The following program brings together many of the advanced techniques you've learned during the past three weeks of hard work. Week 3 in Review provides a template-based linked list with exception handling. Examine it in detail; if you understand it fully, you are a C++ programmer.
WARNING: If your compiler does not support templates, or if your compiler does not support try and catch, you will not be able to compile or run this listing.
Listing R3.1. Week 3 in Review listing.
0: // ************************************************** 1: // 2: // Title: Week 3 in Review 3: // 4: // File: Week3 5: // 6: // Description: Provide a template-based linked list 7: // demonstration program with exception handling 8: // 9: // Classes: PART - holds part numbers and potentially other 10: // information about parts. This will be the 11: // example class for the list to hold 12: // Note use of operator<< to print the 13: // information about a part based on its 14: // runtime type. 15: // 16: // Node - acts as a node in a List 17: // 18: // List - template-based list which provides the 19: // mechanisms for a linked list 20: // 21: // 22: // Author: Jesse Liberty (jl) 23: // 24: // Developed: Pentium 200 Pro. 128MB RAM MVC 5.0 25: // 26: // Target: Platform independent 27: // 28: // Rev History: 9/94 - First release (jl) 29: // 4/97 - Updated (jl) 30: // ************************************************** 31: 32: #include <iostream.h> 33: 34: // exception classes 35: class Exception {}; 36: class OutOfMemory : public Exception{}; 37: class NullNode : public Exception{}; 38: class EmptyList : public Exception {}; 39: class BoundsError : public Exception {}; 40: 41: 42: // **************** Part ************ 43: // Abstract base class of parts 44: class Part 45: { 46: public: 47: Part():itsObjectNumber(1) {} 48: Part(int ObjectNumber):itsObjectNumber(ObjectNumber){} 49: virtual ~Part(){}; 50: int GetObjectNumber() const { return itsObjectNumber; } 51: virtual void Display() const =0; // must be overridden 52: 53: private: 54: int itsObjectNumber; 55: }; 56: 57: // implementation of pure virtual function so that 58: // derived classes can chain up 59: void Part::Display() const 60: { 61: cout << "\nPart Number: " << itsObjectNumber << endl; 62: } 63: 64: // this one operator<< will be called for all part objects. 65: // It need not be a friend as it does not access private data 66: // It calls Display() which uses the required polymorphism 67: // We'd like to be able to override this based on the real type 68: // of thePart, but C++ does not support contravariance 69: ostream& operator<<( ostream& theStream,Part& thePart) 70: { 71: thePart.Display(); // virtual contravariance! 72: return theStream; 73: } 74: 75: // **************** Car Part ************ 76: class CarPart : public Part 77: { 78: public: 79: CarPart():itsModelYear(94){} 80: CarPart(int year, int partNumber); 81: int GetModelYear() const { return itsModelYear; } 82: virtual void Display() const; 83: private: 84: int itsModelYear; 85: }; 86: 87: CarPart::CarPart(int year, int partNumber): 88: itsModelYear(year), 89: Part(partNumber) 90: {} 91: 92: void CarPart::Display() const 93: { 94: Part::Display(); 95: cout << "Model Year: " << itsModelYear << endl; 96: } 97: 98: // **************** AirPlane Part ************ 99: class AirPlanePart : public Part 100: { 101: public: 102: AirPlanePart():itsEngineNumber(1){}; 103: AirPlanePart(int EngineNumber, int PartNumber); 104: virtual void Display() const; 105: int GetEngineNumber()const { return itsEngineNumber; } 106: private: 107: int itsEngineNumber; 108: }; 109: 110: AirPlanePart::AirPlanePart(int EngineNumber, int PartNumber): 111: itsEngineNumber(EngineNumber), 112: Part(PartNumber) 113: {} 114: 115: void AirPlanePart::Display() const 116: { 117: Part::Display(); 118: cout << "Engine No.: " << itsEngineNumber << endl; 119: } 120: 121: // forward declaration of class List 122: template <class T> 123: class List; 124: 125: // **************** Node ************ 126: // Generic node, can be added to a list 127: // ************************************ 128: 129: template <class T> 130: class Node 131: { 132: public: 133: friend class List<T>; 134: Node (T*); 135: ~Node(); 136: void SetNext(Node * node) { itsNext = node; } 137: Node * GetNext() const; 138: T * GetObject() const; 139: private: 140: T* itsObject; 141: Node * itsNext; 142: }; 143: 144: // Node Implementations... 145: 146: template <class T> 147: Node<T>::Node(T* pOjbect): 148: itsObject(pOjbect), 149: itsNext(0) 150: {} 151: 152: template <class T> 153: Node<T>::~Node() 154: { 155: delete itsObject; 156: itsObject = 0; 157: delete itsNext; 158: itsNext = 0; 159: } 160: 161: // Returns NULL if no next Node 162: template <class T> 163: Node<T> * Node<T>::GetNext() const 164: { 165: return itsNext; 166: } 167: 168: template <class T> 169: T * Node<T>::GetObject() const 170: { 171: if (itsObject) 172: return itsObject; 173: else 174: throw NullNode(); 175: } 176: 177: // **************** List ************ 178: // Generic list template 179: // Works with any numbered object 180: // *********************************** 181: template <class T> 182: class List 183: { 184: public: 185: List(); 186: ~List(); 187: 188: T* Find(int & position, int ObjectNumber) const; 189: T* GetFirst() const; 190: void Insert(T *); 191: T* operator[](int) const; 192: int GetCount() const { return itsCount; } 193: private: 194: Node<T> * pHead; 195: int itsCount; 196: }; 197: 198: // Implementations for Lists... 199: template <class T> 200: List<T>::List(): 201: pHead(0), 202: itsCount(0) 203: {} 204: 205: template <class T> 206: List<T>::~List() 207: { 208: delete pHead; 209: } 210: 211: template <class T> 212: T* List<T>::GetFirst() const 213: { 214: if (pHead) 215: return pHead->itsObject; 216: else 217: throw EmptyList(); 218: } 219: 220: template <class T> 221: T * List<T>::operator[](int offSet) const 222: { 223: Node<T>* pNode = pHead; 224: 225: if (!pHead) 226: throw EmptyList(); 227: 228: if (offSet > itsCount) 229: throw BoundsError(); 230: 231: for (int i=0;i<offSet; i++) 232: pNode = pNode->itsNext; 233: 234: return pNode->itsObject; 235: } 236: 237: // find a given object in list based on its unique number (id) 238: template <class T> 239: T* List<T>::Find(int & position, int ObjectNumber) const 240: { 241: Node<T> * pNode = 0; 242: for (pNode = pHead, position = 0; 243: pNode!=NULL; 244: pNode = pNode->itsNext, position++) 245: { 246: if (pNode->itsObject->GetObjectNumber() == ObjectNumber) 247: break; 248: } 249: if (pNode == NULL) 250: return NULL; 251: else 252: return pNode->itsObject; 253: } 254: 255: // insert if the number of the object is unique 256: template <class T> 257: void List<T>::Insert(T* pObject) 258: { 259: Node<T> * pNode = new Node<T>(pObject); 260: Node<T> * pCurrent = pHead; 261: Node<T> * pNext = 0; 262: 263: int New = pObject->GetObjectNumber(); 264: int Next = 0; 265: itsCount++; 266: 267: if (!pHead) 268: { 269: pHead = pNode; 270: return; 271: } 272: 273: // if this one is smaller than head 274: // this one is the new head 275: if (pHead->itsObject->GetObjectNumber() > New) 276: { 277: pNode->itsNext = pHead; 278: pHead = pNode; 279: return; 280: } 281: 282: for (;;) 283: { 284: // if there is no next, append this new one 285: if (!pCurrent->itsNext) 286: { 287: pCurrent->itsNext = pNode; 288: return; 289: } 290: 291: // if this goes after this one and before the next 292: // then insert it here, otherwise get the next 293: pNext = pCurrent->itsNext; 294: Next = pNext->itsObject->GetObjectNumber(); 295: if (Next > New) 296: { 297: pCurrent->itsNext = pNode; 298: pNode->itsNext = pNext; 299: return; 300: } 301: pCurrent = pNext; 302: } 303: } 304: 305: 306: int main() 307: { 308: List<Part> theList; 309: int choice; 310: int ObjectNumber; 311: int value; 312: Part * pPart; 313: while (1) 314: { 315: cout << "(0)Quit (1)Car (2)Plane: "; 316: cin >> choice; 317: 318: if (!choice) 319: break; 320: 321: cout << "New PartNumber?: "; 322: cin >> ObjectNumber; 323: 324: if (choice == 1) 325: { 326: cout << "Model Year?: "; 327: cin >> value; 328: try 329: { 330: pPart = new CarPart(value,ObjectNumber); 331: } 332: catch (OutOfMemory) 333: { 334: cout << "Not enough memory; Exiting..." << endl; 335: return 1; 336: } 337: } 338: else 339: { 340: cout << "Engine Number?: "; 341: cin >> value; 342: try 343: { 344: pPart = new AirPlanePart(value,ObjectNumber); 345: } 346: catch (OutOfMemory) 347: { 348: cout << "Not enough memory; Exiting..." << endl; 349: return 1; 350: } 351: } 352: try 353: { 354: theList.Insert(pPart); 355: } 356: catch (NullNode) 357: { 358: cout << "The list is broken, and the node is null!" << endl; 359: return 1; 360: } 361: catch (EmptyList) 362: { 363: cout << "The list is empty!" << endl; 364: return 1; 365: } 366: } 367: try 368: { 369: for (int i = 0; i < theList.GetCount(); i++ ) 370: cout << *(theList[i]); 371: } 372: catch (NullNode) 373: { 374: cout << "The list is broken, and the node is null!" << endl; 375: return 1; 376: } 377: catch (EmptyList) 378: { 379: cout << "The list is empty!" << endl; 380: return 1; 381: } 382: catch (BoundsError) 383: { 384: cout << "Tried to read beyond the end of the list!" << endl; 385: return 1; 386: } 387: return 0; 388: } Output: (0)Quit (1)Car (2)Plane: 1 New PartNumber?: 2837 Model Year? 90 (0)Quit (1)Car (2)Plane: 2 New PartNumber?: 378 Engine Number?: 4938 (0)Quit (1)Car (2)Plane: 1 New PartNumber?: 4499 Model Year? 94 (0)Quit (1)Car (2)Plane: 1 New PartNumber?: 3000 Model Year? 93 (0)Quit (1)Car (2)Plane: 0 Part Number: 378 Engine No. 4938 Part Number: 2837 Model Year: 90 Part Number: 3000 Model Year: 93 Part Number 4499 Model Year: 94
Analysis: The Week 3 in Review listing
modifies the program provided in Week 2 to add templates, ostream processing,
and exception handling. The output is identical.
On lines 35-39, a number of exception classes are declared. In the somewhat primitive
exception handling provided by this program, no data or methods are required of these
exceptions; they serve as flags to the catch statements, which print out
a very simple warning and then exit. A more robust program might pass these exceptions
by reference and then extract context or other data from the exception objects in
an attempt to recover from the problem.
On line 44, the abstract base class Part is declared exactly as it was in Week 2. The only interesting change here is in the non-class member operator<<(), which is declared on lines 69-73. Note that this is neither a member of Part nor a friend of part, it simply takes a Part reference as one of its arguments.
You might want to have operator<< take a CarPart and an AirPlanePart in the hopes that the correct operator<< would be called, based on whether a car part or an airplane part is passed. Since the program passes a pointer to a part, however, and not a pointer to a car part or an airplane part, C++ would have to call the right function based on the real type of one of the arguments to the function. This is called contravariance and is not supported in C++.
There are only two ways to achieve polymorphism in C++: function polymorphism and virtual functions. Function polymorphism won't work here because in every case you are matching the same signature: the one taking a reference to a Part.
Virtual functions won't work here because operator<< is not a member function of Part. You can't make operator<< a member function of Part because you want to invoke
cout << thePart
and that means that the actual call would be to cout.operator<<(Part&), and cout does not have a version of operator<< that takes a Part reference!
To get around this limitation, the Week 3 program uses just one operator<<, taking a reference to a Part. This then calls Display(), which is a virtual member function, and thus the right version is called.
On lines 129-142, Node is defined as a template. It serves the same function as Node did in the Week 2 Review program, but this version of Node is not tied to a Part object. It can, in fact, be the node for any type of object.
Note that if you try to get the object from Node, and there is no object, this is considered an exception, and the exception is thrown on line 174.
On lines 181-197, a generic List class template is defined. This List class can hold nodes of any objects that have unique identification numbers, and it keeps them sorted in ascending order. Each of the list functions checks for exceptional circumstances and throws the appropriate exceptions as required.
On lines 306-388, the driver program creates a list of two types of Part
objects and then prints out the values of the objects in the list by using the standard
streams mechanism.