
Betriebssysteme Assignment 2
Design Document 2

Group 13
Werner Schuster, Andreas Rath, Kerstin Pötsch, Wolfgang Pototschnik

Version 1.0, 22.11.2002

CONTENTS Page 1

Contents

1 Overview 2
1.1 Overview . 2

2 Application Programming Interface 3
2.1 Libraries . 3
2.2 Syscalls . 3

2.2.1 Syscall details . 3
2.2.2 Overview . 6

3 Implementation 7
3.1 Syscalls . 7

3.1.1 New syscall: PS . 7
3.1.2 ExceptionHandler . 7
3.1.3 Syscall handler functions . 7

3.2 Multiprogramming . 9
3.2.1 New subsystems/classes . 9
3.2.2 Changes in existing classes/files 10
3.2.3 Other changes . 11

4 Quality assurance 12
4.1 Error handling . 12

4.1.1 General policy . 12
4.1.2 Error situations . 12

4.2 Tests . 13
4.2.1 Filesystem syscalls . 13
4.2.2 Multiprogramming syscalls . 14

CHAPTER 1. OVERVIEW Page 2

Chapter 1

Overview

1.1 Overview

The assignment consists of 2 major sets of changes concerning:

• implementation of the NACHOS syscalls (see section 3.1 for the implementa-
tion details), (Task 1 and 3)

• adding multiprogramming with time slices (see section 3.2) (Task 2)

With these adaptations NACHOS offers a the programming interface described
in chapter 2.

To provide a stable OS, all kinds of potential error conditions must be considered
and dealt with (as far as possible). Details about the measures taken can be found
in section 4.1. This section describes how dangerous input data must be handled
in the OS code and the necessary checks that are required, so the description of
these checks won’t be repeated in the implementation details (eg. of the methods
handling the syscalls,...).

To assure a correct implementation of these changes, a suite of tests is provided.
An overview can be seen in 4.2.

CHAPTER 2. APPLICATION PROGRAMMING INTERFACE Page 3

Chapter 2

Application Programming
Interface

2.1 Libraries

Alway include the syscall.h file for necessary definitions of types (SpaceID, Open-
FileID) and for the API declarations (functions, constants for errorcodes,...). To
Write to and Read from the console, use the STDOUT and STDIN file handles, also
defined in syscall.h.

2.2 Syscalls

2.2.1 Syscall details

SpaceID Exec(char* appName)

Creates a new child process and launches the program that is referenced in the app-
Name string. This string contains the name of the executable file (Caution: if the
Nachos versions uses the filesystem of the host OS, the filename must be relative to
the directory where you launched Nachos). The name can be followed by an unlim-
ited number of arguments (seperated by the space character). These arguments will
be passed to the launched programs main() function as the argv[] array. Eg. you
can launch a program like this: Exec("progname arg1 arg2 arg3"), ”progname”
being the name of the executable, the rest are strings making up the arguments.
Errorcodes (you can compare the returned SpaceID to these constants)

• EXEC FILE NOT FOUND
the executable was not found

• EXEC NOT ENOUGH MEMORY
there was not enough userspace memory to launch the program

Exit(int exitCode)

Exit the current process. The exitCode can be read by the parent process, and will
be stored until the parent calls Exits as well.

CHAPTER 2. APPLICATION PROGRAMMING INTERFACE Page 4

int Join(SpaceID process)

Blocks the current process until the process with the given SpaceID has exited. This
function returns the exitcode of the joined process, or zero if the SpaceID was invalid.

int Create(char* filename)

Tries to create the file with the name filename. If the file can be created, the return
value is 1, otherwise the return value contains an error value.
Errorcodes:

• CREATE OK
the file was created

• CREATE INVALID FILENAME
the filename given as argument was not a valid name for a file

• CREATE INVALID STRING
the argument string was invalid (eg. null pointer,...)

OpenFileID Open(char* filename)

Tries to open the file with the name filename. If the file can be opened, the Open-
FileID (which is simply a typedef’ed int) is returned. Otherwise the return value
contains an error value.
Errorcodes (you can compare the returned OpenFileID to these constants):

• OPEN INVALID FILENAME
the filename given as argument was not a valid name for a file

• OPEN NO SUCH FILE
the filesystem contains no file by this name

• OPEN INVALID STRING
the argument string was invalid (eg. null pointer,...)

int Write(char* buffer, int size, OpenFileID file)

Writes size bytes from from buffer into file (which must be open). This syscall
returns the amount of bytes that were written (which is not necessarily the same as
size).
Errorcodes:

• OPEN INVALID FILE ID
the OpenFileID given as argument was not a valid (eg. there exists no such
ID for this process)

• OPEN INVALID BUFFER
the buffer was invalid (eg. null pointer,...)

CHAPTER 2. APPLICATION PROGRAMMING INTERFACE Page 5

int Read(char* buffer, int size, OpenFileID file)

Reads size bytes from from file (which must be open) and stores them in buffer.
This syscall returns the amount of bytes that were read (which is not necessarily the
same as size).
Errorcodes:

• OPEN INVALID FILE ID
the OpenFileID given as argument was not a valid (eg. there exists no such
ID for this process)

• OPEN INVALID BUFFER
the buffer was invalid (eg. null pointer,...)

int Close(OpenFileID file)

Closes the file with this OpenFileID. .
Errorcodes:

• OPEN INVALID FILE ID
the OpenFileID given as argument was not a valid (eg. there exists no such
ID for this process)

Yield(void)

Yield the control of the CPU to some other process. Use this call (if the program is
not busy) instead of using up all your time slice.

Ps(void)

Shows a list with details about all the processes on the system to the console (stdout
of the calling process).

CHAPTER 2. APPLICATION PROGRAMMING INTERFACE Page 6

2.2.2 Overview

syscall arg1 arg2 arg3 arg4 return
value

Exec char * (zero
terminated
string)

SpaceID

Exit int, (exit
code)

Join PID int (exit sta-
tus of joined
process)

Create char * (file-
name)

Open char * (file-
name)

OpenFileID

Write char * (data
to write)

int (number
of bytes to
write)

OpenFileID
(the file to
write to

int (bytes
written)

Read char *
(buffer to
read into)

int (number
of bytes to
read)

OpenFileID
(the file to
read from)

int (bytes
read)

Close OpenFileID
(the file to
close)

Yield
Ps

CHAPTER 3. IMPLEMENTATION Page 7

Chapter 3

Implementation

3.1 Syscalls

3.1.1 New syscall: PS

For this new syscall, a new constant SC PS (for its number) and function prototype
Ps() must be added to syscall.h.

This code is implemented in the file exception.cc.

3.1.2 ExceptionHandler

The code of the ExceptionHandler function is altered to contain a switch statement
that decides which syscall handler function to call depending on the the number of
the syscall which is stored in register number 2 of the MIPS CPU. The function is
then called with the arguments taken from registers numbers 4 to 7 from the MIPS
CPU.
All the syscall handler functions return an integer, which the ExceptionHandler
function stores in the register number 2 of the MIPS CPU (as defined).
These functions return errorcodes which are defined in syscall.h, and can be seen
in detail in chapter refAPI, so they won’t be repeated here.

3.1.3 Syscall handler functions

int doExec(int, int, int, int)

Reads the arguments and tries to open the executable. If that succeded, try to create
a new Thread, and an AddrSpace for the new program. If all that has succeded,
assign the AddrSpace to the Thread, and fork the Thread using the ProcessExecute
function (also defined in this file), before that, the registers number 4 and 5 must
be set to point to the arguments of the userspace main function. The new Thread
must be appended to the ProcessTable, to get the new SpaceID, which is this syscalls
return value. The ProcessExecute simply inits the process and calls machine->Run()
on it, to start executing the programs instructions.

CHAPTER 3. IMPLEMENTATION Page 8

int doExit(int, int, int, int)

Calls Thread->Finish() which cleans up (frees all allocated memory, calls AddrSpace
destructor, removes child processes from ProcessTable...) and sets the state of the
process (in the ProcessTable) to DEAD.

int doJoin(int, int, int, int)

Gets the Thread object for the SpaceID (using the ProcessTable), and if it is avail-
able, calls currentThread->Join(Thread).

int doCreate(int, int, int, int)

Checks the parameters and tries to create the file, using the filesystem.

int doOpen(int, int, int, int)

Checks the parameters and tries to open the file, using the filesystem.

int doWrite(int, int, int, int)

Checks the parameters and tries to write from the file, using the filesystem.

int doRead(int, int, int, int)

Checks the parameters and tries to read from the file, using the filesystem.

int doClose(int, int, int, int)

Checks if the OpenFileID is valid and then tries to close the file using the filesystem.

int doYield(int, int, int, int)

Calls currentThread->Yield()

int doPs(int, int, int, int)

Writes a list of processes using doWrite(...) with the STDOUT OpenFileID. The
format consists of ”PS” followed by a newline, and then followed by the header of
the table: ”SpaceID alloc. Bytes alloc. Pages commandLine” followed by a line (one
for each process) that shows the appropiate info for each of these columns.
The output string is not accumulated and then written to the STDOUT, but instead
each line gets composed and immediately written, thus only a constant amount of
memory is needed instead of an amount proportional to the amount of processes on
the system.

CHAPTER 3. IMPLEMENTATION Page 9

3.2 Multiprogramming

3.2.1 New subsystems/classes

The following subsystems are initialized in Initialize and are stored in global
variables. (While this might not be an elegant solution, no better one was found
before the deadline for this document).

ProcessTable

An instance of this is stored in the global variable processTable. The ProcessTable
holds a lists of all the processes on this system. A process can either be ALIVE or
DEAD.
If a process is ALIVE, that means it is running or will run again. For a process that
is ALIVE, the ProcessTable returns the corresponding Nachos Thread object, which
can be used to access the AddrSpace object (which offers access to all information
about the process).
If a process is DEAD, that means it is not running and won’t run again. This
means, that all the data about this process (Thread, AddrSpace,... objects) have
been deleted. The reason why this process (and its SpaceID) is still in the Pro-
cessTable, is that someone (its parent process) might want to access the exit code
of the DEAD process by way of the Join syscall.
If a process is finished, the Thread::Finish method must must remove all its child
processes from the ProcessTable so that these SpaceIDs are freed.
The ProcessTable internally uses a List to store the information about the processes.

Methods:

• int getProcessState(SpaceID id)

returns the status (ALIVE or DEAD, which are int contants) for the pro-
cess with the SpaceID id. If there is no such SpaceID, the return value is
NO SUCH SPACE ID.

• SpaceID appendProcess(Thread thr)

adds a new process into the ProcessTable. A unique SpaceID is generated and
returned.

• Thread* getThreadBySpaceID(SpaceID id)

returns the Thread corresponding to the process with the SpaceID id. If the
SpaceID does not exist OR if the process is DEAD, the methode returns NULL.

• int getExitCodeBySpaceID(SpaceID id)

returns the exit code of the process with the SpaceID id. CAUTION: If the
process is still ALIVE (which means that there is no exit code), this method
returns zero;

• killProcess(SpaceID id)

this causes the process with SpaceID id to finish. After that, the process has

CHAPTER 3. IMPLEMENTATION Page 10

the state DEAD and still remains in the ProcessTable. This is called by the
Exit syscall.

• removeProcess(SpaceID)

this removes a DEAD process from the ProcessTable, but has no effect on a
process that is still ALIVE. A parent process/thread has to call this on all its
child processes if the parent process is killed (eg. by the Exit syscall).

• int getNumberOfProcesses()

returns the number of processes stored in the ProcessTable.

MemoryManager

An instance of this is stored in the global variable userspaceMemoryManager. It
manages the physical userspace memory, ie. if a new physical memory (pages) must
be allocated for a user space process, the MemoryManager must be used. The
methods of the MemoryManager must also be threadsafe to avoid race conditions.
Methods:

• int getFreeMemory()

returns number of bytes of non-allocated physical userspace memory

• int getNumberOfFreePages()

returns number of pages of non-allocated physical userspace memory

• int[] allocateMemory(int num)

allocates num pages of physical userspace memory and returns an array con-
taining the numbers of the allocated pages.

• void releasePages(int[] pages)

releases the pages with the numbers contained in the pages[] argument.

3.2.2 Changes in existing classes/files

AddrSpace

• TranslationEntry *pageTable

• List fileHandles
contains the OpenFileID for the process; numbers 0 and 1 are reserved for
STDIN, STDOUT.

• int[] pages
array containing the numbers of physical pages for this virtual address space

• char* commandLine
the char* buffer that this process was started with

• SpaceID PID

CHAPTER 3. IMPLEMENTATION Page 11

• SpaceID getSpaceID()
returns the SpaceID for this AddrSpaces process

• Extend the constructor
The constructor must read the information stored in the executable to gather
information about the new process; especially the required amount of memory.
If that has been calculated, it tries to allocate the required amount of pages
using the MemoryManager. If enough pages are free, the page table can now
be filled. The address space can be initialized (code, static data, arguments,
heap) and the stack prepared (the pointer to the stack top is .stored in register
number 29).

• extend the destructor
To close all open files, release all allocated Memory using the MemoryManager

Thread

• AddrSpace* space
pointer to the AddrSpace of this process/thread

• change Finish to clean up
call the AddrSpace destructor, remove child processes from ProcessTable

3.2.3 Other changes

Activate the Timer

In the fiely userprog/system.cc always start the Timer which on each Timer interrupt
calls interrupt->YieldOnReturn(), causing the scheduler to run. The code for this
is already in there, but turned of by the if (randomYield). Also set the Timer to
cause the event after a fixed amount of time, instead of randomly (as it is now, set
with randomYield in the Timer constructor).

CHAPTER 4. QUALITY ASSURANCE Page 12

Chapter 4

Quality assurance

4.1 Error handling

4.1.1 General policy

Null Pointers

If a syscall takes a pointer as an argument, it has to be checked that the pointer !=
NULL.

IDs as index into internal table

IDs (SpaceID, OpenFileID,...) which are used as index into internal lits, must be
stored as safe data structure (List,...) so that errors (like negative values or a
value¿lenght of the List) can not cause unwanted effects.

4.1.2 Error situations

Non-zero-terminated strings

If a string is (by mistake) not zero-terminated, this can cause problems with string
functions and can generate hard-to-find bugs.
Despite that, a userspace program that uses such a faulty string as an argument to
a syscall will not cause stability problems for Nachos. The string will go on until
the first memory adress that contains a zero or until the end of the user spaces
adressspace. If this string is to be copied to another processes userspace, but proves
to bee too big, the syscall will simply fail. On the other hand, if the string is to be
copied to user space (eg. as the name of an executable,...), the OS tries to allocate
enough memory for the string, if that fails, the syscall with that string will also fail.

Out of memory

It is possible that a memory allocation fails, because there is not enough memory
left.

CHAPTER 4. QUALITY ASSURANCE Page 13

• User space
This cannot happen in userspace except for the initial allocation of memory in
the process creation (Exec syscall), since that is the only time when memory is
allocated in userspace. If the creation of a new process requires more memory
than is physically available, the creation (= the Exec syscall) will simply fail.

• Kernel space
This situation is currently not handled, because the small physical userspace
memory does not allow enough data and/or processes to be able to fill up
the much bigger amount of data available to the host OS. If this (against all
expectations) happens, the only possible solution would be to kill processes
to free memory allocated for their data structures (Thread, AddrSpace, ...
objects). Since it is difficult to decide which process can safely be killed,
the Ostrich-Algorithm (ie. ignore the problem) was found to be a appropiate
solution for the time.

Exceptions

The MIPS CPU generates several kinds of exception, of which only the SyscallEx-
ception is currently handled. The other Exceptions do not pose a stability threat for
the OS, and can for now be ignored (the memory related Exceptions will be handled
in a future assignment anyway).

4.2 Tests

To make sure the implementation has succeded and works correctly, all the new
features are tested.

These tests are all userspace programs, that check the correct implementation of
the defined syscall interface, and also check if the stability of the OS by attempting
to execute syscalls with invalid arguments.
The multiprogramming functionality is tested by the Exec, Exit,... syscall tests (ie.
if those tests work correctly, multiprogramming works).

4.2.1 Filesystem syscalls

Implemented in test/filesys.c, this test checks Create, Open, Write, Read, Close.
If all these steps have completed correctly, the filesystem syscalls should work. The
program tries to

• Create a file

• Open the file

• Write some bytes into the file

• Close the file

• Open the same file again

CHAPTER 4. QUALITY ASSURANCE Page 14

• Read the contents of the file and check if they are the same that were written
before

• Close the file again.

4.2.2 Multiprogramming syscalls

Implemented in test/exectest.c, test/childNoArgs.c, test/childArgs.c, childJoin.c,

yield.c, and tests checks Exec (with and without arguments), Exit, Join, Yield, Ps.
If all these steps have completed correctly, multiprogramming and the corresponding
syscalls should work.

Exec

• tries to launch the childNoArgs test program (test/childNoArgs)

• tries Exec with arguments (test/childArgs)

• executes the test/childJoin and joins it.

• executes test/yield, calls Yield several times. If Yield works, test/yield has
time to create a file yield.test. The test then checks if this file exists, if it
does, the Yield works. (CAUTION: Yield should be called at least 10 times,
to make sure the other process can finish the filesystem operation)

• calls Ps. Since there would be no proper way to check the correctness properly,
this test must be observed by a human tester. [The Ps test is still under
construction].

