
Solution of the Midterm - MAE143B, Spring
2003

1 Prob. 1

The followings are “true” or “false” questions. Check true or false and show why.

(a) The system below is asymptotically stable.

s+1

s  -0.5s2

G(s)

  Y(s)U(s)

Figure 10: Block Diagram

TRUE FALSE

1.1 Solution of Prob. 1 (a)

The closed loop transfer function is

s+1
s(s−0.5)

1 + s+1
s(s−0.5)

=
s + 1

s(s − 0.5) + s + 1
=

s + 1

s2 + 0.5s + 1
.

The characteristic equation is

s2 + 0.5s + 1 = 0.

The solution of the characteristic equation is

s =
−1 ±

√

1/4 − 4

2

Since Re(s) = −0.5 < 0 , the closed loop system is stable. Hence the statement is “True”.
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(b) There exists a proper compensation C(s) which causes the system below to have the
closed loop transfer function

C(s)
1

s  +s2

G(s)

  Y(s)U(s)

Figure 11: Block Diagram

Y (s)

U(s)
= H(s) =

s + 2

s2 + 2s + 2

TRUE FALSE

1.2 Solution of Prob. 1 (b)

The closed loop transfer function

Y (s)

U(s)
= H(s) =

C
s(s+1)

1 + C
s(s+1)

=
C

s(s + 1) + C
⇒ (1 − H)C = s(s + 1)H.

Let’s denote

H
4
=

Hn

Hd

.

where

Hn
4
= s + 2 , Hd

4
= s2 + 2s + 2

Then

C(s) =
Hn

Hd − Hn

s(s + 1) =
s + 2

s2 + 2s + 2 − s − 2
s(s + 1) = s + 2

Hence C(s) = s + 2 is not proper and the statement is “false”.
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(c) The steady state response of

s+1

s-1

G(s)

  yu(t) = sin 2 t

Figure 12: Block Diagram

is

y(∞) = sin(t + 2π + 2 tan−1(2))

TRUE FALSE

1.3 Solution of Prob. 1 (c)

The input and output relationship is

Y (s)

U(s)
=

s + 1

s − 1
= G(s)

Since G(s) has positive pole, the system is unstable. Hence the output y(t) approaches to
infinity as time is infinity. But the statement y(∞) = sin(t + 2π + 2 tan−1(2)) is bounded, this
statement is “false”.
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2 Prob. 2

Write the ordinary differential equation that relates y(t) to u(t).

K
s+1

0.2s  +s2

G(s)

  Y(s)U(s)

Figure 13: Block Diagram

2.1 Solution of Prob. 2

Y (s)

U(s)
=

K s+1
s(0.2s+1)

1 + K s+1
s(0.2s+1)

=
K (s + 1)

s (0.2s + 1) + K (s + 1)

[s (0.2s + 1) + K (s + 1)] Y (s) = K (s + 1)U(s)

By inverse Laplace transformation,

0.2ÿ(t) + (K + 1) ẏ(t) + Ky(t) = Ku̇(t) + Ku(t)
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3 Prob. 3

H1(s)

H2(s)

G3(s)G2(s)G1(s)R(s) E1(s) E2(s)      Y(s)

W(s)

Figure 14: Block Diagram

Consider the feedback control system shown in the above. Derive the following transfer
functions [ 5 points each ] : (a) Y (s)

R(s)
, (b) Y (s)

W (s)
, (c) E2(s)

R(s)
, (d) E2(s)

W (s)

3.1 Solution of Prob. 3

From the block diagram, we have

e1 = R − H1y (2)

e2 = G1e1 − H2y (3)

y = (G2e2 + w)G3 (4)

3.1.1 Solutions of (a) and (b)

Key step is to eliminate the signals e1 and e2 in (2),(3), and (4).
Substituting (2) to (3) yields

e2 = G1 (R − H1y) − H2y (5)

Substituting (5) to (4) yields

y = [G2 (G1 (R − H1y) − H2y) + w]G3 (6)

Rearranging (6)

(1 + G2G3 (H2 + H1G1)) y = G1G2G3r + G3w

Hence

Y (s)

R(s)
=

G1G2G3

1 + G2G3 (H2 + H1G1)

and

Y (s)

W (s)
=

G3

1 + G2G3 (H2 + H1G1)
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3.1.2 Solutions of (c) and (d)

Key step is to eliminate the signals y and e2 in (2),(3), and (4).
Substituting (4) into (5), we have

e2 = G1R − (G1H1 + H2)y

= G1R − (G1H1 + H2)(G2e2 + w)G3

Rearranging the above equation, we have

(1 + (G1H1 + H2)G2G3) e2 = G1R − (G1H1 + H2)G3w

Hence

E2(s)

R(s)
=

G1

(1 + (G1H1 + H2)G2G3)

and

E2(s)

W (s)
= − (G1H1 + H2)G3

(1 + (G1H1 + H2)G2G3)

4 Prob. 4

K
s+T

s

G2(s)

s+T

s  2

G1(s)

  Y(s)R(s)

Figure 15: Block Diagram

(a) Find the values of K and T for which the system shown below is stable.

4.1 Solution of Prob. 4(a)

Y (s)

R(s)
=

G

1 + G
=

k(S + T )2

s3 + K(S + T )2

The characteristic equation is

s3 + K(S + T )2 = s3 + Ks2 + 2KTs + KT 2 4
= s3 + as2 + bs + c

where

a
4
= K , b

4
= 2KT , c

4
= KT 2

The Routh’s array is

s3 : 1 b
s2 : a c
s1 : ab−c

a
0

s0 : c 0
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For stability, we have

a = K > 0 , c = KT 2 > 0 ,
ab − c

a
=

K2KT − KT 2

K
= T (2K − T ) > 0

which is equivalent to

K > 0 , T (2K − T ) > 0

or equivalently

K > 0 , sign(T ) = sign(2K − T )

Let’s analyze the second condition further.

if T > 0, then 2K − T > 0 ⇒ 2K > T > 0 (7)

if T < 0, then 2K − T < 0 ⇒ 2K < T < 0 (8)

(7) is fine, while (8) contradicts K > 0.
Hence the stability condition is

2K > T > 0.

(b) When K = 1
2
, find the values of T > 0 such that all poles lie strictly to the left of the

vertical line s = −T
2
± jω , 0 ≤ ω ≤ ∞, if it is possible.

4.2 Solution of Prob. 4(b)

Consider the change of variable

p = s +
T

2

Then the characteristic equation is

s3 + K(s + T )2 = (p − T

2
)3 + K(p +

T

2
)2

= (p − T

2
)(p2 − pT +

T 2

4
) + K(p2 + pT

T 2

4
)

= p3 − Tp2 + T 2p/4 − Tp2/2 + T 2p/2 − T 3/8 + K(p2 + pT
T 2

4
) = 0

Since K = 1
2
, there is a solution p = 0 satisfying the above equation. Hence there is no T such

that all poles lie strictly to the left of the vertical line s = −T
2
± jω , 0 ≤ ω ≤ ∞.
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5 Prob. 5

s

s+5

H(s)

1

s  +s2

G(s)

        X(s)U(s)

Figure 16: Block Diagram

(a) Find x(t) if u(t) is a unit impulse function.

(b) Explain how you would change H(s) to guarantee that limt→∞x(t) → 0 in the presence

of a ramp input u(t)
4
= kt.

5.1 5.(a)

X(s) =
G(s)

1 + G(s)H(s)
U(s) =

s + 5

s(s2 + 6s + 6)
=

s + 5

s(s + 3 +
√

3)(s + 3 −
√

3)

From partial fraction formula,

X(s) =
s + 5

s(s + 3 +
√

3)(s + 3 −
√

3)

=
A

s
+

B

s + 3 +
√

3
+

C

s + 3 −
√

3

where

A = sX(s)|s=0 =
5

6

B = (s + 3 +
√

3)X(s)|s=−3−
√

3 =
s + 5

s(s + 3 −
√

3

∣

∣

∣

∣

∣

s=−3−
√

3

=
2 −

√
3

2
√

3(3 +
√

3)

C = (s + 3 −
√

3)X(s)|s=−3+
√

3 =
s + 5

s(s + 3 +
√

3

∣

∣

∣

∣

∣

s=−3+
√

3

=
2 +

√
3

2
√

3(−3 +
√

3)

5.2 5.(b)

From the final value theorem,

x(∞) = lim
s→0

sX(s) = lim
s→0

s
G

1 + GH
U(s) = lim

s→0
s

1

s(s + 1) + H
U(s)

Since u(t) = kt,

U(s) =
k

s2
.
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Hence

x(∞) = lim
s→0

s
1

s(s + 1) + H

k

s2
= lim

s→0

1

s(s + 1) + H

k

s
= lim

s→0

k

sH(s)
= 0

which means that sH(s)|s=0 = ∞. Thus H(s) must have s2 in the denominator and the roots
of 1 + GH must lie in the LHP.

6 Prob. 6

1 + Ks

A

s  +s2

G(s)

R(s)         Y(s)

Figure 17: Block Diagram

Consider the feedback control system shown in the above.

(a) Determine A and K to satisfy the following specifications.

(i) The transfer function Y(s)
R(s)

is stable.

(ii) maximum overshoot (Mp) for a unit step input of less than 17%

(iii) 3% settling time ( ts) of less than 3.5 sec.

(b) Determine the system type with respect to the output y and the error( e = r − y) .

6.1 6.(a)

(i) The transfer function Y(s)
R(s)

is stable.

Y (s)

R(s)
=

G

1 + GH
=

A

s(s + 1) + A(1 + Ks)
=

A

s2 + (1 + AK)s + A

4
=

ω2
n

s2 + 2ζωns + ω2
n

Hence we have

2ζωn = 1 + AK , ω2
n = A (9)

The Routh’s array is

s2 : 1 A
s1 : 1 + AK 0
s0 : A

Hence we have

A > 0 , 1 + AK > 0
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(ii) maximum overshoot (Mp) for a unit step input of less than 17%

Mp = 17% ⇔ e
− πζ√

1−ζ2 = 0.17 ⇒ ζ = 0.5

(iii) 3% settling time ( ts) of less than 3.5 sec.

e−ζωnts = 0.03 ⇒ ζωn = − ln(0.03)

ts
=

3.5

3.5
= 1

Since ζ = 0.5, ωn = 2. From (9), we have

A = ω2
n = 4 , 2ζωn = 2 = 1 + AK = 1 + 4K

Hence 1 + 4K = 2 ⇒ K = 0.25.

6.2 6.(b)

The error signal is

E(s) = R(s) − Y (s) =

(

1 − Y (s)

R(s)

)

R(s) =
s(s + 1 + AK)

s2 + (1 + AK)s + A
R(s)

From the final value theorem,

ess = lim
s→0

s
s(s + 1 + AK)

s2 + (1 + AK)s + A
R(s)

= lim
s→0

s
s(s + 1 + AK)

s2 + (1 + AK)s + A

1

s2

= lim
s→0

(s + 1 + AK)

s2 + (1 + AK)s + A
=

1 + AK

A
=

2

4
= 0.5
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7 Prob. 7

C + Ks

L

J.s  2

G(s)

Fd(s) F'    Y(s)

F

Figure 18: Block Diagram

A rigid spacecraft is controlled by reaction jets which operate in pairs to produce the torque
FL . A position plus rate feedback (PD) controller is employed for the controller H(s). The
rate gyro gain, K, and the position gain ,C, ae to be determined.

(a) When J = 1 and L = 4, determine K and C such that (i) and (ii) hold.

(i) The impulse response shows no oscillations.

(ii) The steady state position error, θe(∞), is less than 0.01 in the presence of an effective
bias disturbance of magnitude Fd(t) = 1.

(b) Let C = 1 and K = 0.707. Find a proper location (L) for the jets so that the system
damping ratio ζ is 0.707. That is, find L such that ζ = 0.707.

(c) Suggest a feedback controller H(s) which will guarantee limt→∞ θe(t) = 0 regardless of
the magnitude of the bias disturbance Fd(t) = Fo. ( Show this result of your design ) .

(d) Write a set of state equations for the system in the above block diagram. Define the state
variables as x1 = θ and x2 = θ̇ and the input as u = Fd. Find the matrices A,B,C, and
D such that

ẋ = Ax + Bu, y = Cx + Du

where x
4
=
[

x1 x2

]T
and y

4
= x1.

(e) As a check on your answer in (e), compute the transfer function

Y (s)

U(s)
= C (sI −A)−1 B + D

and compare this answer with

Y (s)

U(s)
=

G(s)

1 + G(s)H(s)
.
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7.1 7.(a)

(i) The impulse response shows no oscillations. ⇒ The characteristic equation must have real
roots. Since the transfer function

θe

Fd

=
G

1 + GH
=

L

Js2 + LKs + LC
,

the characteristic equation is

L

Js2 + LKs + LC
= 0,

or equivalently

s2 + 2ζωns + ω2
n = s2 +

LK

J
s +

LC

J
= 0

Thus

ω2
n =

LC

J
= 4C , 2ζωn =

LK

J
= 4K

Hence

ωn = 2
√

C , ζ =
4K

2ωn

=
K√
C

For real roots,

ζ ≥ 1 ⇒ K√
C

≥ 1 (10)

(ii) The steady state position error, θe(∞), is less than 0.01 in the presence of an effective
bias disturbance of magnitude Fd(t) = 1.

Since the transfer function

θe

Fd

=
G

1 + GH
=

L

Js2 + LKs + LC
,

and using Fd(s) = 1
s
, we have

θe(s) =
L

s(Js2 + LKs + LC)

From final value theorem,

θe(∞) = lim
t→∞

sθe(s) = lim
t→∞

s
L

s(Js2 + LKs + LC)
=

1

C

From the requirements θe(∞) < 0.01, we have

θe(∞) =
1

C
< 0.01 ⇒ C > 100. (11)

From (10) and (11), the conditions (i) and (ii) are equivalent to

K√
C

≥ 1 , θe(∞) =
1

C
< 0.01

One acceptible choise is

C = 200 , K = 300
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7.2 7.(b)

ζ = 0.707 =
LK/J

2
√

LC/J

L = 4C = 4

7.3 7.(c)

θ(s) =
L/(Js2)

1 + H(s)L/(Js2)

Fo

s

θ(∞) = [sθ(s)]s=0 =
LFo

Js2 + LH(s)

∣

∣

∣

∣

∣

s=0

=
LFo

LH(s)

∣

∣

∣

∣

∣

s=0

=
Fo

H(0)
= 0 if H(0) = ∞.

Hence choose any H(s) which has a pole at the origin, such as

H(s) =
Ks + C

s
.

7.4 7.(d)

θ(s)

Fd(s)
=

L

Js2 + LKs + LC

Cross multiplying and taking the inverse Laplace transformation yield

Jθ̈ + LKθ̇ + LC = LFd(t)

Choose the state variables x1 = θ and x2 = θ̇. Then

ẋ1 = x2

ẋ2 = −LK

J
x2 −

LC

J
x1 +

L

J
Fd

Hence we have

ẋ = Ax + Bu, y = Cx + Du

where x
4
=
[

x1 x2

]T
, y

4
= x1, and

A
4
=

[

0 1
−LC

J
−LK

J

]

, B
4
=

[

0
L
J

]

, C =
[

1 0
]

, D = 0
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7.5 7.(e)

C (sI −A)−1 B + D =
[

1 0
]

[

s −1
LC
J

s + LK
J

]−1 [

0
L
J

]

Since

[

s −1
LC
J

s + LK
J

]−1

=
1

s(s + LK
J

) + LC
J

[

s + LK
J

1
−LC

J
s

]

,

we have

C (sI −A)−1 B + D =
[

1 0
]

[

s −1
LC
J

s + LK
J

]−1 [

0
L
J

]

=
1

s(s + LK
J

) + LC
J

[

1 0
]

[

s + LK
J

1
−LC

J
s

] [

0
L
J

]

=
L
J

s(s + LK
J

) + LC
J

[

1 0
]

[

1
s

]

=
L

Js2 + LKs + LC

which agrees with

Y (s)

U(s)
=

G(s)

1 + G(s)H(s)
=

L

Js2 + LKs + LC
.
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