a manager receives a payoff of 24,000
which is considerably higher than the 19,200 he would receive if all players
chose their strictly dominant strategy in the stage game, and received 8
every period. The folk theorem implies the oligopoly can sustain higher
profits using the equilibrium strategy when its bounds are met, as was the
case with the choices made above.

5 Imperfect Communication

The above model assumed that messages from outgoing managers were per-
fectly observed by other players. We feel that this is a restrictive assumption
to make as miscommunication from the outgoing agent may be possible. As
such we weaken the information an incoming agent has in the game by as-
suming a message is only correctly observed with some probability. Again, a
folk theorem obtains in this case although it is no longer strongly stationary
result.

The above OLG game can be generalized by assuming that a message
m ∈ M sent by an outgoing player is correctly observed only with some
probability p ∈ [0, 1]. This means that with probability 1 − p an incorrect
message will be observed. There are N − 1 possible incorrect messages each
of which is observed with equal probability given the correct message does
not arrive. These are the N messages the player did not send with the
message mi ruled out as i cannot indict himself. Thus the probability of
some message m′ ∈ M arriving when m ∈ M is sent, denoted p(m′|m), is
given by the following

– p(m0|m0) = p(mi|mi) = p for all i ∈ N
– p(m0|mi) = p(mi|m0) = p(mj |mi) = 1−p

N−1 for all i ∈ Nand all j ∈ N

Given that the above above changes the model to one of imperfect com-
munication, the following folk theorem obtains.

Theorem 2 Folk Theorem with N Organizations and Imperfect Communi-
cation: Suppose that the stage game G = 〈N, (Ai), (ui)〉 is of full dimension,
i.e., int(V ) 6= ∅ where int(V ) is the interior of V . For all v∗ ∈int(V ) and
all δ ∈ (0, 1), there exists ε > 0 and for all p ∈ ( 1

N , 1] and for some q > 0,
there exists T such that for all T ≥ T , v a payoff arbitrarily close to v∗ is
attained as the average stage game payoff of an imperfect public, sequential
equilibrium of this OLG game, such that ‖v∗ − v‖ < q.
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Proof This folk theorem uses the equilibrium strategy outlined above and
the bounds on the parameters are exactly those given earlier, with some
exceptions. These changes are a new bound for p, the probability of the
correct message being observed, the bound on P ′ is changed and there is a
further bound given on T . Finally we also define Q as Q = maxiQi. These
changes are given in the following and apply for all i ∈ N

p ∈ (
1
N

, 1] (Bound G)

P ′ >
(N − 1)d

(Np− 1)δ(v∗i − ui)
∀i ∈ N (Bound A*)

T >
NQd− cj

i

q

√
N ∀j ∈ N (Bound H)

It is interesting to note that under bound G the probability of the true
message being observed is p which cannot ever fall as low as 1

N . Notice
that if p = 1

N were chosen that the probability of each of the N − 1 other

messages being observed would become 1− 1
N

N−1 , that is, 1
N . So by restricting

p to p ∈ ( 1
N , 1], we in fact restrict the probability of the message sent

being observed to being greater than the probability of each of the messages
not sent being observed. Intuitively this seems reasonable as to ensure that
players send a truthful message in equilibrium, they condition their decision
on the fact that the message chosen is slightly more likely to be observed
than any other. The three cases outlined earlier will now be examined in
turn below.

Case 1 Once some message is received play is dictated by it. As such
there is no need to recheck incentives for players in case 1. Also note that
all the original incentive constraints can still be derived from the bounds as
before except for (1) which can now be derived from bound A*. So case 1
is relatively unaffected by the changes to the model.

Case 2 As previously in this case after an agent i(k) deviates a Nash
equilibrium is played until the old player j(k) leaves the game. The old player
then elects to send mi however now mi is observed only with probability p.
With probability 1−p

N−1 , each of the other N − 1 possible messages denoted
mb will be observed. Note that b = 0, 1, ..., N although b 6= i and b 6= j. On
the other hand if i(k) does not deviate then with probability p the message
m0 is observed and i(k) receives the usual equilibrium payoffs. Again with
probability 1−p

N−1 each of the incorrect messages denoted mb is observed and
now b = 1, 2, ..., N although b 6= i and b 6= j. Note that m0 cannot be
received as an incorrect message in distinction to the above case, because
here m0 is the correct message. To have no incentive to deviate then the
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following must now hold for i(k)

Pdi + p[Q′
iui + Q′′

i v∗i ] +
(1− p)
N − 1

Qiv
∗
i +

(1− p)
N − 1

N∑
b=1,b 6=i,b 6=j

[Q′
bui(αb) + Q′′

b wb
i ] <

pQiv
∗
i +

(1− p)
N − 1

[Q′
iui + Q′′

i v∗i ] +
(1− p)
N − 1

N∑
b=1,b 6=i,b 6=j

[Q′
bui(αb) + Q′′

b wb
i ]

(11)

Note that (11) can be derived from

Pdi <
Np− 1
N − 1

Q′
i(v

∗
i − ui) (12)

And (12) can be derived from bound A*, bound G and bound C.
Case 3 Recall that on the equilibrium path if a player j(k) deviates while

old he is then expected to send the message m0 to his successor. Following
this the next player to leave the game is expected to send the message mj

which initiates the sanctioning of j(k)’s successor. Each of these messages is
correctly observed only with probability p. Further it is assumed the cost of
the message cj

i that a player i pays now depends on the message observed,
not the message sent. So even if m0 is sent, if mj is observed i pays cj

i .
Noting that it will be shown below that in equilibrium a player j(k) sends
a truthful message m0 upon retirement, whether or not he has deviated,
the payoffs to his successor are the same until the next message is sent.
Therefore the incentive constraint that prevents j(k) from deviating refers
to the increased payoffs he receives before exiting the game, and the lower
payoffs his successor receives after the next player leaves the game and mj

is sent. For j(k) to have no incentive to deviate the following must then
hold

Pdj + δ[p(Q′
juj + Q′′

j v∗j ) +
(1− p)
N − 1

Qjv
∗
j +

(1− p)
N − 1

N∑
b=1,b 6=i,b 6=j

[Q′
bui(αb) + Q′′

b wb
i ]] <

δ[pQjv
∗
j +

(1− p)
N − 1

(Q′
juj + Q′′

j v∗j ) +
(1− p)
N − 1

N∑
b=1,b 6=i,b 6=j

[Q′
bui(αb) + Q′′

b wb
i ]]

(13)

Further (13) can be derived from

Pdj < δ
Np− 1
N − 1

Q′
j(v

∗
j − uj) (14)

And (14) holds as it can be derived from bound B*, bound G and bound C.
The old player must be constrained to send a truthful message in equi-

librium. This means that his payoff from both m0 and mi for all i ∈ N
must be the same. This is similar to the original case however here again
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the probabilities of the correct and incorrect messages being observed must
be included. The equality that shows j(k) is indifferent between sending
any of the messages and hence means he has no incentive to deviate from
sending the truthful message, is given by

pδQiv
∗
j +

(1− p)
N − 1

N∑
b=1,b 6=j

(δ(Q′
buj(αb) + Q′′

b wb
i )− cb

j)

= p[δ(Q′
iuj(αi) + Q′′

i wi
j)− ci

j ] +
(1− p)
N − 1

δQiv
∗
j

+
(1− p)
N − 1

N∑
b=1,b 6=j,b 6=i

(δ(Q′
buj(αb) + Q′′

b wb
i )− cb

j)

(15)

This can be derived from

δQiv
∗
j = [δ(Q′

iuj(αi) + Q′′
i wi

j)− ci
j ] (16)

Which is the same as the original message constraint, equation (10), and
can thus be derived from bound D.

It has been shown then that no player ever has an incentive to deviate
from the equilibrium strategy.

Payoffs Players payoffs must now be shown to be within q of v∗, the
payoffs being approximated. To show this denote some feasible payoff to i
as ni. We then denote Q as the longest punishment phase of any player.
That is Q = maxiQi. Let vi denote the average payoff attained by i in his
lifetime. The average payoff vi is the sum of the T −NQ periods of v∗i the
equilibrium payoff and NQ periods of ni, all divided by T , a players total
lifetime. We define vi in this way because with some probability 1 − p an
incorrect message will be observed and v∗i will not necessarily be attained
for the first Q periods after that message. In total a player may not receive
v∗i for up to NQ periods out of his total lifetime T . So for NQ periods, a
players payoff is ni which can differ from v∗i . Also note that some message
costing cj

i will be sent. With this in mind the average payoff to player i is

vi = (T−NQ)v∗i +NQni−cj
i

T . Given this it can be shown as stated in the folk
theorem that the average payoff profile is within q of the payoff profile being
approximated, that is

‖v∗ − v‖ < q (17)

This condition is true even under each player’s worst case scenario. That
is when they attain the lowest payoffs possible along the folk theorems
equilibrium path.

As equation (17) can be derived from bound H. That completes the proof
of the folk theorem for some δ ∈ (0, 1) and ε > 0. ut
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6 A Numerical Example with Imperfect Communication

Consider the same OLG game presented earlier but with outgoing managers
only able to correctly communicate the signal they want to with probability
p. This represents that a public statement from the outgoing manager can
be misinterpreted by the players. The exiting player is charged the cost of
the message received by the players because under his contract his organi-
zation can recoup any expenses he makes from him, and upon mistakenly
receiving the message that some organization deviated, they charge him the
cost of preparing that message. This scenario accords with the imperfect
communication OLG game outlined above.

The folk theorem implies that some v∗ ∈ int(V ) can be attained each
period of this game. And again we set v∗1 = v∗2 = v∗3 = 10. So if ε = 0.5 this
v∗ ∈ int(V ). We further assume that q = 0.75. The equilibrium strategy
will hold here if we choose parameters that satisfy Bounds A* through to H.
This is the case if we again simply work through them. Choices that satisfy
the equilibrium requirements are given below.

Bound G p = 1
2

Bound A* P ′ = 30
Bound B P ′′ = 8
Bound C Q′

1 = 1200 Q′
2 = 1200 Q′

3 = 1200
Bound D Q′′

1 = 2410 c2
1 = 5 c3

1 = 5
Q′′

2 = 2410 c1
2 = 5 c3

2 = 5
Q′′

3 = 2410 c1
3 = 5 c2

3 = 5
Bound E K1 = 3700 K2 = 3700 K3 = 3700

Bound F and H T = 176000

These parameters ensure that the equilibrium strategy will be followed and
each player will on average attain a payoff of 9.9967 during his tenure. The
value of T in this particular example is quite high. With another stage game
this of course could be lower, and with other choices for the other parameters
this could also be lower. In fact note that if only bound F had to hold a
T greater than 11,100 periods would have been sufficient. However bound
H implied a T above 175,064 periods was necessary. Of course note that as
time is discrete in this model, a managers tenure of T = 176000 periods
could equate to hours, months or years. It is entirely arbitrary.

As the folk theorem holds, it corresponds to a total payoff, being a players
payoff plus his discounted successor’s payoffs, of 2,639,115 on average. This
is considerably higher than the 1,707,997.5 total payoff each player would
receive if the nash equilibrium were played each period and m0 was the
message always sent. So again, even with the possibility of the truthful
message being misinterpreted with probability p = 1

2 , the oligopoly can
sustain higher payoffs using the bounds that obtain the folk theorem.
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7 Conclusion

In this paper we have achieved some generalizations of the folk theorem
of Lagunoff and Matsui ([6]). These have been to heterogenous players, N
organizations and imperfect communication.

This implies that cooperation can indeed be sustained in oligopolies and
similar groupings of long run organization controlled by short run agents.
Although these results rely on the equilibrium strategies outlined, which in
turn rely on players lifetimes, T , and the overlaps, Ki, being of sufficient
length. Further, our results rely on communication channels being opened
between outgoing agents and their successors and that agents have an inter-
est in the outcomes achieved by their successor. This suggests that paying
people in such a way as to induce an interest in the long run outcome of
their companies may be very useful in terms of the continued cooperation
of the cartel. While some of these points may seem obvious, the result is
not. After all if a manager was made better off by lying to his successor and
whitewashing the past, he would do so and the folk theorem would break
down. As such the equilibrium strategy had to carefully balance the payoffs
from lying with those from telling the truth. This became even more inter-
esting when even choosing the truthful message did not necessarily imply it
would be received in the second folk theorem.

In the above folk theorem we believe equation (17) can be attained with
a less restrictive condition than bound H. Bound H assumes that for NQ
periods any payoff may be attained. In fact the payoffs attained will not
deviate by more than a limited amount from v∗i . So bound H specifies T
must be greater than it has to be. Given this a lower bound on T could be
derived, although we have not done so.

Naturally the question of possible further extensions and work on OLG
games also arises. The work of Morris and Mailath [7] certainly suggests
itself as one avenue of development. They have worked on repeated private
monitoring games with imperfectly observed signals sent to each player ev-
ery period, and their folk theorem details the circumstances under which
imperfect private monitoring games can approximate the outcomes of their
perfect public counterparts. An appealing aspect of this line of development
is that Morris and Mailath require that the games they examine have a
structure whereby only a finite history is needed for players to condition
their actions. This fits naturally into the OLG folk theorems’ use of mes-
sages. It also would be interesting to see if private monitoring results such
as these could be carried across to the OLG framework.

It may also be possible that the model used in the second folk theorem
could be extended from players choices over which message to send to play-
ers’ choices over a distribution of messages to send. Costs related to the
weight of ’truthfulness’ could then be used to perhaps facilitate a result.
A further extension would be to generalize the nature of the overlapping
generations used in the model. This could perhaps be done to take account
of both differences among the organizations and of differences among the
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generations. That is, each individual could be assigned some unique lifetime
that would not necessarily have to be T . The main question in this case
seems to be what occurs when two agents simultaneously exit the game, as
there must be some mechanism to determine who’s message dictates future
play. In fact it may be necessary to ensure that there is only one old player in
any given period. Another possible approach to extending the work on folk
theorems in overlapping generations games is suggested by the literature on
random games[11].

Finally while development in OLG games generally follow those in re-
peated games more broadly something unique could be introduced by having
the stage game change with each new agent entering the game. That is, the
stage game is generalized so that each new agent does not have to inherit
his organizations payoff function and action set. We note that it is not at all
obvious how results in such a model would be found. All such future work
would radically further the scope of the present paper.

A Derivation of (1)

Bound A states that

P ′ > d
δ(v∗i −ui)

⇒ P ′δ(v∗i − ui) > d as δ(v∗i − ui) > 0
⇒ P ′δ(v∗i − ui) > d ≥ di as d ≥ di

⇒ P ′δ(v∗i − ui) > di

⇒ P ′(v∗i − ui) > P ′δ(v∗i − ui) > di as δ ∈ (0, 1)
⇒ P ′(v∗i − ui) > di

⇒ di < P ′(v∗i − ui)
⇒ di < (P ′v∗i − P ′ui) + (P ′′v∗i − P ′′v∗i )
⇒ di < (P ′ + P ′′)v∗i − (P ′ui + P ′′v∗i )
⇒ di < Pv∗i − (P ′ui + P ′′v∗i )
⇒ di + P ′ui + P ′′v∗i < Pv∗i

Thus (1) has been derived.

B Derivation of (2)

Recall that (2) must hold only for players for whom ’sanctioning hurts’, so
v∗i ≥ ui(σj) and thus wj

i > v∗i . Bound B states

P ′′ > d

wj
i−v∗i

+ P ′ ui−ui(α
j)

wj
i−v∗i

⇒ P ′′(wj
i − v∗i ) > d + P ′(ui − ui(αj)) as wj

i − v∗i > 0
⇒ P ′′(wj

i − v∗i )− P ′(ui − ui(αj)) > d

⇒ P ′′(wj
i − v∗i ) + P ′(ui(αj)− ui) > d

⇒ P ′′(wj
i − v∗i ) + P ′(ui(αj)− ui) > d ≥ di

⇒ P ′(ui(αj)− ui) + P ′′(wj
i − v∗i ) > di

⇒ P ′(uj(αi)− uj) + P ′′(wi
j − v∗j ) > dj as i is arbitrary
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Thus (3) has been derived from the bound.

⇒ dj < P ′[uj(αi)− uj ] + P ′′[wi
j − v∗j ]

⇒ dj < P ′uj(αi)− P ′uj + P ′′wi
j − P ′′v∗j

⇒ dj < [P ′uj(αi) + P ′′wi
j ]− [P ′uj + P ′′v∗j ]

⇒ dj + P ′uj + P ′′v∗j < P ′uj(αi) + P ′′wi
j

Thus (2) has been derived.

C Derivation of (4) and (10)

Bound D states

Q′
i(uj(αi)− v∗j ) + Q′′

i (wi
j − v∗j ) = ci

j

δ

⇒ δ(Q′
i(uj(αi)− v∗j ) + Q′′

i (wi
j − v∗j )) = ci

j

⇒ δQ′
iuj(αi)− δQ′

iv
∗
j + δQ′′

i wi
j − δQ′′

i v∗j = ci
j

⇒ δQ′
iuj(αi) + δQ′′

i wi
j = δQ′

iv
∗
j + δQ′′

i v∗j + ci
j

⇒ δQ′
iuj(αi) + δQ′′

i wi
j − ci

j = δ(Q′
i + Q′′

i )v∗j
⇒ δ(Q′

iuj(αi) + Q′′
i wi

j)− ci
j = δQiv

∗
j

Notice equation (10) has been derived.
Note that Bound A states di < P ′(v∗i − ui). Thus

Q′
i(uj(αi)− v∗j ) + Q′′

i (wi
j − v∗j ) = ci

j

δ

⇒ Q′
i(uj(αi)− v∗j ) + Q′′

i (wi
j − v∗j ) ≥ 0 as ci

j

δ ≥ 0
⇒ Q′

i(uj(αi)− v∗j ) + Q′′
i (wi

j − v∗j ) + P ′(v∗j − uj) > dj as dj < P ′(v∗j − uj)

Thus equation (5) has been derived.

⇒ dj < P ′(v∗j − uj) + Q′
i(uj(αi)− v∗j ) + Q′′

i (wi
j − v∗j )

⇒ dj < Q′
i(uj(αi)− v∗j ) + Q′′

i (wi
j − v∗j ) + P ′(v∗j − uj)

⇒ dj < Q′
i(uj(αi)− v∗j ) + Q′′

i (wi
j − v∗j ) + P ′(v∗j − uj) + P ′′(0)

⇒ dj < Q′
iuj(αi)−Q′

iv
∗
j + Q′′

i wi
j −Q′′

i v∗j + P ′v∗j − P ′uj + P ′′v∗j − P ′′v∗j
⇒ dj < Q′

iuj(αi) + Q′′
i wi

j − P ′uj − P ′′v∗j −Q′
iv
∗
j −Q′′

i v∗j + P ′v∗j + P ′′v∗j
⇒ dj < Q′

iuj(αi) + Q′′
i wi

j − P ′uj − P ′′v∗j − (Q′
i + Q′′

i )v∗j + (P ′ + P ′′)v∗j
⇒ dj < Q′

iuj(αi) + Q′′
i wi

j − P ′uj − P ′′v∗j −Qiv
∗
j + Pv∗j

⇒ dj < Q′
iuj(αi) + Q′′

i wi
j − P ′uj − P ′′v∗j − (Qi − P )v∗j

⇒ dj < Q′
iuj(αi) + Q′′

i wi
j − (P ′uj + P ′′v∗j + (Qi − P )v∗j )

⇒ dj + P ′uj + P ′′v∗j + (Qi − P )v∗j < Q′
iuj(αi) + Q′′

i wi
j

Thus (4) has been derived.
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D Derivation of (6)

Bound A and bound C state together that

Q′
i > PP ′ = PP ′ > P [ d

δ(v∗i −ui)
]

⇒ Q′
i > P [ d

δ(v∗i −ui)
]

⇒ Q′
iδ(v

∗
i − ui) > Pd

⇒ Q′
jδ(v

∗
j − uj) > Pd as i is arbitrary

⇒ Q′
jδ(v

∗
j − uj) > Pd ≥ Pdj

⇒ Q′
jδ(v

∗
j − uj) > Pdj

Notice (7) has been derived.

⇒ Pdi < Q′
i[v

∗
i − ui]

⇒ Pdi < Q′
i[v

∗
i − ui] + Q′′

i [v∗i − v∗i ]
⇒ Pdi < Q′

iv
∗
i −Q′

iui + Q′′
i v∗i −Q′′

i v∗i
⇒ Pdi < Q′

iv
∗
i + Q′′

i v∗i −Q′
iui −Q′′

i v∗i
⇒ Pdi < Qiv

∗
i − [Q′

iui + Q′′
i v∗i ]

⇒ Pdi + Q′
iui + Q′′

i v∗i < Qiv
∗
i

Thus (6) has been derived.

E Derivation of (8)

Bound A and bound C taken together imply

Q′
i > PP ′ = PP ′ > P [ d

δ(v∗i −ui)
]

⇒ Q′
i > P [ d

δ(v∗i −ui)
]

⇒ Q′
iδ(v

∗
i − ui) > Pd

⇒ Q′
jδ(v

∗
j − uj) > Pd as i is arbitrary

⇒ Q′
jδ(v

∗
j − uj) > Pd ≥ Pdj

⇒ Q′
jδ(v

∗
j − uj) > Pdj

Thus (9) has been derived.

⇒ Pdj < δQ′
j [v

∗
j − uj ]

⇒ Pdj < δ[Q′
jv
∗
j −Q′

juj ]
⇒ Pdj < δ[Q′

jv
∗
j −Q′

juj + Q′′
j v∗j −Q′′

j v∗j ]

The following shows (8) holds for players j = 1, 2, 3...N − 1

⇒ Pdj < δ[Kj+1v
∗
j −Kj+1v

∗
j + Q′

jv
∗
j + Q′′

j v∗j −Q′
juj −Q′′

j v∗j ]
⇒ Pdj < δ[Kj+1v

∗
j + Qjv

∗
j −Kj+1v

∗
j −Q′

juj −Q′′
j v∗j ]

⇒ Pdj < δ[Kj+1v
∗
j + Qjv

∗
j ]− δ[Kj+1v

∗
j + Q′

juj + Q′′
j v∗j ]

⇒ Pdj + δ[Kj+1v
∗
j + Q′

juj + Q′′
j v∗j ] < δ[Kj+1v

∗
j + Qjv

∗
j ]

Thus (8) has been derived for j = 1, 2, ..., N − 1.
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For player N

Pdj < δ[Q′
jv
∗
j −Q′

juj + Q′′
j v∗j −Q′′

j v∗j ]
⇒ Pdj < δ[(T −K + K1)v∗j − (T −K + K1)v∗j + Q′

jv
∗
j + Q′′

j v∗j −Q′
juj −Q′′

j v∗j ]
⇒ Pdj < δ[(T −K + K1)v∗j + Qjv

∗
j − (T −K + K1)v∗j −Q′

juj −Q′′
j v∗j ]

⇒ Pdj < δ[(T −K + K1)v∗j + Qjv
∗
j ]− δ[(T −K + K1)v∗j + Q′

juj + Q′′
j v∗j ]

⇒ Pdj + δ[(T −K + K1)v∗j + Q′
juj + Q′′

j v∗j ] < δ[(T −K + K1)v∗j + Qjv
∗
j ]

So the constraint for agent N has been derived too.

F Derivation of (1) from bound A*

Bound A* implies that

P ′ > (N−1)d
(Np−1)δ(v∗i −ui)

⇒ P ′ > d
δ(v∗i −ui)

as N−1
Np−1 > 1 as p ∈ ( 1

N , 1]

Thus bound A has been derived. It has been shown above that (1) can be
derived from bound A.

G Derivation of (11)

Bound A* and bound C taken together imply

Q′
i > PP ′ > P ( (N−1)d

(Np−1)δ(v∗i −ui)
)

⇒ Q′
i > P ( d(N−1)

(Np−1)δ(v∗i −ui)
)

⇒ δ(v∗i − ui)Q
′
i > P (d(N−1)

(Np−1) ) as δ(v∗i − ui) > 0

⇒ Q′
i
(Np−1)
(N−1) δ(v∗i − ui) > Pd as bound G implies Np−1

N−1 > 0

⇒ Q′
i
(Np−1)
(N−1) δ(v∗i − ui) > Pd ≥ Pdi

⇒ Q′
i
(Np−1)
(N−1) δ(v∗i − ui) > Pdi

⇒ Q′
i
(Np−1)
(N−1) (v∗i − ui) > Q′

i
(Np−1)
(N−1) δ(v∗i − ui) > Pdi as δ ∈ (0, 1)

⇒ Q′
i
(Np−1)
(N−1) (v∗i − ui) > Pdi

Thus (12) has been derived.

⇒ Pdi < Np−1
N−1 Q′

i(v
∗
i − ui)

⇒ Pdi < Np−1
N−1 (Q′

iv
∗
i −Q′

iui)
⇒ Pdi < Np−1

N−1 Qiv
∗
i −

Np−1
N−1 [Q′

iui + Q′′
i v∗i ]

⇒ Pdi + Np−1
N−1 [Q′

iui + Q′′
i v∗i ] < Np−1

N−1 Qiv
∗
i

⇒ Pdi + (N−1)p−1+p
N−1 [Q′

iui + Q′′
i v∗i ] < (N−1)p−1+p

N−1 Qiv
∗
i

⇒ Pdi + p[Q′
iui + Q′′

i v∗i ]− 1−p
N−1 [Q′

iui + Q′′
i v∗i ] < pQiv

∗
i −

(1−p)
N−1 Qiv

∗
i

⇒ Pdi + p[Q′
iui + Q′′

i v∗i ] + (1−p)
N−1 Qiv

∗
i + (1−p)

N−1

∑N
b=1,b 6=i,b 6=j [Q

′
bui(αb) + Q′′

b wb
i ] <

pQiv
∗
i + (1−p)

N−1 [Q′
iui + Q′′

i v∗i ] + (1−p)
N−1

∑N
b=1,b 6=i,b 6=j [Q

′
bui(αb) + Q′′

b wb
i ]

Thus (11) has been derived.
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H Derivation of (13)

This is the same as the derivation for (11) except we do not remove the δ.

Bound A* and bound C taken together imply

Q′
i > PP ′ > P ( (N−1)d

(Np−1)δ(v∗i −ui)
)

⇒ Q′
i > P ( d(N−1)

(Np−1)δ(v∗i −ui)
)

⇒ δ(v∗i − ui)Q
′
i > P (d(N−1)

(Np−1) ) as δ(v∗i − ui) > 0

⇒ Q′
i
(Np−1)
(N−1) δ(v∗i − ui) > Pd as bound G implies Np−1

N−1 > 0

⇒ Q′
i
(Np−1)
(N−1) δ(v∗i − ui) > Pd ≥ Pdi

⇒ Q′
i
(Np−1)
(N−1) δ(v∗i − ui) > Pdi

Thus (14) has been derived.

⇒ Pdi < δ Np−1
N−1 Q′

i(v
∗
i − ui)

⇒ Pdi < δ Np−1
N−1 (Q′

iv
∗
i −Q′

iui)
⇒ Pdi < δ Np−1

N−1 Qiv
∗
i − δ Np−1

N−1 [Q′
iui + Q′′

i v∗i ]
⇒ Pdi + δ Np−1

N−1 [Q′
iui + Q′′

i v∗i ] < δ Np−1
N−1 Qiv

∗
i

⇒ Pdi + δ (N−1)p−1+p
N−1 [Q′

iui + Q′′
i v∗i ] < δ (N−1)p−1+p

N−1 Qiv
∗
i

⇒ Pdi + δp[Q′
iui + Q′′

i v∗i ]− δ 1−p
N−1 [Q′

iui + Q′′
i v∗i ] < δpQiv

∗
i − δ (1−p)

N−1 Qiv
∗
i

⇒ Pdi + δp[Q′
iui + Q′′

i v∗i ] + δ (1−p)
N−1 Qiv

∗
i + δ (1−p)

N−1

∑N
b=1,b 6=i,b 6=j [Q

′
bui(αb) + Q′′

b wb
i ] <

δpQiv
∗
i + δ (1−p)

N−1 [Q′
iui + Q′′

i v∗i ] + δ (1−p)
N−1

∑N
b=1,b 6=i,b 6=j [Q

′
bui(αb) + Q′′

b wb
i ]

Thus (13) has been derived.

I Derivation of (15) from (16)

Recall equation (16) is identical to equation (10). Further recall that (10)
was derived from bound D during the derivation of (4). Equation (16) there-
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fore holds by bound D and states

δQiv
∗
j = [δ(Q′

iuj(αi) + Q′′
i wi

j)− ci
j ]

⇒ Np−1
N−1 δQiv

∗
j = Np−1

N−1 [δ(Q′
iuj(ai) + Q′′

i wi
j)− ci

j ]

⇒ (N−1)p
N−1 δQiv

∗
j −

(1−p)
N−1 δQiv

∗
j = (N−1)p

N−1 [δ(Q′
iuj(ai) + Q′′

i wi
j)− ci

j ]
− (1−p)

N−1 [δ(Q′
iuj(ai) + Q′′

i wi
j)− ci

j ]

⇒ pδQiv
∗
j + (1−p)

N−1 [δ(Q′
iuj(ai) + Q′′

i wi
j)− ci

j ] = p[δ(Q′
iuj(ai) + Q′′

i wi
j)− ci

j ] + (1−p)
N−1 δQiv

∗
j

⇒ pδQiv
∗
j + (1−p)

N−1 [δ(Q′
iuj(ai) + Q′′

i wi
j)− ci

j ] + (1−p)
N−1

∑N
b=1,b 6=j,b 6=i(δ(Q

′
buj(αb) + Q′′

b wb
i )− cb

j)
= p[δ(Q′

iuj(αi) + Q′′
i wi

j)− ci
j ] + (1−p)

N−1 δQiv
∗
j

+ (1−p)
N−1

∑N
b=1,b 6=j,b 6=i(δ(Q

′
buj(αb) + Q′′

b wb
i )− cb

j)

⇒ pδQiv
∗
j + (1−p)

N−1

∑N
b=1,b 6=j(δ(Q

′
buj(αb) + Q′′

b wb
i )− cb

j)
= p[δ(Q′

iuj(αi) + Q′′
i wi

j)− ci
j ] + (1−p)

N−1 δQiv
∗
j

+ (1−p)
N−1

∑N
b=1,b 6=j,b 6=i(δ(Q

′
buj(αb) + Q′′

b wb
i )− cb

j)

Thus (15) has been derived.

J Derivation of (17)

Bound H states that

T >
NQd−cj

i

q

√
N

⇒ q√
N

> NQ
T d− cj

i

T as N > 0 and T > 0

Note that d ≥ v∗i − ni by definition. Therefore

⇒ q√
N

> NQ
T (v∗i − ni)−

cj
i

T

⇒ q√
N

>
(NQ)v∗i −(NQ)ni+Tv∗i −Tv∗i −cj

i

T

⇒ q√
N

>
Tv∗i −(T−(NQ))v∗i −(NQ)ni−cj

i

T

⇒ q√
N

>
Tv∗i
T − (T−(NQ))v∗i +(NQ)ni−cj

i

T

Note that (T−(NQ))v∗i +(NQ)ni−cj
i

T = vi. This means that

⇒ q√
N

> v∗i − vi

⇒ q2

N > (v∗i − vi)2

⇒
∑N

i=1
q2

N >
∑N

i=1(v
∗
i − vi)2

⇒ N · q2

N >
∑N

i=1(v
∗
i − vi)2

⇒
√

q2 >
√∑N

i=1(v
∗
i − vi)2

⇒ q > ‖v∗ − v‖

Thus (17) has been derived.
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