8.2 The dot product of two one-dimensional arrays of real numbers $A$ and $B$ defined as
double A[Max_Size], B[Max_Size];
is the sum of

$$
\mathbf{A}[0] * \mathbf{B}[0]+\mathbf{A}[1] * \mathbf{B}[1]+\mathbf{A}[2] * \mathbf{B}[2]+\ldots+\mathbf{A}[\text { Max_Size }-1] * \mathbf{B}[\text { Max_Size }-1]
$$

where Max_Size is an integer representing size of the array.

## Write a function

double dot (double A[ ], double B[ ], int NumOfData);
to pass the two arrays and the number of elements in each array to the function to calculate the dot product of the two array. Write a program to test your function.

## Sample running :

The program will find the dot product of two one-dimensional arrays of real numbers.
How many number you want to input for each array $(1-20) ? 5<\mathrm{CR}>$
Please input numbers for first array.
Data[1]: 2.5<CR>
Data[2] : $1.2<\mathrm{CR}>$
Data[3] : 3.6<CR>
Data[4] : $4.8<\mathrm{CR}>$
Data[5]: $8<\mathrm{CR}>$
Please input numbers for second array.
Data[1]: $6.3<\mathrm{CR}>$
Data[2] : $\mathbf{2 . 4}\langle$ CR>
Data[3]: : $2.3<C R>$
Data[4]: 5<CR>
Data[5]: 7<CR>
The two arrays of numbers are

| 2.500000 | 6.300000 |
| :--- | :--- |
| 1.200000 | 2.400000 |
| 3.600000 | -2.300000 |
| 4.800000 | 5.000000 |
| 8.000000 | 7.000000 |

The dot product of the two arrays is 90.350
Do you want to try again (y/n)? n
End of Program

