- <u>Chapter 1</u>: Lavoisier and the Scientific Method
- Chapter 2: Matter and Energy
 - Representation of matter at various levels:
 - Macroscopic Objects large enough to see & touch
 - Microscopic Often need assistance to see (microscopes)
 - Particulate Use models to describe particles (atoms & molecules)
 - States of Matter:
 - Solid Fixed Shape & Volume
 - Liquid Variable Shape with Fixed Volume
 - Gas Variable Shape & Volume

- <u>Chapter 2</u>: Matter and Energy (cont.)
 - Physical and Chemical Properties & Changes:
 - Physical Properties color, density, boiling point, melting point, smell, taste, etc.
 - Physical Changes changes of state (melting, freezing, boiling, condensation, sublimation) where substance identity is not changed
 - Chemical Change the identity of a substance is lost and new substance(s) formed
 - Chemical Properties all possible chemical changes for a substance (oxidation, as an example)

- <u>Chapter 2</u>: Matter and Energy (cont.)
 - Pure Substances and Mixtures
 - Pure substances are either elements or compounds
 - > Compounds can be broken down by chemical means into elements: $2 H_2 O(I) \longrightarrow 2 H_2(g) + O_2(g)$
 - Elements cannot be broken down further
 - Law of Definite (or Constant) Composition Any compound is always made up of elements in the same proportion by mass. (Water always 89% O & 11% H)
 - Mixtures can be homogenous (solutions) or heterogeneous

> Mixtures can be separated by physical means

- Chapter 2: Matter and Energy (cont.)
 - Electrical Charge Two types: "+" and "-"
 - Like charges repel; opposite charges attract
 - Energy in Chemical Reactions
 - Energy released during a chemical reaction: Exothermic
 - Reactants Products + Energy
 - Energy absorbed during a chemical reaction: Endothermic
 > Reactants + Energy -> Products
 - Conservation Laws and Chemical Change
 - Laws of Conservation of Mass and Energy

- <u>Chapter 3</u>: Measurement and Chemical Calculations
 - Scientific (Exponential) Notation: Expressing very large or very small number with powers of ten.
 - Significant Figures
 - Accuracy and Precision
 - Conversion Factors
 - Temperature
 - Density

- <u>Chapter 4</u>: Introduction to Gas Laws
 - Properties of Gases
 - Kinetic Molecular Theory of Gases
 - Gas Measurements (Barometer & Manometer)
 - Charles's Law (Volume-Temperature Law)
 - Boyle's Law (Pressure-Volume Law)
 - Combined Gas Law

- <u>Chapter 5</u>: Atomic Theory: The Nuclear Model of the Atom
 - Dalton's Atomic Theory
 - Atomic Structure and Subatomic Particles
 - Protons
 - Neutrons
 - Electrons (J. J. Thomson & the Cathode Ray Tube)
 - The Nuclear Atom (Rutherford's Gold Foil Experiment)
 - Isotopes, Natural Abundances and Atomic Masses
 - The Periodicity of Elements
 - Symbols of Elements and the Periodic Table