4.4 The solutions of a system of simultaneous linear equations with two unknowns can be solved easily using Cramer's rule.
Assume that a system of equations is given as

$$
\begin{aligned}
& a x+b y=c \quad \text { and } \\
& e x+e y=f
\end{aligned}
$$

Then Cramer's rule states that if there is a solution (i.e. $a^{*} e-b^{*} d \neq 0$),

$$
x=\frac{c^{*} e-f^{*} b}{a * e-d * b} \quad \text { and } \quad x=\frac{a * f-d * c}{a * e-d^{*} b}
$$

Write a programs which accepts the six input coefficients a, b, c, d, e and f and determines the solutions for x and y. If $a * e-b * d=0$, print a message "The solutions are not unique or there exist no solution."

Sample running :

Enter the values for a, b, c, d, e, and f.

Click the Find Roots command button.

Enter another set of values for the six coefficients.

Click the Find Roots button.
E. Solutions for simultaneous linaar equations $\quad-|\square| x$

This program finds the solution for the simultaneous linear equations: $a x+b y=c$ and $d x+e y=f$.
Please enter the six values (a, b, c, d, e and f):

For the equations:
$2.00 x+3.00 y=3.00$
$4.00 x+6.00 y=5.00$

The solutions are not unique or there exist no solution.

Try other values.
Click Exit button to leave.

