
Betriebssysteme Assignment 1
Design Document 1

Group 13
Werner Schuster, Andreas Rath, Kerstin Pötsch, Wolfgang Pototschnik

Version 1.1, 8.11.2002

CONTENTS Page 1

Contents

1 Overview 2
1.1 Changes from Version 1.0 . 2

2 Changes to the thread system 3
2.1 Locks . 3

2.1.1 Fields . 3
2.1.2 Methods . 3

2.2 Condition Variables . 4
2.2.1 Fields . 4
2.2.2 Methods . 4

2.3 Join . 5
2.3.1 Fields . 5
2.3.2 New Methods . 5
2.3.3 Changes in existing methods 6

3 Tests for the thread system 7
3.1 Sleeping Barber Problem . 7

3.1.1 Fields . 7
3.1.2 Methods . 8
3.1.3 Threads . 8

3.2 Join . 9
3.2.1 Fields . 9
3.2.2 Methods . 9

3.3 Other Tests . 9
3.3.1 Methods/Tests . 9

1 OVERVIEW Page 2

1 Overview

The work for this assignment is split into changes to the thread system itself, con-
sisting of the implementation of

• Locks (see section 2.1), (Task 1)

• Condition Variables (see section 2.2), (Task 1)

• Join functionality for threads (see section 2.3), (Task 3)

and the implementation of tests of the system, such as

• implementation of the Sleeping Barber Problem (see section 3.1), (Task 2)

• test code for the Join functionality, (part of Task 2)

• assorted tests to assure correct implementation of the changes.

1.1 Changes from Version 1.0

Updated sections include are:

• 2.2.2 (new checks)

• 2.3.2 (new methods)

• 2.3.3 (changes)

• 3.1 (new commandline options,...)

• 3.2 (new test)

• 3.3.1 (ConditionVarTest)

2 CHANGES TO THE THREAD SYSTEM Page 3

2 Changes to the thread system

A thorough definition of the changes to the thread system.

2.1 Locks

The class Lock is defined in the file synch.h, its methods are implemented in
synch.cc.

2.1.1 Fields

• Thread * currentHolder = NULL

• int recursionCount = 0

• bool isLocked = false

• List * waitingThreads

2.1.2 Methods

• Acquire() acquires a lock;

– turn off interrupts (and store old interrupt state)

– if not locked then lock and store reference to holding thread

∗ if the acquiring thread is the thread that holds the log increase the
recursion counter but don’t block

∗ else put the thread onto the waiting thread queue and send the thread
to sleep

– reset interrupts to stored state

• Release()

– turn off interrupts (and store old interrupt state)

– if the lock is held by the calling thread then

∗ if other threads are waiting for the lock then choose the first one and
put it on the ReadyToRun list again

∗ else release the lock, unless the recursion count is greater than zero,
and in that case decrement the recursion counter

– reset interrupts to stored state

• isHeldByCurrentThread()
returns true if the Lock is held by the current thread, else it returns false

2 CHANGES TO THE THREAD SYSTEM Page 4

2.2 Condition Variables

The class Lock is defined in the file synch.h, its methods are implemented in
synch.cc.

2.2.1 Fields

• List * waitingThreads = new List()
holds the threads that are waiting for the condition

• Lock * conditionLock = NULL

2.2.2 Methods

• Wait(Lock * conditionLock) blocks the calling thread until some other thread
calls Signal or Broadcast on this condition variable

– turn off interrupts (and store old interrupt state)

– checks if conditionLock is held by current thread (if not: show error
message and ASSERT)

– Append the calling thread to the waitingThreads list

– store the conditionLock

– Release the conditionLock

– call Sleep on the currentThread

– re-Acquire the conditionLock

– reset interrupts to stored state

• Signal(Lock * conditionLock)

– turn off interrupts (and store old interrupt state)

– checks if conditionLock is held by current thread (if not: show error
message and ASSERT)

– remove the next thread from the waitingThreads list and put it on the
ReadyToRun list again

– reset interrupts to stored state

• Broadcast(Lock * conditionLock)

– turn off interrupts (and store old interrupt state)

– checks if conditionLock is held by current thread (if not: show error
message and ASSERT)

– remove all threads from the waitingThreads list and put them on the
ReadyToRun list again

– reset interrupts to stored state

2 CHANGES TO THE THREAD SYSTEM Page 5

2.3 Join

Implementation of the Join method required changes to the thread system in the
thread.h and thread.cc files. The Join method allows a parent thread to wait for
one specific child thread to finish.

2.3.1 Fields

The following fields were added to the Thread class:

• Thread * parent

• List * childrenList
List of children forked by this thread

• bool isJoinable = false

• bool hasBeenJoined = false

2.3.2 New Methods

• Thread::Join(Thread * pThread)

pThread is the thread, that the calling thread wants to wait for;

– turn off interrupts (and store old interrupt state)

– if pThread is in the children list of the calling thread

∗ set hasBeenJoined = true (the field in the child thread)

∗ put the current thread to Sleep

– reset interrupts to stored state

• Thread::Thread(char * name, bool joinable)

basically the same as the existing constructor, but it is possible to set the
joinability (ie. if it is possible, to call Join on this thread object) with the
joinable argument;

• Thread::isChild(List * list, Thread * thr)

checks if item is containend in childrenList this needs to be done, since the
List does not have any methods to do that (List::Mapcar(void*) is not easily
usable with C++);

• Thread::InsertIntoList(void * item)

inserts the item into childrenList using List::Append

• Thread::RemoveFromList(void * item)

removes item from the childrenList

• RemoveItem(List * list, void * item)

function that inserts an item into list (since the List class does not provide
proper methods for this; this should probably be moved to the List class;

2 CHANGES TO THE THREAD SYSTEM Page 6

2.3.3 Changes in existing methods

The described actions are added to the original behaviour of these methods.

• Thread(char * name)

initializes the children List;

• Fork

adds the new thread to the children list of the parent; sets the parent=currentThread;

• Finish()

if (hasBeenJoined) => arranges for the parent thread to be put on the Ready-
ToRun list again

3 TESTS FOR THE THREAD SYSTEM Page 7

3 Tests for the thread system

All the test output contains at least the string ”test: OK” or ”test: FAILED”. Since
the tests emit all kinds of information (sometimes a lot), you can grep/look for these
strings in the output for the test result.

3.1 Sleeping Barber Problem

The code for the Sleeping Barber problem is implemented in the file threadtest.cc.
Since it is a rather known problem, it will not be further discussed here (for a proper
description refer to a textbook on operating systems).
The test is started by invoking the TestBarbershop method.
To invoke the test on the command line, use one of these options:

• ./nachos –barber (that’s 2 dashes!)
for the normal test (30 customers)

• ./nachos –barber stress (that’s 2 dashes!) for the stress test (30000 cus-
tomers); CAUTION: this can take a long time on slow computers!

3.1.1 Fields

• Condition * cvWaitingCustomers = new Condition(”WaitingCustomers”);

• Condition * cvBarberChair = new Condition(”BarberChair”);

• Lock * lockBarber = new Lock(”lockBarber”);

• Lock * lockWaitingCustomers = new Lock(”lockWaitingCustomers”);

• int bool barberChairFree = true;

• int numWaitingChairs

• int numCustomers

• int numWaitingCustomers = 0

• bool shopOpen = false,
this is set to false if the test done and must stop, ie the Barber checks this
field and returns after he has finished the last customer

• int numCustomerServedCustomers = 0

• int numRefusedCustomers = 0

• int numBarberServedCustomers = 0

3 TESTS FOR THE THREAD SYSTEM Page 8

3.1.2 Methods

• TestBarbershop(int num chairs, int num customers)

numWaitingChairs = num chairs, numCustomers = num customers

1. initializes everything (Variables, Barber,...)

2. forks Barber thread

3. forks CustomerDispatcher Thread, thereby starting the test

4. calls Join on the Barber thread (waiting for the test to finish)

5. performs some checks to see if the test has failed or not, ie. if numCus-
tomerServed + numRefusedCustomers == numCustomers

• CustomerDispatcher(int num customers)

consists of a loop that runs num customers times and dispatches num customers

Customer threads. The Customers are dispatched (meaning, new Customer
threads are created and forked) at (if possible) random times. Thread::Yield
should be called to allow the Barber thread to run.

• Customer(void)

tries to get a seat (leaves if none is available) and cvWaitingCustomers− >Signal(Lock)
and while (!barberChairFree) waits using cvBarberChair− >Wait() until it can
get exclusive access to the lockBarberChair; while the barberChair is not free;
calls GetHairCut() after gaining access to the barberChair;

• Barber(void)

Runs in a loop and checks the shopOpen field (if that is false and there are no
customers, the method returns). Calls cvWaitingCustomers− >Wait(Lock)
while there are no waiting customers, otherwise acquires the lockWaitingCus-
tomers, calls the CutHair() method and afterwards the cvBarberChair− >Signal(Lock)
(before releasing the lockWaitingCustomers;

• GetHaircut(void)

numCustomerServedCustomers++, called by Customer after acquiring lock-
BarberChair;

• CutHair(void)

numBarberServedCustomers++, numWaitingCustomers–; called by Barber
after acquiring lockWaitingCustomers;

• LeaveShop(void)

numRefusedCustomers++; release lockWaitingCustomers, return from Cus-
tomer method;

3.1.3 Threads

• Customer Dispatcher: 1 thread
forks new Customers

3 TESTS FOR THE THREAD SYSTEM Page 9

• Barber: 1 thread

• Customer: num customer threads

3.2 Join

3.2.1 Fields

• int numJoinTests

3.2.2 Methods

• JoinTest
Checks the Join method.; can be invoked by calling ./nachos –join (that’s
2 dashes!) It uses a simple test that launches a thread Gepetto which then
launches a child thread Pinoccio and joins it. If the test succeeds, thread
Gepetto gets the control again. The JoinTest method forks the parent thread.

• JoinTestParent the method for the parent thread, that forks the child thread
and Joins it. Emits the test result output.

• JoinTestChild the method for the child thread.

3.3 Other Tests

Other tests that are required, eg. to make sure the Acquire/Release methods work
recursively, ...

3.3.1 Methods/Tests

• LockTest()

checks the Locks; can be invoked by calling ./nachos –lock (that’s 2 dashes!);
it first checks the Locks with 2 threads, then invokes the recursiveLockTest
specifying the desired recursion depth;

– recursiveLockTest(Lock * lock, int recLeft)

acquires the lock, decrements recLeft and if recLeft > 0 calls itself; after
that it releases the lock again;

• ConditionVarTest()

checks the Condition vars; can be invoked by calling ./nachos –cond (that’s
2 dashes!); creates 3 threads, where one has to Wait() for the first one to
Signal(), then sends out a Broadcast() to wake up the remaining 2 threads;

– condTestCode(int id)
Launches 3 threads, tests Signal on one and Broadcast on the others.
This is achieved with a new global var testCount which is set to 3, and

3 TESTS FOR THE THREAD SYSTEM Page 10

then decremented by every thread that was woken up by Signal or Broad-
cast; the test is OK if the testCount var is 0 at the end (checked by the
ConditionVarTest);

