Han Lin
4711958

MUS421 Design Project

Converting human vocal voice in a pop song to synthesized
instrumental music using Synthesis Tool Kit (STK)

Design Objective
1. To generate music score of the melody in a pop song
2. To synthesize the music with the generated music score with (Synthesis Tool Kit)

STK.

The Product

“Readme.txt “: The program is written in C “pitch.cpp” and is compiled to run under MS
DOS environment. The compiled output execution file “pitch.exe” takes in any stereo
music file in 16 bit stereo “.wav” format, and by performing Rectangular window, FFT,
and pitch detection, produces an output text in “.ski”” format which can be read by the
STK. USAGE(under DOS command prompt): pitch [input file name .wav] > [output file
name .ski] The default input file is “goon.wav” The main purpose of this program is to
detect the melody in the pop songs and generate a synthesized music with the same
melody. The program only works for pop songs with weak background music such that
the melody is dominant. And it has been successfully tested with recorded pure singing
voice (myself), and sections of the pop songs such as “My Heart Will Go On — by Cline

Dion,”

General Design Strategy

The original music in .wav format is divided into sections by rectangular window. Then
for each section, FFT transforms the signal into frequency domain, under which the
dominant note/pitch of that section is detected based on peak detection. A threshold
based on the fraction of energy of the whole song is used to differentiate between a note
and a pause. And extensive error check is then applied to eliminate incorrect pitch due to
noise. Finally, low pass filter and zero order interpolation is applied to ensure that there
is no short unwanted gap between the notes. Music score based on the detected pitch is
generated and the output is in the ".ski" format, which can be read by the STK. Most of

the testing is done in Matlab and in C, while the final program is written in C for better

performance.
Block Diagram
) Error check,
. Rectangular Thresholding: low pass
Orlglnal window . differentiate filtering: Generating
music _ itc between : . i i
M= 2”11 —P> 1 — score in .ski
P - - . interpolating
FFT detection [P pause(no between any format
sound) and unwanted
music gaps
Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7

Detailed Design Strategy

Block 1: Original

music

Strategy: The original music is in 16-bit stereo .wav file with 44100Hz sampling rate.
The C program is designed to read in different variations of .wav format based on the

header file. See “wave.h” for more detail.

Block 2:

Rectangular
Window
M= 2”11

Strategy: Various window types and window lengths are tested empirically.
Concerning window types, non-overlap rectangular window works equally well as the
50% overlapping Hanning and Hamming window after empirical testing. Thus, non-
overlapping rectangular window is finally implemented to optimize the computational
complexity. However, the program has built-in 50% overlapping Hanning, Hamming
window functions in case user need to modify the program to perform other acoustic

applications, such as adaptive filtering.

Concerning window lengths, window length M is chosen to be powers of 2 so that FFT
algorithm can be implemented without zero padding which sacrifices the performance.
The window length should be short enough so melody within window length can be
considered stationary and to follow the vibratos, and long enough so that it gives us

enough resolution for pitch detection in frequency domain.

Examples of window length that is too long (213) to resolve vibratos

magnitude (linear)

maghnitude (linear)

example of vibrato and pitch drift

200

150 -

100 -

50

vibratos

200

300

400 500
frequency (Hz)

600 700 800

200

150 +

100 -

50

vibratos

0
100

200

300

400 500
frequency (Hz)

600 700 800

After extensive testing, M=2"11 and 2"12 gives optimal results. If M= 211 is chosen,

the duration of each window section is 214 / 44100Hz = 0.0464sec and the resolution

(delta_f) =21.53 Hz/pt, while M=2"12 will have 0.0928 sec window and resolution 10.77

Hz/pt. The default M length is set to 2”12 since it gives empirically better results for the

default wave file "goon.wav", however, user can change the M value easily by changing

declaration in the program if following fast vibratos and pitch drift is a concern.

Block 3:
FFT

Strategy: Fast Fourier Transform is used to transform signal into the frequency domain.
“fft.h” includes both Radix —2 Decimate in Time and Radix —2 Decimate in Frequency
algorithm, both implemented with butterfly technique. Radix -2 Decimate in Time
method is used in this project. If the window size is not powers of 2, a slower DFT

algorithm is used. See “fft.h” for more detail.

Block 4: Pitch

detection

Strategy:
I first use a sample music file that does not contain any vocal part and deliberately adding
vocal parts with different pitches to the sample music file. I thus found the following
facts. (1) Human vocal usually has dominant notes between 100 Hz to 800Hz. (2) For
each note in the window it often contains at least one other dominant harmonic note one
octave away. (3) Male voice has more differentiable harmonics while female voice has
fewer harmonics. (4)Only songs with soft background music (no strong bass and other
instrumental music) can the dominant pitch be easily detectable. Since background

music, especially bass sound will contribute to noise in peak detection.

Example of a low female vocal with weak background music
(Detectable Pitch)

600

400

magnitude

200

600

400

magnitude

200

Spectrum of just music

Mm i A . N

200 400 600 800

Hz
Spectrum of music plus vocal (low note)

1000

Dominant note Dominant note
(second harmonic)
» M\I\A s N L P
200 400 600 800
Hz

1000

Example of a high female vocal with strong background music: bass,

instrumental,

etc. (Undetectable Pitch)

Spectrum of just the music

600

]
T
2 400 .
c
o)
@
£ 200} i

o A PP, N Ao Do n

o] 200 400 600 800 1000
Hz
Spectrum of music plus vocal (high note)
600 . .

q) . .
g Dominant note Dominant note
2 400 . .
g (second harmonic)
m \
E 200r N’M |

o . s A

o 20 400 600 800 1000
Hz

Noise: bass, background music, etc

Thus, the pitch detection algorithm simply works as following: to search in the frequency

domain from 100 to 800 Hz and find the frequency bin that has the maximum energy.

Block 5: Thresholding:
differentiate
between
pause(no
sound) and
music

Strategy: In order to differentiate between pause (no sound) and notes (sound),
thresholding is used. Based on the Parseval's theorem the total energy in time domain is
proportional to energy in frequency domain. Thus, total energy of the whole song in the
time domain is first calculated and the mean (average) energy for the frequency domain is
determined. Then empirically determined scale times this mean energy is used as a
threshold value for differentiating pause (no sound) and notes (sound). In order to avoid
any falsely determined notes when the dominate note has lower energy than the
background noise; for example, the ending of a note, a relatively high threshold value
(200*mean energy) is used. Any falsely determined pause (gaps) is interpolated through
the low pass filter which will be described in the later block. The idea is to have falsely
determined pause than to have falsely determined note since human is really sensitive to

dissonant sound.

Block 6: Error check,
low pass
filtering:
interpolating
between any
unwanted

gaps

Strategy: One of the major errors that can result from peak/pitch detection is that at

times, the second harmonic has higher energy than the first harmonic, and the detected

note is one octave higher than expected.

Examples of Second harmonic higher than first harmonics

200 T T T T T
Dominant oot Dominant note

= ominant note :
§ 150 - T | (second harmonic)
2L 100+ i
=2
=
& 50r i
S

0 L L |

100 200 300 400 500 600 700 800

frequency (Hz)
200
Detected note

= Frequency cone of |
8 150 - — previous harmonic
2L 100
=2
=
g 50
- s

0 |

100 200 30 400

500 600 700

frequency (Hz)

800

Thus, whenever a pitch is detected, the frequency cone around the previous harmonic is

checked and if the peak within the frequency cone also has higher energy than the

threshold, the lower harmonic becomes the new note. In addition, low pass filtering is

performed and any short gaps of pause (no sound) that does not last longer than a few

windows (default is 5 which is determined empirically) long is determined to be false

gaps. False gaps are interpolated with the previous note (zero order hold).

Block 7: | Generating
score in .ski

format

Strategy: After all the pitches are detected, the music score of the melody is generated.
The detected pitch in Hz is converted to pitch numbers in .ski format, see "notes.h" for
detail. Thus, for every window length duration, one pitch number is generated, and pitch
number zero correspond to a pause (no sound). The .ski file can be read by the STK to

generate synthesized instrumental music such as the clarinet.

Conclusion: The program successfully generates the music score of the melody of the
pop song. I used my own recorded singing voice (male) as well as the theme song of
Titanic "My Heart Will Go On" — by Cline Dion (female) for extensive testing. As long
as the melody dominates the background music, the program gives very accurate results
for pitch detection. However, the program seems to be working best for the female vocal
voice, which has a higher frequency range, because for the extreme low notes of male
voice, we need high frequency resolution (longer window) and thus losing the vibrato.
The generated .ski file works well with STK, I played the .ski file with several
synthesized instruments on STK, such as plucked, clarinet, flute, etc. all giving pretty
prominent results. Just as an example, I generated a few .wav files with the STK
corresponding to different variations of the opening section of the Titanic theme song;
they will be enclosed in the E-mail.

Concerning the timing performance of the program, I have tested the program with a PC

containing AMD 300 CPU, and 64MB of RAM. It takes the program about 13 seconds

to process 15 seconds of .wav file and to generate the score. Although real-time music
score generation is not yet implemented, I realized that real time processing is definitely

possible, if interacting with the real time functions of STK.

Appendix 1 “pitch.cpp”

// This program can read in STEREO 16-bit WAVE format file,
// perform pitch detection, and generate the output .txt file that
//is in the format of .ski and can be read by the Synthesis Tool Kit

#include<stdio.h>
#include<string.h>
#include<math.h>
#include<time.h>

#define WINDOW 4096 //2048

double Window_functionf WINDOWT;
double sum_bin[WINDOW];

short I_data[WINDOW], r datal WINDOW];

#include"fft.h"
#include"wave rec.h"
#include"notes.h"

complex f datal WINDOW]; // frequency domain data
//lcomplex spectrum[WINDOWT]; // averaging
double total energy, mean_energy;

void make Window(void)

{
for(unsigned long i=0; i<WINDOW; i++)
// Hamming window

/I Window_function[i]=25.0/46-(1-25.0/46)/2*cos(2*M_PI/WINDOW*(i+.5));
// Hanning window

Window_function[i]=0.5*(1-cos(2*M_PI/WINDOW*(i+.5)));
H

void report_time(unsigned long timer)

{

unsigned long hour, min;

hour=timer/3600; timer-=hour*3600;

min=timer/60; timer-=min*60;

printf("\nTotal elapsed time is %021d:%021d:%021d\n", hour, min, timer);
H

void Window_op(short data[]) // take window operation

{
for(unsigned long i=0; i<WINDOW; i++) data[i]*=Window_function[i];

}

10

void pitch_detect(WAVEheader &head) // pitch detection
{

long 1, j, top_pt, bot_pt, max_index, bins;
char note char;

long bin_start, bin_end;

double note, delta_t, delta f, top f, bot_f, mean, int_ftemp, max
double max_energy, energy;

double ratio, decay=1;
delta_t=1.0/head.nSamplesPerSec;
delta_f=1.0/(delta t*WINDOW); //5.38
top_f=800;bot_f=150;
top_pt=top_f/delta_f;

bot pt=bot f/delta f;

mean=0;

max=0;

note=10;

// Deal with the left channel
for(i=0; i<KWINDOW,; i++) f data[i]=] data[i];
FFT(f data, WINDOW);

for (total energy=0, max_energy=0, i=bot_pt; i<top_pt; i++)
{
energy=abs(f data[i]);
energy*=energy;
total energy+=energy;
if(energy>max_energy)
{
max_energy=energy;
max_index=i;
}
}
if(abs(f data[max_index/2])>abs(f data[max_index])*.13)
{
bot pt=max_index/4;
top_pt=max_index*3/4;
}
for(max_energy=0, i=bot_pt; i<=top_pt; i++)

energy=abs(f data[i]);
energy*=energy;
if(energy>max_energy)

max_energy=energy;
max_index=i,

note=max_index*delta f;

static double last note=0;
static int nosound_count=0, print_count=1;

>

11

if(max_energy>mean_energy*200) { last note=note; nosound count=0; }
{

nosound count++;

if(nosound _count>=5) note=0;

else note=last_note;

}

if(note>0)

printf("NoteOn %f 1 %d 127.0\n", delta t*WINDOW, midi_note(note));
else

printf("NoteOff %f 1 %d 127.0\n", delta t*WINDOW, 0);

}

void main(int argc, char **argv)
{
unsigned long timer=time(NULL);
char in_filename[80]="goon.wav";
WAVEheader in_head,
int in_file;
int status; // status for file ending, O: file ends, 1: otherwise
int step, old_step=0; // progressing steps, 0-100
unsigned long read length=0, total length;
make Window();
if(argc==2) strcpy(in_filename, argv[1]);
in_file=wave open(in_filename, in_head);
if(in_file==-1) { printf("Can't find file \"%s\".", in_filename); return; }
else if(in_file==-2) { printf("This WAVE file format is not correct."); return; }
total length=in head.data ckSize;
total energy=0;
unsigned long window number=0;
double energy;
do
{
window_number+-+;
status=read_window(in_file);
for(int i=0; i<KWINDOW,; i++) { energy=r_data[i]; total energy+=energy*energy; }

while(status);
mean_energy=total energy/ WINDOW/window number*WINDOW;
in_wave_close(in_file);

in_file=wave open(in_filename, in_head);

do

read length+=WINDOW *2*sizeof(short);
step=100*read_length/total length;
status=read_window(in_file);
pitch_detect(in_head);

while(status);
in_wave_close(in_file);
timer=time(NULL)-timer;
report_time(timer);

12

Appendix 2 “fft.h”

/ "fft.h" this program calculated the FFT and IFFT using radix-2
// Decimate in Time and Decimate in Frequency Algorithm

#ifndef FFT H
#define FFT H

#include<complex.h>

void BitReversion(complex data[], unsigned long N)
{
unsigned long 1, j, k;
complex temp;
for(j=0, i=0; i<N-1; i++)
{
if(i<j)
{
temp=data][i];
data[i]=data[j];
data[j]=temp;
}
k=N>>1;
while(j>=k) { j=k; k>>=1; }
J+=k;
}
}

// FFT_Time -- Decimation in Time
/I N =2"M
void FFT Time(complex data[], unsigned long N, unsigned long M)
{
unsigned long i, j, k, p;
unsigned long N2=1;
complex U, W, temp;
BitReversion(data, N);
for(i=0; i<M; i++)
{
U=l;
W=complex(cos(M_PI/N2), -sin(M_PI/N2));
for(j=0; j<N2; j++)

for(k=j; k<N; k+=(N2<<1))

p=k+N2;
temp=data[p]*U;
data[p]=data[k]-temp;
data[k]+=temp;
}
U*=W;
}
N2<<=1;
H
H

/I FFT Freq -- Decimation in Frequency
// N =2"M
void FFT Freq(complex data[], unsigned long N, unsigned long M)
{
unsigned long i, j, k, p;
unsigned long N2=N;
complex U, W, temp;
for(i=0; i<M; i++)
{
N2>>=1;
U=1;
W=complex(cos(M_PI/N2), -sin(M_PI/N2));
for(j=0; j<N2; j++)

for(k=j; k<N; k+=(N2<<1))

p=k+N2;
temp=(data[k]-data[p])*U;
data[k]+=data[p];
data[p]=temp;

}

U*=W,;

H
}

BitReversion(data, N);

}

//N2p is the smallest power-of-2 number and larger than 2*N, M=log(N2p)/log(2);
void CZT(complex data[], unsigned long N, unsigned long N2p, unsigned long M)
{
unsigned long i;
complex U, *Y=new complex[N2p], *V=new complex[N2p];
double theta;
for(i=0; i<N; i++)
{
theta=2*M_PI*i*i/2/N;
U=complex(cos(theta), -sin(theta));
Y[i]=data[i]*U;
Vli]=conj(U);
}
for(i=N; i<N2p; i++)

theta=2*M_PI*(N2p-i)*(N2p-1)/2/N;
Y[i]=0;
V[i]=complex(cos(theta), sin(theta));
i
FFT_Time(Y, N2p, M);
FFT Time(V, N2p, M);
for(i=0; i<N2p; i++) Y[i]=conj(Y[i]*V[i]);
FFT Time(Y, N2p, M);
for(i=0; i<N; i++)

theta=2*M_PI*i*1/2/N;
U=complex(cos(theta), -sin(theta));
data[i]=conj(Y[i]/N2p)*U;

}
delete Y; delete V;

}

void FFT(complex data[], unsigned long N)
{
unsigned long M=0, N2p=N-1;
while(N2p) { M++; N2p>>=1; }
N2p=1<<M;
if(N==N2p) FFT Time(data, N, M);
else CZT(data, N, N2p<<1, M+1);
}

void IFFT(complex data[], unsigned long N)
{
unsigned long i, M=0, N2p=N-1;
while(N2p) { M++; N2p>>=1; }
N2p=1<<M;
for(i=0; i<N; i++) data[i]=conj(data[i]);
if(N==N2p) FFT Time(data, N, M);
else CZT(data, N, N2p<<1, M+1);
for(i=0; i<N; i++) data[i]=conj(data[i]/N);
H
#endif

Appendix 3 “wave.h”

/I "wave.h" This program can read STEREO 16-bit WAVE format and
/I output STEREO 16-bit WAVE format

#include<io.h>
#include<fentl.h>
#include<sys/stat.h>

typedef unsigned char BYTE;
typedef unsigned short WORD;
typedef unsigned long DWORD;

typedef struct

{
char ckID[4]; /* chunk id 'RIFF' */
DWORD ckSize; /* chunk size */

char wave ckID[4]; /* wave chunk id " WAVE' */
char fmt ckID[4]; /* format chunk id 'fmt' */
DWORD fmt ckSize; /* format chunk size */
WORD formatTag; /* format tag currently pcm */
WORD nChannels; /* number of channels */
DWORD nSamplesPerSec; /* sample rate in hz */
DWORD nAvgBytesPerSec; /* average bytes per second */
WORD nBlockAlign; /* number of bytes per sample */
WORD nBitsPerSample; /* number of bits in a sample */
char data ckID[4]; /* data chunk id 'data’ */
DWORD data ckSize; /* length of data chunk */

} WAVEheader;

15

int format; // 0: not sutff, 1: 14-byte stuff
char stuff] 14];

short in_buff WINDOW*2], out buff WINDOW*2];

int wave_creat(char filename[], WAVEheader &head)
{
_fmode=O_BINARY;
int f=creat(filename, S IWRITE);
if(f==-1) return -1; // fail
write(f, &head, sizeof(WA VEheader)-8);
if(format) write(f, stuff, 14);
write(f, head.data_ckID, 8);
for(unsigned long i=0; i<2*WINDOW; i++) out_buf[i]=0;
return f; // success

}

int wave_open(char filename[], WAVEheader &head)

int f=open(filename, O RDONLY+O BINARY);
if(f==-1) return -1; // fail in opening file
read(f, &head, sizeof(WAVEheader)-8);
read(f, stuff, 4);
if(stuff[0]!='d")
{
format=1;
read(f, stuff+4, 10);
read(f, head.data_ckID, 8);
H

else

{
format=0;
for(int i=0; i<4; i++) head.data_ckID[i]=stuff[i];
read(f, &head.data_ckSize, 4);

H
if(head.nChannels==2 && head.nBlockAlign==4 && head.nBitsPerSample==16)

{
for(unsigned long i=0; i<WINDOW; i++) in_buf[i]=0;
read(f, in_buf+WINDOW, WINDOW *sizeof(short));
return f; // correct format to be read

else { close(f); return -2; } // different formats

}

int read_window(int f) // read a WINDOW, return O: file end, 1: otherwise
{ .
int status;
unsigned long i;
for(i=0; i<WINDOW; i++)
{ in_buf[i]=in_buf[i+WINDOWT]; in_buf[i+WINDOW]=0; }
if(read(f, in_buf+WINDOW, WINDOW *sizeof(short))/sizeof(short)}==WINDOW)
status=1;
else status=0; // file end
for(i=0; i<WINDOW; i++)
{
1 data[i]=in_buf]i<<l1];

16

r_data[i]=in_buf[(i<<1)+1];
i

return status;

}

void write_window(int f)
{
unsigned long i;
for(i=0; i<KWINDOW; i++)
{ out_buf[i]=out_buf[i+WINDOWT]; out_buf[i+WINDOW]=0; }
for(i=0; i<KWINDOW; i++)
{
out_bufli<<1]+=l_data[i];
out buf[(i<<l)+1]+=r_datal[i];

write(f, out_buf, WINDOW *sizeof(short));
H

int in_wave_close(int f)

return close(f);

}

int out wave_close(int f, WAVEheader &head)

{
unsigned length=head.data ckSize%(WINDOW *sizeof(short));
write(f, out buf+WINDOW, length);
return close(f);

}
Appendix 4 “notes.h”

#ifndef NOTES H
#define NOTES H

#include<math.h>
#define C0 16.35159783

/*
Octave|| Note Numbers
|l
IC |C# |D |D# |E |F |F# |G |G# |A |A# |B

| 0] 1] 2] 3| 4] 5] 6] 7] 8] 9] 10]11

12] 13| 14| 15| 16] 17] 18] 19] 20| 21| 22|23

241 25| 26| 27| 28] 29| 30| 31| 32| 33| 34|35

36| 37| 38| 39| 40| 41| 42| 43| 44| 45| 46|47

4849|150 51| 52| 53| 54| 55| 56| 57| 5859

60| 61| 62| 63| 64| 65| 66| 67| 68| 69| 70|71

72| 73| 74| 75| 76| 77| 78| 79| 80| 81| 8283

84| 85| 86| 87| 88| 89| 90| 91| 92| 93| 9495

96| 97| 98| 99100101 | 102|103 | 104|105 | 106 | 107

1108109110 111|112 113|114 |115|116|117 | 118|119
10 || 120121 122123 | 124|125 | 126 | 127 |

%/

0]
L
2|
3l
4
Sl
6 |
7l
8 |l
9 |

// return the MIDI note number by specifying a frequency
unsigned int midi_note(double freq)

{
return 12*log(freq/C0)/log(2)+0.5;

}

#endif

18

	MUS421 Design Project
	Design Objective
	The Product
	General Design Strategy
	Block Diagram
	Detailed Design Strategy
	Concerning the timing performance of the program, I have tested the program with a PC containing AMD 300 CPU, and 64MB of RAM. It takes the program about 13 seconds to process 15 seconds of .wav file and to generate the score. Although real-time music

