4.4 The solutions of a system of simultaneous linear equations with two unknowns can be solved easily using Cramer's rule.
Assume that a system of equations is given as

$$
\begin{aligned}
& a x+b y=c \quad \text { and } \\
& e x+e y=f
\end{aligned}
$$

Then Cramer's rule states that if there is a solution (i.e. $a^{*} e-b^{*} d \neq 0$),

$$
x=\frac{c^{*} e-f * b}{a^{*} e-d^{*} b} \quad \text { and } \quad x=\frac{a^{*} f-d^{*} c}{a^{*} e-d^{*} b}
$$

Write a programs which accepts the six input coefficients a, b, c, d, e and f and determines the solutions for x and y. If $a * e-b * d=0$, print a message "The solutions are not unique or there exist no solution."

Sample running 1 :

This program finds the solution for the simultaneous linear equations :

$$
\begin{aligned}
& a x+b y=c \\
& d x+e y=f
\end{aligned}
$$

Note that a and d cannot be both equal to zero and b and e cannot be both equal to zero.

Please input the coefficients a, b and $\mathrm{c}: 1.0 \quad 2.0 \quad 3.0<\mathrm{CR}>$
Please input the coefficients d , e and $\mathrm{f}: 4.0$ 5.0 $6.0<\mathrm{CR}>$

For the equations :

$$
\begin{aligned}
& 1.00 \mathrm{x}+2.00 \mathrm{y}=3.00 \\
& 4.00 \mathrm{x}+5.00 \mathrm{y}=6.00
\end{aligned}
$$

The solutions are :

$$
\begin{aligned}
& \mathrm{x}= \\
& \mathrm{y}= \\
& \hline
\end{aligned}
$$

Sample running 2 :

This program finds the solution for the simultaneous linear equations :

$$
\begin{aligned}
& a x+b y=c \\
& d x+e y=f
\end{aligned}
$$

Note that a and d cannot be both equal to zero and b and e cannot be both equal to zero.

Please input the coefficients a, b and $\mathrm{c}: 1.0 \quad 2.0 \quad 3.0<\mathrm{CR}>$
Please input the coefficients d, e and f: 2.0 4.0 5.0<CR>
The solutions are not unique or there exist no solution.

