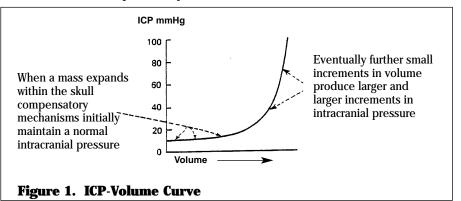
NEUROSURGERY

Dr. M. Fazl Bernice Mitelman and David Weizman, editors Markku Nousiainen, associate editor

RAISED INTRACRANIAL PRESSURE.2Intracranial DynamicsHerniation SyndromesClinical FeaturesManagementBenign Intracranial HypertensionHYDROCEPHALUS6	TRAUMA (BRAIN AND SPINAL CORD) 21 Head Injury Specific Injuries Brain Injury Late Complications of Head Injury Spine Injury Trauma Management Key Points
Mechanisms Classification Clinical Features Investigations Management	PERIPHERAL NERVES
INTRACRANIAL MASS 7 Tumour Pus Blood	PAIN SYNDROME
CEREBROVASCULAR DISEASE11 Subarachnoid Hemorrhage Spontaneous Intracerebral Hemorrhage Intracranial Aneurysm	Postherpetic Neuralgia Thalamic Pain Phantom Limb Pain
Vascular Malformations of the Nervous System Arteriovenous Malformations Cavernous Malformations	PEDIATRIC NEUROSURGERY 29 Spina Bifida Occulta Meningocele Myelomeningocele
SPINE	Intraventricular Hemorrhage Hydrocephalus in Pediatrics Dandy-Walker Cyst Chiari Malformation Craniosynostosis Pediatric Brain Tumours DRUGS


RAISED INTRACRANIAL PRESSURE

INTRACRANIAL DYNAMICS

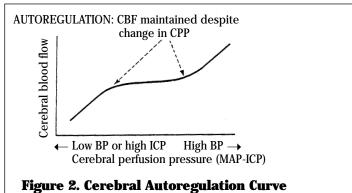
Intracranial Pressure/Volume Relationship

□ intracranial volume is constant

- Vbrain + Vblood + Vcsf + Vlesion = Vskull = constant (Monro-Kellie hypothesis)
- as lesion expands, ICP does not rise initially
 CSF, blood, some brain water displaced out of the head
 - brain tissue may shift into compartments under less pressure (herniation)
- □ ICP then rises exponentially

Adapted from Lindsay KW, Bone I, Callander, R: Neurology and Neurosurgery Illustrated

□ normal ICP ~ 6-15 mm Hg (80-180 mm H₂O) and varies with patient position


ICP Measurement

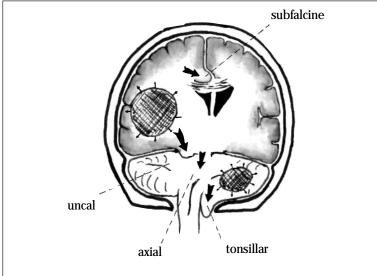
- lumbar puncture (contraindicated with known/suspected intracranial mass lesion)
- ventricular catheter (also permits therapeutic drainage of CSF to decrease ICP)
- intraparenchymal monitor
- subdural/subarachnoid monitor (Richmond bolt)

Cerebral Blood Flow (CBF)

- CBF depends on cerebral perfusion pressure (CPP) and cerebral vascular resistance (CVR)
- CPP = MAP (mean arterial pressure) ICP (intracranial pressure)
- crit MAI (mean aterial pressure) Icr (inductanial pressure)
 cerebral autoregulation maintains constant CBF by compensating for changes in CPP, unless
 high ICP such that CPP < 40 mm Hg

 - MAP > 160 mm Hg or MAP < 60 mm Hg
 brain injury: i.e. subarachnoid hemorrhage (SAH), severe trauma

Adapted from Lindsay et al: Neurology and Neurosurgery Illustrated


RAISED INTRACRANIAL PRESSURE .. CONT.

□ other factors may increase ICP by increasing intracranial blood volume • pCO2

- CO2 is a powerful vasodilator
- CNS pathology —> respiratory compromise —> increased pCO₂ —> increased cerebral vasodilatation
- -> raised ICP
- therefore ventilate/hyperventilate --> decreased pCO2 -> vasoconstrict ----> decreased ICP
- pO₂ (< 60)
 - decreased pO₂ —> vasodilate —>raised ICP
 therefore prevent hypoxia
- decreased venous drainage
 - intracranial venous sinuses drain directly into superior vena cava (no intervening valves)
 lying down, bending over, Valsalva all increase ICP

 - standing, raising head of bed both decrease ICP

HERNIATION SYNDROMES

Subfalcine (Cingulate) Herniation

- definition: cingulate gyrus herniates under falx
 cause: supratentorial lateral lesion
- presentation
 - pathological/radiological observation
 - warns of impending transtentorial herniation

Lateral Tentorial (Uncal) Herniation

definition: uncus of temporal lobe herniates down through tentorial notch

cause: supratentorial lateral lesion (often rapidly expanding traumatic hematoma) □ clinical presentation

- unilateral dilated pupil, followed by extraocular muscle (EOM)
 paralysis (ipsilateral cranial nerve III (CNIII) compressed)
 - decreased level of consciousness (LOC) (midbrain compressed) "Kernohan's notch": contralateral cerebral peduncle
- compressed due to shift of brain --> ipsilateral hemiplegia (a false localizing sign)

Central Tentorial (Axial) Herniation

definition: displacement of diencephalon and midbrain through tentorial notch

- cause: supratentorial midline lesion, diffuse cerebral swelling, late uncal herniation □ clinical presentation
 - decreased LOC (midbrain compressed)
 - EOM/upward gaze impairment ("sunset eyes", pressure on superior colliculus in midbrain compresses 3rd nerve nucleus)

RAISED INTRACRANIAL PRESSURE . CONT.

- brainstem hemorrhage (Duret's, secondary to shearing of basilar artery perforating vessels)
- diabetes insipidus (traction on pituitary stalk and hypothalamus)
- this is an end stage sign

Tonsillar Herniation ("Coning")

definition: cerebellar tonsils herniate through foramen magnum

- cause: infratentorial lesion, or following central tentorial herniation
- □ clinical presentation
 - rapidly fatal (compression of cardiovascular and respiratory) centers in medulla)
 - may be precipitated by lumbar puncture (LP) in presence of space occupying lesion (particularly in the posterior fossa)

CLINICAL FEATURES

Acute Raised ICP

- □ headache
- □ nausea and vomiting (N/V)
- decreased LOC
- Glasgow Coma Scale (GCS) best index to monitor progress and
- predict outcome of acute intracranial process (see Neurology Notes) papilledema
 - may take 24-48 hours to develop
- CN palsy
 - CN III
 - pupillary dilatation
 - unilateral dilated pupil signifies herniation (CN III compressed)
 - CN VI
 - longest intracranial course
 - causative mass may be remote from nerve root, i.e. CN VI
 - palsy can be a false localizing sign
- Cushing response
- increased blood pressure (BP), decreased pulse
- respiratory changes
 - e.g. Cheyne Stokes, apneustic, ataxic
- localizing neurologic signs may occur
 e.g. contralateral hemiplegia except with Kernohan's notch
- paralysis of upward gaze
 - especially in children (obstructive hydrocephalus)

Chronic Raised ICP

□ headache

- postural: worsened by coughing, straining, bending over (Valsalva)
 morning H/A: worse on waking in the morning
- visual changes
 - enlarged blind spot, preserved vision (until extremely advanced, then episodic constrictions of visual fields, i.e. "gray-outs")

 - long standing papilledema (not necessarily present) may produce optic atrophy and blindness
- L differentiate from papillitis (usually unilateral with decreased visual acuity)

Imaging Features

- CT: key diagnostic investigation

 - enlarged ventricles hydrocephalus
 compressed ventricles with midline shift mass lesion
- □ skull x-rays: (academic), in chronic ICP may show
- separation of sutures in infants
 digital markings in skull vault from compression of brain matter against bone ("copper beating")
 - thinning of dorsum sellae

MANAGEMENT

- elevate head
- head of bed at 30-45 degrees —> decreases intracranial venous pressure
- □ ventilate/hyperventilate
 - decreases pCO₂, increases pO₂, decreases venous pressure

RAISED INTRACRANIAL PRESSURE ... CONT.

Notes

□ mannitol (20% IV solution preferred)

- can give rapidly, effects in 30 minutes, (see Drugs Section)
 identify etiology
- CT, MRÍ
- \Box steroids
 - · decreases edema around brain tumour
 - no proven value in head injury or stroke
 - works slowly (days)

□ surgery

- remove mass lesion
- remove CSF by external ventricular catheter drain (if acute) or shunt
- Note: lumbar puncture contraindicated when known/suspected intracranial mass lesion

BENIGN INTRACRANIAL HYPERTENSION (PSEUDOTUMOUR CEREBRI)

□ raised intracranial pressure with no evidence of any "mass" lesion. hydrocephalus, infection or hypertensive encephalopathy

Etiology

unknown (majority), but associated with

- diet: obesity, hyper/hypovitaminosis A
- endocrine: pregnancy, menarche, menstrual irregularities, Addison's disease
- hematological: iron deficiency anemia, polycythemia vera
- drug: oral contraceptives, steroid withdrawal, tetracycline, nalidixic acid

Clinical Features

- □ usually in 3rd and 4th decade (F>M)
- symptoms and signs of raised ICP
- normal radiological (CT or MRI) studies
- usually self-limited, recurrence is common, chronic in some patients
- a preventable cause of (often permanent) blindness from optic atrophy
 risk of blindness is not reliably correlated to duration of symptoms,
- papilledema, headache, visual acuity or number of recurrences

Differential Diagnoses

- Let true mass lesions (see Intracranial Mass Section)
- □ venous outflow obstruction to CSF absorption
 - sagittal sinus thrombosis, lateral sinus thrombosis (usually
 - secondary to mastoiditis), jugular vein obstruction
 - following neck operation intrathoracic mass lesion

 - superior vena cava syndrome
 - congestive heart failure
 - hyperviscosity syndromes
- □ infections
- □ inflammatory conditions: e.g. neurosarcoidosis, SLE
- □ vasculitis
- □ metabolic conditions: e.g. lead poisoning
- pseudopapilledema associated with hyperopia and drusen
 meningeal carcinomatosis
- Guillain-Barre syndrome
- following head trauma

Treatment

- treat underlying cause if known
 drugs acetazolamide (↓CSF production)
- thiazide diuretic
- □ if above fail --> lumboperitoneal shunt
- optic nerve sheath fenestration if progressive impairment of visual acuity despite treatment

HYDROCEPHALUS (HCP)

- □ definition: increased CSF volume
- □ normal CSF volume = 100 150 mL (50 in ventricles, 25 around brain, 75 around spinal cord)
- □ CSF production is constant at 35 cc/hr (500 750 cc/day)

MECHANISMS

- □ increased production • e.g. choroid plexus papilloma (0.4-1% of intracranial tumours) □ decreased absorption (see below)

CLASSIFICATION

- **Non-Communicating (Obstructive) Hydrocephalus** absorption is blocked within ventricular system no escape of CSF
- into subarachnoid space
- □ causes/location of block

 - intraventricular hemorrhage
 ventricular tumours (e.g. 3rd ventricle colloid cyst)
 supratentorial mass causing tentorial herniation and aqueduct compression
 - · infratentorial mass causing 4th ventricle obstruction or aqueduct kinking
 - congenital e.g. aqueductal stenosis (see Pediatric Neurosurgery Section)
- CT findings
 - lateral and 3rd ventricles dilated
 - · normal 4th ventricle (e.g. aqueduct stenosis) or deviated/absent 4th ventricle (e.g. posterior fossa mass)

Communicating (Non-Obstructive) Hydrocephalus

- absorption is blocked at some part of extraventricular pathway, such as arachnoid granulations
- \Box causes
 - meningitis
 - SAH
 - trauma
- □ CT findings
 - all ventricles dilated

Normal Pressure Hydrocephalus (NPH)

- gradual onset of classic triad
 - gait apraxiaincontinence

 - dementia
- □ CSF pressure often within clinically "normal" range
- □ usually communicating

Hydrocephalus Ex Vacuo

- enlargement of ventricles (and sulci) secondary to diffuse brain atrophy
- usually a function of normal aging
- not true hydrocephalus

CLINICAL FEATURES

Acute HCP

- □ signs and symptoms of acute raised ICP
- usually non-communicating type

Chronic HCP

similar to NPH

INVESTIGATIONS

СТ

- ventricular enlargement, may see prominent temporal horns
 periventricular lucency (CSF forced into extracellular space)
 narrow/absent sulci, +/- 4th ventricular enlargement

Ultrasound (through anterior fontanelle in infants)

ventricular enlargement

MANAGEMENT

- spinal taps (for transient, communicating HCP)
- remove obstruction (if possible)
 choroid plexectomy (for choroid plexus papilloma)
- □ third ventriculostomy (for obstructive HCP)
- \Box shunts
 - ventriculoperitoneal (VP) = ventricle to peritoneum
 - ventriculo-atrial (VA) = ventricle to right atrium lumboperitoneal = lumbar spine to peritoneum
 - (for communicating HCP)

Shunt Complications

- obstruction
 - etiology: infection, obstruction by choroid plexus, buildup of proteinaceous accretions, blood, cells (inflammatory or tumour) signs and symptoms of acute HCP or increased ICP

 - radiographic evaluation: "shunt series" (plain x-rays which only show disconnection of tube system), CT
- \Box infection (3-4%)

 - etiology: S. epidermidis, S. aureus, gram-negative bacilli
 presentation: fever, nausea and vomiting, anorexia, irritability; signs and symptoms of shunt obstruction; shunt nephritis (antibodies generated against bacteria in shunt leads to kidney damage)
 - investigation: CBC, blood culture, shunt tap (LP usually NOT recommended)
- overshunting
 - slit ventricle syndrome (collapse of ventricles leading to shunt catheter occlusion by ependymal lining)
 - subdural effusion
 - secondary craniosynostosis (children)
 - low pressure headache
- □ seizures
- problems related to distal catheter (blockage)

INTRACRANIAL MASS

- □ differential diagnosis: "tumour, pus or blood"
- □ history important for localizing and differentiating mass lesions
- important features on CT (with and without contrast enhancement)
 - lesions (may be isodense without contrast)
 - midline shifts and herniations
 - effacement of ventricles and sulci (often ipsilateral)

TUMOUR

- primary versus metastatic
- primary tumours (benign or malignant) rarely metastasize
- □ presenting symptoms
 - local effects
 - dependent on site: focal deficits, lobe syndromes, seizures
 - raised ICP
 - acute or chronic depending on tumour growth rate (see Raised ICP Section)
 - sudden onset of symptoms after hemorrhage (5-10%)
- \Box consider by
 - location (supratentorial vs. infratentorial)
 - age (adult vs. child)

----- **T**

	Supratentorial	Infratentorial	
children (< 15 years, primarily infratentorial - 80%)	 astrocytoma - all grades e.g. optic nerve astrocytoma craniopharyngioma ependymoma other: dermoid/epidermoid, pineal tumours, primitive neuroectodermal tumors 	 cerebellar astrocytoma medulloblastoma ependymoma choroid plexus papilloma brain stem astrocytoma 	
adult (> 15 years, primarily supratentorial - 80%)	 astrocytoma (40-50%) metastatic (20-30%) meningioma (15%) pituitary ademona (5%) oligodendroglioma (5%) 	 metastatic (20-30%) schwannoma (6%) e.g. acoustic neuroma hemangioblastoma medulloblastoma (5%) 	
signs and symptoms	raised ICP focal or lobar effects • seizures • mental status changes • personality changes • visual field deficits • endocrine disturbances (with pituitary tumour)	raised ICP local effects in posterior fossa • extremity ataxia • truncal ataxia • CN palsy - often multiple • nystagmus • LOC • long tract signs	

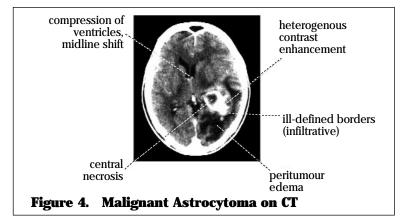
ness Age. Location and Clinical Feature

Table 1 Ta

Investigations □ CT, MRI, stereotactic biopsy (tissue diagnosis)

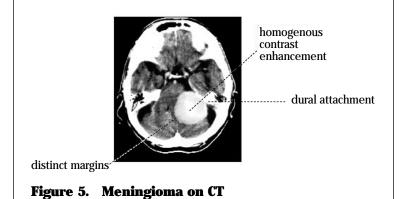
Management medical

- - steroids useful for vasogenic cerebral edema (decrease edema around tumours --> decrease mass effect/ICP) pharmacological treatment for pituitary tumours
- (see Pituitary Adenoma Section) surgical
- excisional: total, partial, decompressive, palliative
 shunt if CSF flow is blocked
 radiotherapy external, brachytherapy, stereotactic radiosurgery
- (Gamma-knife, Linear Accelerator)
- □ chemotherapy alkylating agents


Metastatic Tumours

- □ mainly from lung, breast, GI, kidney, melanoma
- □ solitary tumour: surgical excision and whole brain radiation

Astrocytoma


- most common primary brain tumour (45-50%)
 low grade (grades I-II)

INTRACRANIAL MASS ... CONT.

Meningioma

- mostly benign (1% malignant), slow-growing, non-infiltrative
 common locations: parasagittal and falx convexity, sphenoid ridge
- curable if complete resection possible (5 year survival > 90%)
 presentation: middle aged, symptoms of increased ICP, focal
- symptoms depend on location

Vestibular Schwannoma ("Acoustic Neuroma")

- progressive unilateral deafness = acoustic neuroma until proven otherwise
 arises from vestibular component of CN VIII at cerebello-pontine angle (CPA)
- presentation: compression of structures in CPA
 CN V: facial numbness, loss of corneal reflex
 - CN VII: facial weakness (uncommon pre-operatively)
 - CN VIII: unilateral sensorineural deafness, tinnitus, vertigo
 - cerebellum: ataxia, nystagmus
- □ diagnosis
 - MRI, CT (contrast enhancing mass in CPA)
 - audiogram, caloric tests
 - if bilateral: neurofibromatosis type II
- □ management
 - curable by resection
 - palliative treatment: gamma-knife radiotherapy

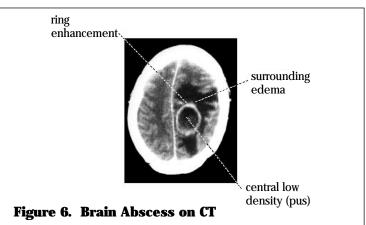
Pituitary Adenomas

mass effects

- H/A
- bitemporal hemianopsia (compression of optic chiasm)
 CN III, IV, V1, V2, VI palsy (compression of cavernous sinus)
 endocrine effects
- - hyperprolactinemia Cushing disease

 - acromegaly
 - infertility, amenorrhea, galactorrhea, impotence ٠
 - panhypopituitarism (hypothyroidism)

INTRACRANIAL MASS CONT.


- apoplexy and CSF rhinorrhea (rare presenting signs of pituitary tumour)
- diagnosis: prolactin levels, endocrine function tests; MRI
- 🖵 differential: parasellar tumours (e.g. craniopharyngioma, suprasellar
- (tuberculum sellae meningioma), carotid aneurysm
- management

 bromocriptine/dopamine agonists for prolactinoma
 - endocrine replacement therapy
 - somatostatin analogue (octreotide) +/- bromocriptine for acromegaly
 - surgery (+/- radiation)

PUS

Brain Abscess

- etiology
 local spread (adjacent infection)
 - otitis media, mastoiditis, sinusitis
 - osteomyelitis
 - dental abscess
 - hematogenous spread
 - adults: lung abscess, bronchiectasis, empyema
 - children: cyanotic heart disease with R to L shunt (blood is shunted away from lungs preventing filtration of bacteria)
 immunosuppression (AIDS toxoplasmosis)
 - dural disruption
 - surgery, trauma
 - congenital defect, e.g. dermal sinus
 - pathogens
 - Streptococci (most common), often anaerobic or microaerophillic
 - Staphylococci (penetrating injury)
 Gram negatives, anaerobes
- □ diagnosis
 - focal neurological signs and symptoms
 - mass effect, increased ICP and sequelae
 - seizures
 - +/- signs of systemic infection (mild fever, leukocytosis)
 - blood cultures rarely helpful, LP not helpful and contraindicated
 - CT scan (see Figure 6)
- management
 - multiple aspiration of abscess and/or excision, and send for C&S
 - antibiotics
 - empirically: penicillin and metronidazole (cover Streptococci and anaerobes) +/- ceftriaxone (cover Gram negatives)
 - after sensitivity results return, revise antibiotics
 - · treat primary site

Other Causes of Pus...

- subdural empyema (from sinusitis, mastoiditis rare, 20% mortality)
- meningitis, encephalitis, AIDS toxoplasmosis (see Neurology Notes)
 osteomyelitis of skull (Pott's puffy tumour), usually seen with sinusitis
- □ granuloma (TB, sarcoid)

INTRACRANIAL MASS ... CONT.

BLOOD

Hematoma/hemorrhage

- epidural, subdural hematoma (see Trauma Section)
- intracerebral, intraventricular hemorrhage, SAH (see Cerebrovascular Disease Section)

Vascular Abnormality

aneurysm, AVM (see Cerebrovascular Disease Section)

CEREBROVASCULAR DISEASE

- \Box ischemic cerebral infarction (80%)
 - embolic (heart, carotid artery, aorta) or thrombosis of intracerebral arteries (see Neurology Notes)
- intracranial hemorrhage (20%)
 subarachnoid hemorrhage (SAH), spontaneous intracerebral hemorrhage (ICH), intraventricular hemorrhage (IVH)

SUBARACHNOID HEMORRHAGE (SAH)

Etiology

- La trauma (most common)
- □ spontaneous
 - aneurysms (75-80%)
 - idiopathic (14-22%)
 - AVMs (5%)
 - infections e.g. mycotic aneurysms

Risk Factors

- pregnancy/parturition in patients with pre-existing AVMs
- Sympathomimetic (e.g. cocaine) abuse

Clinical Features

- sudden onset severe headache: "worst headache of my life"
 vomiting, nausea (increased ICP)
- meningismus (neck stiffness, photophobia, positive Kernig's and Brudzinski's sign)
- decreased level of consciousness
- transient or prolonged
- sentinel/warning leaks
 small SAH with sudden severe H/A +/- transient focal
 - neurological deficit blood on CT or LP
 - 30-60% of patients with full blown SAH give history suggestive of a warning leak
- □ focal deficits: cranial nerve palsy (e.g. III, IV), hemiparesis
- ocular hemorrhage in 11-33% (due to sudden increase in ICP)
- occasionally exertional (straining, intercourse)

Clinical Course/Natural History

- 10-15% die before reaching hospital
 overall mortality 50-60% in first 30 days
- □ major cause of mortality is rebleeding
 - risk of rebleeding: 4% on first day, 15-20% within 2 weeks, 30% by 6 months
 - if no rebleed by 6 months chance of rebleeding decreases to same incidence of unruptured aneurysm (2%)

Diagnosis (see Figure 7)

- differential diagnosis: migraine, tension H/A, meningitis, stroke, flu
- CT without contrast (see Figure 8)

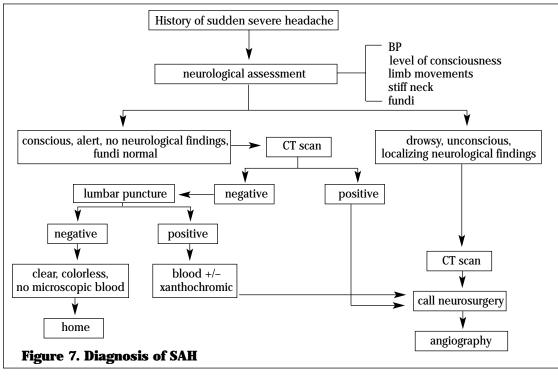
 - 90% sensitivity, 100% specificity
 may be negative if small bleed or presentation delayed several days
 positive history for SAH with negative CT MUST do an LP

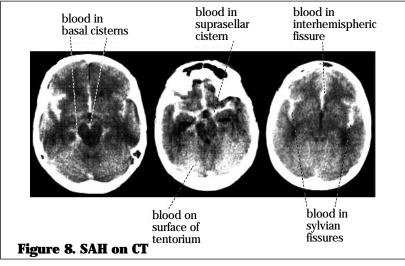
 - HCP, IVH, ICH, infarct or large aneurysm may be present

Lumbar puncture (LP)

- contraindications

 - contraindications


 known or suspected intracranial mass
 non-communicating (obstructive) HCP
 unconscious, focal deficit, papilledema
 coagulopathy (platelets < 50, anticoagulants, etc...)
 infection at site desired for LP (e.g. epidural abscess)


 CSF colour: bloody initially --> xanthochromic supernatant (vallow) by 12/48 hours (yellow) by 12-48 hours

 - high sensitivity
 traumatic tap (false positive): if bloody MUST centrifuge and observe the supernatant, clear supernatant means traumatic tap and xanthochromia means SAH

Cerebral angiography

demonstrates source of SAH in 80-85% of cases

Complications

- vasospasm
 - constriction of blood vessels in response to blood outside vessels in the subarachnoid space
 - confusion, decreased LOC, focal neurodeficit (speech or motor)
 detect with angiogram (decreased vessel caliber) or transcranial

 - doppler (increased blood velocity)
 radiographic evidence seen in 30-70% of arteriograms performed 7 days following SAH (peak incidence)

 - symptomatic only in 20-30% of patients with SAH onset: 4-14 days post SAH (if patient deteriorates within first 3 days, MUST look for another cause)
 - can produce permanent infarcts and death
 a major cause of morbidity and mortality
- □ hydrocephalus (30%)
 - can be acute or chronic requiring shunt or drain
- neurogenic pulmonary edema
- hyponatremia (SIADH, cerebral salt wasting)
- diabetes insipidus
 cardiac arrhythmia, MI, CHF

Management

- □ bed rest, elevate head (30 degrees), minimal external stimulation
- control HTN, avoid hypotension since CBF autoregulation impaired by SAH
- Diprophylactic anticonvulsant: short course of Dilantin (2 weeks)
- neuroprotective agent: nimodipine
 early surgery to prevent rebleed
- □ intraventricular catheter if acute HCP present
- "Triple H" therapy for vasospasm: hypertension, hypervolemia, hemodilution
 angioplasty for refractory vasospasm

SPONTANEOUS INTRACEREBRAL HEMORRHAGE (ICH)

Definition

- □ bleeding into brain parenchyma without accompanying trauma
- □ can dissect into ventricular system (IVH) or through cortical surface (SAH)

Etiology - usually determines location

- hypertension (40-60%) deep gray matter/basal ganglia, thalamus,
- pons, cerebellum
- □ aneurysm (20%)
 - berry
- mycotic
- AVMs (5-7%) anywhere
 coagulopathies (5-7%) cortical and subcortical, especially cerebellum
- Lumours (1%) anywhere e.g. malignant melanoma, choriocarcinoma
- Let hemorrhagic infarcts cortical and subcortical
- cavernous malformations anywhere
- cerebral amyloid (congophilic) angiopathy subcortical lobar (usually elderly patients)
- □ drugs (amphetamines, cocaine, etc...)

Clinical Features

- □ 30 day mortality rate is 44%, mostly due to cerebral herniation
- □ specific symptoms depend on location of ICH
 - basal ganglia, white matter/internal capsule, thalamus (70%)
 - rapidly progressive neurological deficit: hemiplegia, hemisensory loss, homonymous hemianopsia • progressively decreased LOC (versus preserved
 - consciousness in hemispheric ischemic stroke)
 - mass effects (transtentorial herniation)
 - often headache at onset
 - cerebellum
 - sudden severe vertigo and vomiting
 - ataxia, nystagmus, dysmetria, incoordination
 - preserved consciousness until late then sudden death, talk 'til death'

CEREBROVASCULAR DISEASE ... CONT.

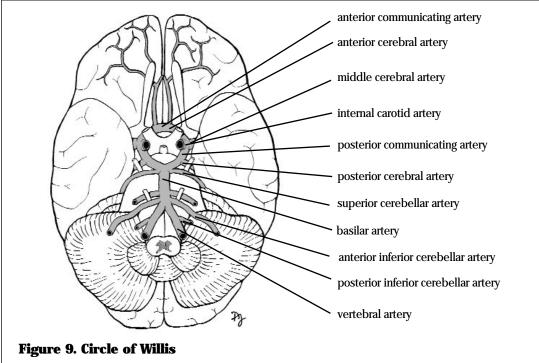
Notes

- mass effect (tonsillar herniation) --> surgical emergency
- headache (occipital)
- pons
 - quadriplegia
 - sudden decreased LOC
 - "pinpoint pontine pupils", disconjugate extraocular movements
 respiratory abnormalities
 rapid death
- cortical
 - focal neurological deficits
 - seizures

Diagnosis

- high density blood on CT without contrast
- MRI does not show blood immediately not procedure of choice

Management medical


- - correct HTN, coagulopathy
 control ICP (mannitol, hyperventilate, elevate head of bed)
 - anticonvulsants
- surgical
 - craniotomy with evacuation of clot under direct vision, resection of source
 - of ICH (i.e. AVM, tumour, cavernoma), ventriculostomy to treat HCP
 - indications
 - symptomatic

 - marked mass effect, raised ICP evacuate clot, decompress
 rapid deterioration (especially with signs of brainstem compression)
 favorable location, e.g. cerebellar

 - if tumour, AVM, aneurysm, or cavernoma suspected (resection or clip to decrease risk of rebleed)
 - contraindications
 - small bleed: minimal symptoms, high GCS (not necessary)
 massive hemorrhage (especially dominant lobe), low

 - GCS/coma, brainstem lost (poor prognosis)
 medical reasons, e.g. very elderly, severe coagulopathy, difficult location, e.g. basal ganglia, thalamus (poor surgical candidate)

INTRACRANIAL ANEURYSMS

Epidemiology prevalence of 5%

- \Box female > male
- **→** 20% multiple aneurysms
- age 35-65 years

Types

- Saccular (berry)
 - most common type of aneurysm

 - located at branch points of major cerebral arteries (Circle of Willis) common locations: anterior communicating artery/anterior cerebral artery (30%), posterior communicating artery (25%), middle cerebral artery (20%)
- □ fusiform
 - atherosclerotic
 - more common in vertebrobasilar system
- rarely rupture □ mycotic
 - secondary to vessel wall infection (e.g. SBE)

- Clinical Presentation upture (SAH, ICH, IVH, subdural blood) mass effect (giant aneurysms) small infarcts due to distal embolization
- seizures
- headache without hemorrhage
- incidental CT or angiography finding (asymptomatic)

Management

- □ imaging: CT, angiogram □ ruptured aneurysms
- ured aneurysms
 initial management of SAH/ICH
 overall trend towards better outcome with early surgery
 surgical clipping is the optimal treatment
 other treatment options: trapping, thrombosing (endovascular technique), balloon embolisation, wrapping, proximal ligation
- unruptured aneurysms
 1-3% annual risk of rupture

 - risk dependent on size of aneurysmno clear evidence on when to operate

 - consider operating at 10 mm by angiography risk of rupture 41%
 - need to weigh life expectancy risk of hemorrhage and mortality/morbidity of SAH vs. that of aneurysm surgery (age, medical risk, etc...)
 - follow smaller aneurysms with serial angiography

VASCULAR MALFORMATIONS OF THE NERVOUS SYSTEM

- **Types** arteriovenous malformations (AVMs)
- cavernous malformations (cavernoma, cavernous hemangioma,
- angiographically occult vascular malformation)
- venous malformations
- □ capillary telangiectasias

Clinical Significance

principally AVMs and cavernous malformations produce intracranial hemorrhages and seizure

ARTERIOVENOUS MALFORMATIONS (AVMs)

- Etiology tangle of abnormal vessels, arteriovenous shunts congenital, tends to enlarge with age male:female = 2:1

- □ present in younger age group than aneurysms (peak age 10-30)

Presentation

ICH (40-60%)

- risk of major bleed: 4% per year
- 10% mortality (versus 50-60% for aneurysmal SAH) per bleed
- 50% morbidity (serious neurological deficit) per bleed

CEREBROVASCULAR DISEASE ... CONT.

Notes

- seizures (50%)
 mass effect (e.g. Tic Douloureux 2º to CPA AVM)
 focal neurological signs secondary to ischemia (high flow --> "steal phenomena")
 localized headache (infrequent; resembles migraine)
 bruit (especially with dural AVMs)

- □ may be silent

- **Diagnosis** MRI (flow void)
- angiography

Management

decreases risk of future hemorrhage and seizure

- surgical excision
- endovascular embolisation (glue, balloon)
- stereotactic radiotherapy (for small AVMs)
- □ conservative (seizure control if necessary)

CAVERNOUS MALFORMATIONS

- CAVERINOUS MALFORMATIONS
 venous malformation
 symptoms: H/A, seizure, neurological deficit, ICH
 prevalence: 0.3-0.5%
 hemorrhage risk may be up to 3.6% per year
 bleeding less severe than from AVM or aneurysm
 posterior fossa cavernous malformations have mud
 diagnosis: MRI or contrast enhanced CT
 trootmont: currical oversion posterior fossa cavernous malformations have much worse clinical picture
- L treatment: surgical excision

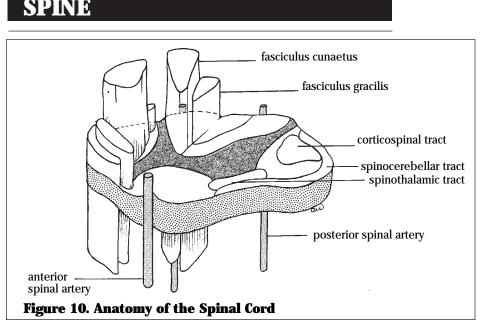


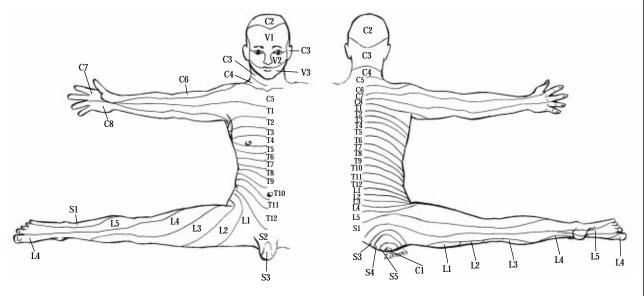
Figure drawn by Aimée Warrell

CORD AND ROOT COMPRESSION

Etiology

- herniated nucleus pulposus of disc
 spondylosis or spinal stenosis
- - · degenerative process of the spine, may result in stenosis of
 - spinal canal or spinal foramen
- □ spondylolisthesis
- anterior subluxation of one vertebral body on another
- □ abscess

SPINE ... CONT.


AVM (rare)

- □ tumours
 - extradural (lymphoma or metastases from prostate, lung, breast, kidney)
 - intradural
 - extramedullary (schwannoma, meningioma)
 - intramedullary (ependymoma, astrocytoma, hemangioblastoma)

Clinical Features

local pain at site of lesion

- pain in nerve root distribution, "radiculopathy" (see Figure 10)
 nerve root dysfunction (sensory loss, lower motor neuron findings)
 varying degrees of weakness or sensory loss at or below the lesion
 - - partial lateral compression (see Spinal Cord Syndromes Section) complete compression
 - bilateral decreased sensation (all modalities) and upper
 - motor neuron lesion findings, bladder retention/incontinence
- □ sphincter disturbance (bowel and bladder)

Figure 11. Sensory/Dermatomal Distribution

Drawing by Roula Drossis

Investigations

- plain x-ray of spine
- 🖵 myelogram
- 🖵 CŤ. MŘÍ
- lettromyography (EMG), nerve conduction studies

Management

- for disc herniation see Lumbar Disc Syndrome
- radiotherapy (primary/adjuvant therapy for
 - AVM/tumour, palliative for tumour)

SPINAL CORD SYNDROMES (see Neurology Notes)

Brown-Sequard's Syndrome (Hemicord)

- causes
 - penetrating trauma
 - extrinsic compression
- clinical features
 - contralateral pain and temperature sensory deficits (deficits are 1 to 2 levels below injury) ipsilateral position/light touch sensory deficits light touch preserved ipsilateral weakness (UMN lesion)
- best prognosis of cord injuries (90% independently ambulate and
 - have good sphincter control)

Central Cord Syndrome

- most common incomplete spinal cord injury syndrome
- cause: spinal flexion-extension injury
- clinical features
 - dissociated sensory loss
 - "vest" or bilateral suspended pain and temperature

 - vest of blateful suspended pain and temperature deficit with sacral sparing
 spared touch, joint position and vibration sensation
 weakness upper (LMN lesion) > lower (UMN lesion) extremities
- sphincter dysfunction (usually urinary retention)
 50% recover enough LE function to ambulate

Anterior Cord Syndrome

 \Box causes

- · anterior cord obstruction and compression
- clinical features
 - dissociated sensory loss
 - bilateral pain and temperature deficit
 spared touch, joint position and vibration sensation
 bilateral paraplegia (UMN below and LMN at level of the lesion)
 - sphincter dysfunction

worst prognosis, only 10-20% recover functional motor control

Posterior Cord Syndrome

 \Box causes

- trauma
 - posterior spinal artery infarct
- clinical features
 - · joint position and vibration sensation loss
 - pain and paresthesias in neck, back, or trunk
 - mild paresis of upper extremities

SYRINGOMYELIA

"syrinx", cavitation of spinal cord substance

- Etiology idiopathic post traumatic
- associated with
 - craniovertebral anomalies (congenital) e.g. Arnold-Chiari
 - intramedullary tumours
 arachnoiditis (traumatic)

Presentation

- suspended, dissociated sensory loss
- pain and temperature loss in a cape-like distribution
 preserved light touch and other modalities
 wasted hand muscles
- may have spastic weakness of legs
 may have hydrocephalus, often asymptomatic

Investigations

- MRI is best method
 myelogram with delayed CT

Management

- conservative if NOT progressing
 shunt (syringosubarachnoid or syringopleural)
 if associated with Arnold-Chiari malformation
- - · first decompress posterior fossa, if not successful then shunt

CERVICAL DISC SYNDROME

Etiology

- most common levels
- C5-6 (C6 root), C6-7 (C7 root)
 less common, but important with respect to activities of daily living
 C4-5 (C5 root), C7-T1 (C8 root)

Clinical Features

- lateral disc protrusion compresses nerve root
 pain down arm in nerve root distribution, worse with neck extension
 - referred parascapular pain
 - +/- nerve conduction velocity abnormalities
- □ central cervical disc protrusion compresses spinal cord as well as nerve roots

Table 2. Lateral Cervical Disc Syndrome						
	C4-5	C5-6	C6-7	C7-T1		
root involved	C5	C6	C7	C8		
motor	deltoid supraspinatus biceps	biceps	triceps	digital flexors intrinsics		
reflex	supinator	biceps	triceps	finger jerk		
sensory	shoulder,	thumb	middle finger	ring finger, little finger		

Differential Diagnosis

- shoulder lesion
- L thoracic outlet syndrome (including Pancoast tumour)
- cervical spine tumour
- peripheral nerve lesion (e.g. carpal tunnel)
- acute brachial neuritis

Investigations

- □ C-spine x-ray □ CT, MRI
- □ EMG, nerve conduction studies

Management

- conservative
- NSAIDs, collar, traction may help
 most patients get better spontaneously in 4 to 8 weeks surgical indications
 - intractable pain despite adequate conservative treatment for > 3 months
 progressive neurological deficit
 anterior cervical discectomy is usual surgical choice

LUMBAR DISC SYNDROME

Etiology

- protrusion/herniation of nucleus pulposus
- Interest purposes
 Interest purposes<

Clinical Features

- leg pain > back pain
 limited back movement
 limited straight leg raising (L5, S1 roots) or femoral stretch
 - (L4 root)
 - if there is true limitation in straight leg raising, patient should also be unable to sit up and extend knee fully
- nerve root irritation
 - .

 - pain in distribution of root (e.g. sciatica) aggravated by movement, Valsalva maneuvers (increases CSF pressure leading to mechanical stimulation of inflamed nerve root) relieved by rest
- impaired nerve root conductivity (may or may not be present)
 motor deficit (lower motor neuron weakness)

 - sensory deficit (numbness in dermatome) •
 - loss of reflex
- sphincter paralysis (S2-S4) □ functional scoliosis (paravertebral muscle spasm)

Table 3. Lateral Lumbar Disk Syndromes						
	L3-4	L4-5	L5-S1			
root involved	L4	L5	S1			
pain	femoral pattern	sciatic pattern	sciatic pattern			
motor	quads (knee extension)	tibialis anterior (dorsiflexion), EHL (hallux extension)	gastrocnemius, soleus (plantar flexion)			
reflex	knee jerk	medial hamstrings	ankle jerk			
sensory	medial leg	dorsal foot to hallux	lateral foot			
relative incidence	< 10%	45%	45%			

- spinal: stenosis, tumour, spondylolisthesis or ankylosing spondylitis
 leg: spinal stenosis, arthritic hip, sciatic nerve lesion (e.g. tumour)
 pelvic bones: tumour
- pelvic bones: tumour
 functional /nonorganic
- Investigations
- x-ray spine (only to rule out other lesions)
 CT
- $\overline{\Box}$ myelogram and post-myelogram CT (if surgery contemplated and
- plain CT not conclusive) MRI

Management

- □ conservative
 - bedrest, braces, physiotherapy and NSAIDs
 - 95% improve spontaneously within 4 to 8 weeks
- surgical indications
 - intractable leg pain despite adequate conservative treatment for > 3 months
 disabling neurological deficit

 - progressive neurological deficit
 - bowel or bladder paralysis is a surgical emergency (cauda equina syndrome)

CAUDA EQUINA SYNDROME

Etiology

- secondary to compression of lumbosacral nerve roots below conus medullaris
- Le extrinsic tumour, carcinomatous meningitis, arachnoiditis, spinal stenosis

Clinical Features

- multiple dermatome, bilateral sensory loss
 weakness and paraparesis in multiple roots and depression of reflexes
 saddle anesthesia (perianal, genital areas)
 bowel and bladder dysfunction (incontinence or retention)

- □ loss of sexual sensation and function

Management

requires urgent investigation and decompression to preserve bowel and bladder function

HEAD INJURY

SPECIFIC INJURIES

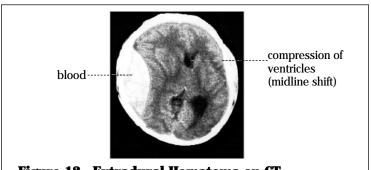
Scalp Injury irich blood supply

- considerable blood loss (vessels contract poorly when ruptured)
 minimal risk of infection due to rich vascularity

Skull Fractures

- □ depressed fractures --> double density on skull x-ray
 - simple fractures
- compound fractures —> increased risk of infection
- □ internal fractures into sinus —> meningitis, pneumocranium
- □ basal skull fractures --> not readily seen on x-ray, rely on clinical signs
 - retroauricular ecchymoses (Battle's sign)
 - periorbital ecchymoses (raccoon eyes)
 - hemotympanum
 - CSF rhinorrhea, otorrhea
 - suspect with Lefort II or III midface fracture

Cranial Nerve Injury


most commonly olfactory

Arterial Injury

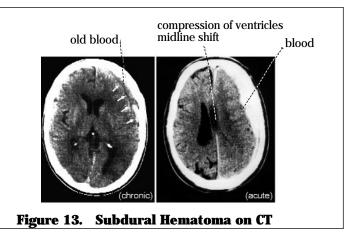
e.g. carotid-cavernous (C-C) fistula

Extradural ("Epidural") Hematoma (see Figure 12)

- young adult, male > female
- temporal-parietal skull fracture —> ruptured middle meningeal artery
- brain often not damaged
 symptoms delayed: classic = "lucid interval" between concussion and coma (not present in children)
- prognosis: good with optimal prompt management
- CT: high density biconvex mass against skull, usually with uniform density and sharp margins "lens-shaped"
- management: evacuation with small craniotomy flap

Figure 12. Extradural Hematoma on CT

Subdural Hematoma (see Figure 13)


□ acute

- torn cortical artery, large vein, or venous sinus due to violent trauma
- often with associated brain injury, making prognosis poor overall CT: increased density concave mass usually less uniform, less
- dense and more diffuse than extradural hematoma
- management: craniotomy flap

□ chronic

- often minor injuries or no history of injury
 several weeks after injury
 "the great imitator" (of dementia, tumours, etc...)
 risk factors: older, alcoholic, patients with CSF shunts, anticoagulants
 expands due to repeated bleeding
- brain usually undamaged
- CT: low density concave mass
- management: burr hole drainage

TRAUMA (BRAIN AND SPINAL CORD) ... CONT.

Traumatic Intracerebral Hemorrhage

any size, any part of brain, may be multiple

- immediate or delayed
- □ frontal and temporal lobes prominent (by coup/contre-coup mechanism)

BRAIN INJURY

Primary Impact Injury

mechanism of injury determines pathology: i.e. with penetrating

- injuries, gun shot wounds
 - low velocity --> local damage
 - high velocity ---> wave of compression, can get distant damage
- concussion
 - brief (< 6 hours) loss of consciousness
 - no parenchymal abnormalities on CT
- □ coup (damage at site of blow)
- coup (damage at site of blow)
 contre-coup (damage at opposite site of blow)
 acute decompression causes cavitation
 followed by a wave of acute compression
- □ contusion (hemorrhagic)

 - high density areas on CT with little mass effect
 commonly occurs with brain impact on bony prominences (falx,
- sphenoid wing, floor of frontal and temporal fossae) diffuse axonal injury (diffuse axonal shearing)

 - may tear blood vessels->hemorrhagic foci
 - wide variety of damage results
 - all brain injury causes shear
 - often the cause of decreased LOC if no space occupying lesion on CT

Secondary Pathologic Processes

1/3 who die in hospital after head injury were able to talk after the injury
 delayed and progressive

- - edema
 - intracranial hemorrhages
 - ischemia/infarction
 - raised ICP

Extracranial Conditions

- hypoxemia
 - trauma: chest, upper airway, brainstem
 - exceptionally damaging to traumatized brain cells
 - · leads to ischemia, raised ICP
- hypercarbia
- --> raised ICP
- □ systemic hypotension
 - caused by blood loss, not by head injury (e.g. ruptured spleen)
 - cerebral autoregulation lost in trauma —> decreased CPP, ischemia
- hyperpyrexia
 - -> increased brain metabolic demands

TRAUMA (BRAIN AND SPINAL CORD) ... CONT.

□ fluid and electrolyte imbalance

- causes
 - iatrogenic (most common)
 SIADH (from head injury)

 - diabetes insipidus (from head injury)
 - cerebral edema --> raised ICP

□ fat embolism

- multiple trauma
 - long bone fractures
 - petechiae and edema
 - hypoxia a key feature due to pulmonary effects
- decreased LOC, seizures

□ coagulopathy

Intracranial Conditions

- □ raised ICP due to
 - traumatic cerebral edema OR traumatic intracranial hemorrhage
- □ raised ICP results in
 - decreased cerebral perfusion (CPP = MAP ICP)
 - +/- herniation

LATE COMPLICATIONS OF HEAD INJURY

Seizures

- □ 5% of head injured patients develop seizures
- incidence related to severity of injury, higher with local brain damage or intracranial hemorrhage
- u with early (within first week) post traumatic seizure, incidence of later seizures rises to 25%

Meningitis

associated with CSF leak from nose or ear

Hydrocephalus

acute HCP or delayed NPH

SPINE INJURY

Vertebral Column (bone, discs, ligaments)

- commonly damaged
- compression fracture (stable)
- □ burst fracture (unstable)
- □ dislocation (unstable)
- □ fracture-dislocation (unstable)
- □ "special" fractures, e.g. odontoid (unstable)

Spinal Cord

- cord injury with initial bony or ligamentous trauma
- or after moving an unstable vertebral column
- □ complete
 - no preservation of sensory/motor function below lesion
 - no recovery
- □ incomplete lesions (see Spinal Cord Syndromes Section)

Nerve roots

avulsion, e.g. brachial plexus in motorcycle accident

TRAUMA MANAGEMENT

Aims

- recovery from primary injury
- prevent further damage from secondary pathologic processes

Initial Management

 ABC's of trauma management take priority
 A - airway with C-spine immobilization to prevent further spinal cord injury immobilize (collar, sandbags, fracture board, skull tong or halo traction)

TRAUMA (BRAIN AND SPINAL CORD) ... CONT.

- B breathing, ensure adequate oxygen supply
 - oxygen (100%), ventilate if necessary
- C circulation
 - differentiate hypotensive shock (BP low, HR high) from neurogenic shock (BP low, HR low)
 ensure adequate perfusion of spinal cord and manage
 - neurogenic shock (dopamine, IV fluids, MAST)
- suspect spinal cord injury with weakness, numbness, spine pain, head
- injury, high energy injury or multisystem injuries
- rule out spinal fracture (cervical, thoracic, lumbar)
 5-10% of patients with spinal injuries have injuries at other levels

Neurological Assessment

- mini history
 - period of LOC
 - post traumatic amnesia
 - loss of sensation/function
- □ neurological exam
 - head and neck (lacerations, bruises, basal skull fracture signs, facial fractures, foreign bodies)
 - spine (palpable deformity, midline pain/tenderness)
 - Glasgow Coma Scale

 - eyes (pupillary size and reactivity)
 brainstem (breathing pattern, CN palsies)
 - motor exam, sensory exam (only if GCS is 15), reflexes
 - cranial nerve exam
 - sphincter tone
 - record and repeat neurological exam at regular intervals

Initial Investigations

- CT head and upper C-spine
 ABG, CBC, drug screen (especially alcohol)
 C,T,L-spine x-rays
- - AP, lateral, odontoid views for C-spine
 - must see C1 to C7 and C7-T1 interspace (swimmer's view if necessary)
 ABCS Alignment, Bone, Cartilage, Soft tissues
 - (see Orthopedics Notes)
- chest and abdomen x-ray as indicated

Late Management

- treatment for minor head injury
 observation over 24-48 hours
 - - wake every hour
 - no sedatives or pain killers during this monitoring period
- L treatment for severe head injury
- tment for severe head injury
 clear airway and ensure breathing (intubate if necessary)
 secure C-spine
 maintain adequate BP
 monitor to detect complications (Glasgow Coma Scale, CT, ICP)
 manage increased ICP if present

 elevation of head
 hyperventilation (target PCO2 32-35 torr)
 mannitol (temporary preoperative measure)

 remove hematoma if present
- treatment of spinal injury
 reduce dislocation if present by traction or surgery
 stabilize spine if unstable (halo vest, fusion, etc...)
 further investigations (CT, tomogram, myelogram, MRI) to rule out cord compressionemergent surgical decompression and/or fusion if necessary

 - more likely to be beneficial in incomplete cord injury
 - emergent surgery contraindicated for: complete spinal cord injury > 24 hours, medically unstable patient, and central cord syndrome
 - steroids (methylprednisone) is proven to be of benefit if given within 8 hours of injury
- which patients should be admitted to hospital?
 - skull fracture
 - · indirect signs of basal skull fracture

TRAUMA (BRAIN AND SPINAL CORD) ... CONT.

- confusion, impaired consciousness
- focal neurological signs
- extreme headache, vomiting
- seizures
- concussion with > 5 minutes amnesia
- social (i.e. no friend/relative to monitor for next 24 hours)
- unstable spine
- if there is any doubt, especially with children, or alcohol clouding consciousness
- □ which patients need CT head or transfer to a neurosurgical center?
 - remains unconscious after resuscitation
 - focal neurological signs
 - deteriorating

KEY POINTS

- never do lumbar puncture in head injury
- all patients with head injury have C-spine injury until proven otherwise
- don't blame coma on alcohol there may also be a hematoma
- Iow BP after head injury means injury elsewhere
 must clear spine both radiologically AND clinically

PERIPHERAL NERVES

INJURY

Classification and Clinical Course

- a neuropraxia: intact nerve, recovery within hours to days
- axontomesis: axon disrupted but nerve sheath intact -->
- Wallerian degeneration —> recovery 1 mm/day neurotmesis: nerve completely severed, need surgical repair for recovery

Management

- lectrophysiological studies (EMG, nerve conduction velocities) may
- be helpful in assessing nerve integrity
- □ surgical repair unless nerve is known to be intact
- delay surgical repair for a few weeks (unless first 2 conditions met) to allow
 - clean wound
 - optimal surgical facilities
 - optimal cell metabolism
 - possible spontaneous recovery/regeneration
- \Box microsurgery: suture nerve sheaths +/- nerve graft

ENTRAPMENT

General

- nerve compressed by nearby anatomic structures
 often secondary to localized, repetitive mechanical trauma with additional vascular injury to nerve
- consider systemic causes rheumatoid arthritis

 - diabetes mellitus
 - hypothyroid acromegaly

 - vasculitis
 - amyloidosis
 - pregnancy
- Symptoms
 - pain distal (occasional proximal) to lesion
 - burning paresthesia/dysesthesia sensory loss in nerve distribution

 - muscle weakness/wasting (advanced cases) •

Carpal Tunnel Syndrome (CTS)

🖵 etiology

- most common entrapment neuropathy
- median nerve entrapment at wrist, usually bilateral
- female:male = 4:1

PERIPHERAL NERVES.... CONT.

presentation

- classically: patient awakened at night with numb/painful hand,

- Classically: patient awarened at right with nume/parind nard, relieved by shaking/dangling/rubbing
 distribution: radial 3.5 fingers
 decreased light touch, 2 point discrimination, especially finger tips
 job/hobby related repetitive trauma, especially forced wrist flexion
- advanced cases: wasting/weakness of thenar muscles, especially abductor pollicis brevis
- 🖵 diagnosis
- history, physical
 +/- Tinel's sign (tingling sensation on percussion of nerve)

 - +/- Phalen's sign
 confirm with NCV, EMG pre-operatively
- management
 - conservative
 - neutral wrist splints (bedtime)
 - NSAIDs steroid injection
 - surgical
 - release of flexor retinaculum
 - indications for surgery: refractory pain, +++ sensory loss, muscle atrophy

Ulnar Nerve Entrapment at Elbow

- second most common entrapment neuropathy
- may be entrapped at several locations
 behind medial epicondyle
 - - at medial intermuscular septum
 - distal to elbow at cubital tunnel
- presentation
 - sensory: pain, numbness in ulnar 1.5 fingers
 - wasting of interossei (especially first dorsal interosseous ---> thumb web space)
 - weakness (especially abduction of index finger) ٠
- diagnosis
 - history, physical
 - NCV: conduction delay across elbow
- management
 - conservative: prevent repeated minor trauma (e.g. leaning on elbow or sleeping with hand under head), elbow pads, NSAIDs
 surgical: nerve decompression and transposition to front of elbow

Less Common Entrapments

□ common peroneal nerve

- superficial and fixed behind fibular head
- sensitive to trauma (e.g. fracture of fibular head)
- motor: decreased foot and toe extension ("drop foot"), decreased ankle eversion
- sensory: decreased lateral foot and dorsum (less common)
- distinguish from L5 radiculopathy
- lateral cutaneous nerve of the thigh ("meralgia paraesthetica")
 posterior tibial nerve ("Tarsal Tunnel")
- radial nerve ("Saturday Night Palsy")
- motor branch of ulnar nerve at wrist (Guyon's canal)
- ō thoracic outlet syndrome (compression of inferior trunk or C8-T1 nerve roots of brachial plexus by cervical rib, fascial bands, etc... hard to diagnose)

PANN SYNDROMES

PHYSIOLOGY OF PAIN

- peripheral sensors: free nerve endings
- □ neurotransmitters: substance p, endorphins
- □ gate control theory:
 - summation of inhibitory and excitatory afferent input at the synapse to the second order neuron of the spinothalamic tract determines amount of pain felt
 - segmental and higher center influence
- perception:
 - thalamus to cerebral cortex —> awareness
 - personality and mood —> intensity
 - spinothalamic tract, reticular formation and limbic system --> unpleasant, emotional aspect

- **MEDICAL TREATMENT** acute pain (< 2-3 weeks duration): analgesics +/- tranquilizers
- benign chronic pain: antidepressants, anticonvulsants, topical (capsicin), NOT narcotics or sedatives
- □ malignant chronic pain: strong narcotics in frequent, small doses

SURGICAL TREATMENT

Central

- □ stereotactic thalamotomy
 - remove spinoreticular relay
 - indication: malignancy of head, neck or brachial plexus
- deep brain stimulation
 - stimulation of electrodes placed in periventricular gray matter, sensory relay nucleus of thalamus or internal capsule +/radiocontrolled stimulator subcutaneously
- □ hypophysectomy (chemical: uses alcohol)
 - unknown mechanism
 - indication: metastatic disease
- dorsal root entry zone lesions
 - indication: deafferentation pain (brachial plexus avulsion, postherpetic neuralgia)
- major complication: ipsilateral leg weakness
 percutaneous anterolateral cordotomy
 - - lesion of spinothalamic tract giving pain relief contralaterally
 - 90% patients respond
 - complications: respiratory difficulties and ipsilateral limb weakness
- myelotomy
 - division of decussating pain fibers for temporary pain relief
 - indication: terminal malignancy
- dorsal column stimulation
 - percutaneous electrodes in epidural space
 - indication: intractable chronic pain

Peripheral

nerve blocks

- dermatomal pain relief, loss of motor and sympathetic function
 permanent: neurolytics (phenol, alcohol)
 temporary: local anesthetics
 paravertebral or peripheral: NOT neurolytics --> painful neuritis
 transcutaneous electrical nerve stimulation (TENS)
 prolonged stimulation of large diameter fibers inhibiting ascending pain fibers or via higher centers
 dorsal rhizotomy
- dorsal rhizotomy

 - dorsal root division
 infrequently done: high failure rate and short effect
- denervation of facet joints
 cut posterior ramus of spinal nerves
 temporary: relief until nerve regrows

TIC DOLOUREUX

Clinical Features

older age

 \Box location: V2 > V3 > V1 (combinations occur), mostly unilateral

PAIN SYNDROMES ... CONT.

Notes

- □ short, sharp jabs in series, last a few seconds to a few minutes
- violent, terrible, "lightning", "electrical", "lancinating" pain
 may be weeks or months of remission
- neurological examination commonly normal
- triggers: areas on face (especially around mouth), wind, eating, drinking, talking

Diagnosis

- history
- Le rule out structural lesion affecting trigeminal nerve (tumour, aneurysm) -CT, MRI
- □ may be due to multiple sclerosis (especially in younger patients)

Management

- pharmacologic
 - drug of choice is carbamazepine 200 mg tabs, 3-5 per day
 - phenytoin is second choice
 - baclofen (potentiates carbamazepine effect)
 - response to medication is almost diagnostic
 - eventually becomes refractory
- procedures
 - percutaneous thermocoagulation of CN V
 - glycerol injection into Meckel's cave (trigeminal cistern)
 - division/avulsion of branches of CN V in face
 - microvascular decompression of CN V at pons

CAUSALGIA (REFLEX SYMPATHETIC DYSTROPHY)

Etiology

incomplete peripheral nerve injury in nerve with sympathetic fibers

Clinical Features

intense, continuous, burning pain
 touch worsens pain

- Ted, warm, dry and swollen skin initially (sympathetic overactivity)
- Cool, clammy, glossy and atrophic skin in advanced stages

Treatment

Sympathetic nerve blockade: medical or surgical

POSTHERPETIC NEURALGIA

Etiology

reactivation of latent varicella zoster virus that lay dormant in dorsal root or gasserian ganglion

Clinical Features

- burning, constant pain
- severe, sharp paroxysmal twinges over area of affected sensory neurons
- □ touch worsens pain

Treatment

- no specific treatment and is difficult to treat
- Denote the medical method of the medical method of the medical method of the medical method of the method of the medical method of the method of the medical method of the medical method of the metho (temporary relief), topical (capsicin, promising new treatment that works by blocking substance P), steroid injection or topical in eye during acute eruptive phase (decreases severity of pain and decreases corneal scar)
- □ surgical: percutaneous cordotomy, possible dorsal root entry zone lesion

THALAMIC PAIN

Clinical Features

- begins with hemianesthesia (due to thalamic infarction or hemorrhage)
- becomes diffuse, burning pain contralateral to lesion
- worse with light touch (e.g. clothing)
 may have prior history of thalamic stereotactic procedure for movement disorder

PAIN SYNDROMES ... CONT.

Notes

Treatment

□ medical: poor response to medication

□ surgical: stereotactic thalamic stimulation but may increase sensory deficit

PHANTOM LIMB PAIN

Etiology

- □ complication of 10 % amputation patients
- neuroma formation in stump

Clinical Features

continuous burning

□ pain from some point on missing limb

Treatment (see Postherpetic Neuralgia Section)

PEDIATRIC NEUROSURGERY

SPINA BIFIDA OCCULTA

Definition

- neural defect
- usually CNS (cauda and PNS not involved)
- a radiological diagnosis (not associated with neurologic defect, only bony deficit)

Epidemiology 20-30% of the general population

Etiology

□ failure of fusion of the posterior arch

Clinical Features

- no obvious external markings
- no obvious clinical signs
- presence of skin dimple or hair tuft should increase suspicion of an underlying anomaly (occult spinal disraphysm)

Investigations

- Deplain film: absence of the spinous process along with minor amounts
- of the neural arch
- most common at L5 or S1

Treatment and Results

requires no treatment

MENINGOCELE

Definition

a defect consisting of a herniation of meningeal tissue and CSF through a defect in the spine

Etiology

- \Box 2 theories
 - primary failure of neural tube closure
 - rupture of a previously closed neural tube due to overdistension (Gardner; unpopular theory)

Clinical Features

- usually no disability
- · low incidence of associated anomalies and hydrocephalus

PEDIATRIC NEUROSURGERY ... CONT.

Notes

Investigations

plain films, CT, MRI, ultrasound, cardiac echo, GU investigations

Treatment and Results

surgical excision (excellent results)

MYELOMENINGOCELE

Definition

a defect consisting of a herniation of meningeal tissue and CNS tissue through a defect in the spine

Etiology - same as meningocele

Clinical Features

sensory and motor changes distal to anatomic level producing varying degrees of weakness, anesthesia, urine and fecal incontinence

Investigations

□ plain films, CT, MRI, ultrasound, cardiac echo, GU investigations

Surgical Indications

preserve intellectual, sensory and motor functions

prevent CNS infections

Results

- operative mortality close to 0%
- 📮 95% 2 year survival
- \square 80% have IQ in > 80 (but most are 80-95) \square 40-85% ambulatory
- □ associated with hydrocephalus (80%)
- Complications: ventriculitis, ICH

INTRAVENTRICULAR HEMORRHAGE

Definition

- □ a disease of the premature, low-birth weight infant
- consists of hemorrhage into the germinal matrix of the developing brain

Classification (based on ultrasound or CT)

- Grade I: germinal matrix hemorrhage only
 Grade II: blood filling lateral ventricles without distention
- Grade III: blood filling and distending lateral ventricles Grade IV: hemorrhage with parenchymal involvement (ICH) Ō

- **Epidemiology** curs in 45% of infants born with a birth weight of 1500 g or less
- uncommon after 32 weeks of gestation
- sessentially nonexistent in full-term infants

Predisposing Factors

- low gestational age
 low APGAR score
- - vaginal delivery
 - birth asphyxia, resuscitation
 - respiratory distress syndrome
 - rapid volume re-expansion
 - hypoxemia, hypercarbia, acidosis
 - seizure, pneumothorax

Investigations

- ultrasound is the method of choice to screen for ICH/IVH
- □ should be done routinely to screen preterm babies < 24 weeks
- gestation or < 1500 gm CT scan will also show ICH and IVH as described above

Treatment

- best to withhold tapping ventricles, ventriculostomies, and shunting until blood has cleared
- if progressive hydrocephalus develops, then
 serial LP

 - acetazolamide (25-100 mg/kg/day) and Lasix (2 mg/kg/day)
 - ventriculostomy
 - shunt (low pressure)

Results

- grade I-III hemorrhages can do as well as children without hemorrhages
- Grade IV: only 50% chance of attaining normal life status
- prognosis more dependent on the degree of asphyxia than on hydrocephalus

HYDROCEPHALUS IN PEDIATRICS

Etiology

- □ congenital
 - aqueductal anomalies

 - primary aqueductal stenosis in infancy
 secondary gliosis due to intrauterine viral infections
 - (mumps, varicella, TORCH) or germinal plate hemorrhage Dandy Walker (2-4%)

 - Chiari malformation, especially Type II
 - myelomeningocele
- □ acquired
 - · post meningitis
 - post hemorrhage (SAH, IVH)
 - masses (vascular malformation, neoplastic)

Clinical Features

- symptoms and signs of hydrocephalus are age related
- in pediatrics
- □ increased head circumference
- initiability, lethargy, poor feeding and vomiting
 bulging anterior fontanelle
 widened cranial sutures

- "cracked pot" sound on cranial percussion
 scalp vein dilation (increased collateral venous drainage)
- sunset sign forced downward deviation of eyes
- episodic bradycardia and apnea

Management

similar to adults (see Hydrocephalus Section)

DANDY-WALKER MALFORMATION

Definition

□ atresia of foramina of Magendie and Luschka, resulting in

- complete or incomplete agenesis of the cerebellar vermis
 - posterior fossa cyst
 - dilatation of 4th ventricle
- enlarged posterior fossa
 associated anomalies
 - - hydrocephalus (90%)
 - agenesis of corpus callosum (17%)
 occipital encephalocele (7%)

Epidemiology

□ 2-4% of pediatric hydrocephalus

Clinical Features

- □ 20% are asymptomatic
- only 50% have normal IQ
- symptoms and signs of hydrocephalus combined with a prominent
- occiput in infancy
- ataxia, spasticity, poor fine motor control common in childhood
 seizures occur 15%

PEDIATRIC NEUROSURGERY ... CONT.

Treatment

asymptomatic patients require no treatment

associated hydrocephalus requires surgical treatment

CHIARI MALFORMATIONS

Definition

□ malformations at the medullary-spinal junction

Clinical Features

Type I (cerebellar ectopia): cerebellar tonsils lie below the level of the foramen magnum

- average age at presentation 41 years
- brain compression: suboccipital headache, nystagmus, ataxia, spastic quadraparesis
 - foramen magnum compression syndrome (22%)
 - central cord syndrome (65%)
 cerebellar syndrome (11%)
- hydrocephalus
- syringomyelia
 Type II: part of cerebellar vermis, medulla and 4th ventricle extend
 - through the foramen magnum often to midcervical region

 - present in infancy findings due to brain stem and lower cranial nerve dysfunction: swallowing difficulties, apneic spells, stridor, aspiration, arm weakness
 - syringomyelia, hydrocephalus in > 80%
- Type III: displacement of posterior fossa structures with cerebellum herniated through foramen magnum into cervical canal (rare, usually incompatible with life) Type IV: cerebellar hypoplasia without cerebellar herniation

Investigations

MRI or CT myelography

Treatment

- □ surgical decompression indications
 - Type I: symptomatic patients (early surgery recommended)
 - Type II: neurogenic dysphagia, stridor, apneic spells

CRANIOSYNOSTOSIS

Definition

premature closure of the cranial suture(s)

Classification

- saggital most common
- coronal
 lambdoid least common
- □ metopic (forehead)
- □ multiple suture synostosis or pansynostosis

Epidemiology

- **1** 0.4/1000 live births
- □ most cases are sporadic
- □ familial incidence is 2% of saggital and 8% of coronal synostosis

Clinical Features

- skull deformity
- Traised ICP
- □ ophthalmologic problems
 - due to increased ICP or bony abnormalities of the orbit
- strabismus most common □ hydrocephalus may accompany multiple craniosynostoses

Investigations

- plain radiographs, CT scan (3D)
- bone scan: increased activity during active phase of union, decreased once union has occurred

Management

- parental counseling about
 nature of deformity

 - difficulty growing up as "cone head"
 - associated neurological symptoms
- □ surgery for cosmetic purposes, except in cases of elevated ICP

PEDIATRIC BRAIN TUMOURS

- 20% of all pediatric cancers (second only to leukemia)
- 80% of pediatric tumours are infratentorial (see Intracranial Mass Section)
- most common manifestations
 - vomiting
 - arrest or regression of developmental milestones
 - macrocrania
 - poor feeding, failure to thrive
 - hydrocephalus

DRUGS

□ the following are guidelines ONLY; follow clinical judgment and up-to-date prescription recommendations in practice; dosages refer to adults unless otherwise specified

Carbamazepine (Tegretol)

- Tic Douloureux
 - 100 mg PO bid, increase by 200 mg/day up to the usual dose 200 mg tid (maximum 1200 mg/day divided tid)
- seizures
 - · 600-2 000 mg/day, start low and increment slowly
 - (inpatient: every 3 days; outpatient: every week) monitor CBC (potential hematological toxicity)
- **Dexamethasone (Decadron)**

□ ICP (e.g. secondary to tumour)

- loading: 10-20 mg IV
 - maintenance: 4-6 mg IV q6h

Lorazepam (Ativan)

□ status epilepticus

- 4 mg IV over 2 minutes, q5 minutes
- start phenytoin loading simultaneously

Mannitol

raised ICP

- bolus 1 gm/kg IV rapid infusion (350 mL of 20% solution)
- followed by 0.25 g/kg IV q6h
 effect occurs in 1-5 minutes, maximal at 20-60 minutes
- often alternated with furosemide (Lasix) 10-20 mg IV q6h

Methylprednisolone (Solumedrol)

□ spinal cord injuries

- within 8 hours of injury
- provided as solution of 62.5 mg/mL
- bolus 30 mg/kg over 15 minutes, then 45 minute pause, then 5.4 mg/kg/hour continuous infusion x 23 hours (maintained during any necessary surgery if possible)

Nimodipine (Nimotop)

□ SAH

- vasodilation
- only Ca channel blocker to cross BBB
 60 mg PO/NG q4h x 21 days, started within 96 hours of SAH
 half dose for liver failure
- monitor BP

Phenytoin (Dilantin)

□ seižures

- seizures

 IV: loading dose 18 mg/kg, maintenance of 200-500 mg/day
 oral: 300-600 mg/day divided bid/tid, loading dose 300 mg PO q4h until 17 mg/kg given
 average maintenance dose: 300 mg/day po
 important to give over time to prevent causing a cardiac arrest

 status epilepticus

 not on phenytoin: 1200 mg IV over 30 minutes (~ 20 mg/kg)
 already on phenytoin: 500 mg IV over 10 minutes