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Abstract. Since its introduction, Bounded Model Checking has been a mo-
tivating factor for the development of SAT solvers and considerable research has
been directed towards them. However, while great advances have been made,
other factors determining the overall runtime of the model-checking process have
been afforded less attention. The process by which the CNF representation is
obtained has a major effect on the time required to find a solution, as does
the difficulty of the original propositional formula before this conversion. It
has long been considered that the difficulty of a formula is directly related to
its size, but it is only in recent times that ways of reducing this metric have
been investigated within the framework of bounded model checking. This paper
presents a comparison of some of this research, with the aim of highlighting its
long overlooked importance, while noting that smaller formulae do not always
require less time to solve.

1 Introduction

Model Checking is a technique for showing whether or not a model of a system
satisfies particular properties. It is common that a model should satisfy prop-
erties of liveness (something good can always eventually happen) and safety
(something bad should never happen). Systems are generally modelled, impli-
citly or explicitly, as having a collection of variables, with specific transitions
determining how these variables change from one time step to the next. The
states of the system correspond to every possible combination of values for those
variables. That is, if the system is comprised of n Boolean variables,1 then it
will have 2n potential states.

Properties that are to be checked are usually expressed in a temporal logic
which captures the evolution of the model over different time steps. Compu-
tation Tree Logic (CTL) is used to express properties over paths in the model,
and Linear Time Logic (LTL) is used to express properties over states.

Early techniques used explicit transition relations that defined a state and
its successor. This was acceptable for systems that had few concurrent parts,
but for systems with a large number of processes the number of states gener-
ated was too high. It was not until the introduction of symbolic model checking

1This is a common restriction in model checking, since finite value ranges can be represented
by a series of Boolean variables.
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[6] that models of a practical size could be checked. Instead of the transitions
being expressed explicitly, Boolean formulae were used to capture the relation-
ship between variables in a given state and its successor. These formulae were
represented, and combined, using Bryant’s ordered binary decision diagrams
(OBDDs) [5]. This lead to the development of the model checker SMV by Ken-
neth McMillan as part of his PhD thesis from Carnegie Mellon University [16].
A comprehensive overview of model checking can be found in [9].

Biere et al. introduced Bounded Model Checking in [3] which encodes the
model and the property as a Boolean satisfiabilty (SAT) problem. The SAT
problem is satisfiable iff the property does not hold for a particular bound, k.
That is, a satisfiable problem would correspond to the existence of a run over k
time steps of the model that violated the property being checked. The applica-
tion of SAT solvers to this problem meant that there was increased motivation to
advance their development, since better SAT solvers could solve bigger problems
in the same time. This has been one of the main areas of research with respect
to the model checking process for some years now, and the state-of-the-art has
recently been reviewed in [20].

Only recently have people been looking at the other factors which contribute
to the runtime. It has long been assumed that the difficulty of a formula in
conjunctive normal form2 (CNF) is directly related to the number of clauses and
variables in it. There is an intuitive logic to this: fewer variables mean a smaller
search space, and fewer clauses mean a smaller overhead when propagating
variable assignments. In practice, fewer clauses mean that the active part of
the formula — those clauses which are currently affecting the search — is more
likely to fit into the cache, thus dramatically reducing the time required to
access them [21]. Additionally, for certain classes of property, the time required
to generate the CNF formula is greater than the time spent in the solver. In such
instances, the process by which the propositional formula that is subsequently
converted into CNF is generated must be as fast as possible, as well as the actual
conversion to CNF. The time to do so is usually measured as a function of the
bound, since larger formulae are required to capture the evolution of the model
over a greater number of time steps.

2 Preliminaries

In this paper the focus is on the use of LTL with past operators (PLTL) to
specify properties, with the regular symbolic representation for the model (i.e.
a propositional formula describing the transition relation and the initial states).

Given this framework, the two main steps involved in producing the formula
to be checked are the conversion of the PLTL formula into a purely propositional
formula given the bound, and the subsequent conversion of this into conjunctive
normal form.

2The majority of SAT solvers expect the formula to be in this format.
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2.1 PLTL

LTL formulae are built from propositional atoms (formulae comprising solely
of Boolean connectives), with the future operators X (next), F (finally), G
(globally), U (until) and R (releases) which have the following meanings. Given
LTL formulae ϕ and ψ, Xϕ is true iff ϕ is true in the next time step, Fϕ is
true iff ϕ is true at some future time step, Gϕ is true iff ϕ is true in all future
time steps, (ϕ U ψ) is true iff ψ is true at some future time step and ϕ holds
in all time steps up to that point, and (ϕ R ψ) is true iff ψ is true in all future
time steps before ϕ is true. Note that if ϕ is never true then ψ must hold in all
future time steps for (ϕ R ψ) to be true.

Taking π as the model, and (π, i) |= ϕ to mean that ϕ holds in π at time i,
the semantics of LTL can be defined recursively as follows:

(π, i) |= p iff p is a propositional atom, and holds in the state (π, i)
(π, i) |= ¬ϕ iff (π, i) 6|= ϕ
(π, i) |= ϕ ∨ ψ iff (π, i) |= ϕ or (π, i) |= ψ
(π, i) |= ϕ ∧ ψ iff (π, i) |= ϕ and (π, i) |= ψ

(π, i) |= Xϕ iff (π, i+ 1) |= ϕ
(π, i) |= Fϕ iff ∃j ≥ i. (π, j) |= ϕ
(π, i) |= Gϕ iff ∀j ≥ i. (π, j) |= ϕ
(π, i) |= ϕUψ iff ∃j ≥ i. ((π, j) |= ψ and ∀k : i ≤ k < j. (π, k) |= ϕ)
(π, i) |= ϕRψ iff ∀j ≥ i. ((π, j) |= ψ or ∃k : i ≤ k < j. (π, k) |= ϕ)

The past operators which extend LTL to PLTL are Y (yesterday), Z (similar
to Y), O (once), H (historically), S (since) and T (trigger). These are temporal
duals of the future operators and have the following meanings. At any non-initial
time step, Yϕ and Zϕ are true iff ϕ was true in the previous time step. At time 0
Yϕ is false whereas Zϕ is true. Oϕ is true iff ϕ was true at some previous time
step, Hϕ is true iff ϕ was true in all previous time steps, (ϕ S ψ) is true iff ψ
was true at some previous time step and ϕ has been true in all time steps since
then, and (ϕ T ψ) is true iff ψ holds in all previous time steps before one where
ϕ is true. Like the future operator R, ψ has to hold in all previous time steps
if ϕ has never been true for (ϕ T ψ) to hold.

The semantics of the past operators can be defined recursively as follows:

(π, i) |= Yϕ iff i > 0 and (π, i− 1) |= ϕ
(π, i) |= Zϕ iff i = 0 or (π, i− 1) |= ϕ
(π, i) |= Oϕ iff ∃j ≤ i. (π, j) |= ϕ
(π, i) |= Hϕ iff ∀j ≤ i. (π, j) |= ϕ
(π, i) |= ϕSψ iff ∃j ≤ i. ((π, j) |= ψ and ∀k : j < k ≤ i. (π, k) |= ϕ)
(π, i) |= ϕTψ iff ∀j ≤ i. ((π, j) |= ψ or ∃k : j < k ≤ i. (π, k) |= ϕ)

The addition of past operators does not provide any more expressive power,
but does allow for temporal properties to be given in an exponentially more
succinct manner [13]. They also allow properties concerned with historical be-
haviour of the model to be written in a more natural form thus reducing the
potential for them to contain errors.
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2.2 Violating Paths

Given a property to be checked, the purpose of model checking is to look for a
run, or path, which violates it. There are two types of violating paths: lasso
shaped ones that capture infinite looping, and finite ones which are loop-free.
Such paths are called counter examples as they provide a trace of a run where
the property does not hold. If the violation of the property actually corresponds
to a situation that you are looking for3 then it is instead termed a witness as it
shows the existence of what was being searched for.

Loop-free paths show the violation of properties which state that a particular
thing must always hold (i.e. safety properties), since it is sufficient to give a
path from an initial state to one in which the property does not hold. Lasso
shaped paths, comprising of a finite initial portion and a series of states that
repeat infinitely often, show the violation of properties which state that it must
always be the case that a particular thing will eventually happen (i.e. liveness
properties). Such a property is violated when a series in which it does not hold
repeats infinitely often.

Bounded model checking places an upper limit, k, on the length of such
paths. For loop-free paths this simply means that its length must be no more
than k, but for lasso shaped paths, k must be at least as large as the number
of steps to the second occurrence of the first repeated state in the loop. That
is, the length of the finite initial portion plus the number of states in the loop
must be less than k.

3 Conversion of PLTL Formulae

In this section, we look at the conversion of PLTL formulae into propositional
formulae for a given bound, k. Two recent approaches to this problem are
covered, the first by Cimatti et al. [8] and the other by Latvala et al. [15].

3.1 The Approach of Cimatti et al.

The conversion method presented in [8] assumes that the initial formula is in
Negative Normal Form (NNF) which restricts negation to atomic variables only.
Rewriting a PLTL formula into NNF can be carried out in linear time with
respect to the size of the formula, and involves the repeated application of the
following equivalences to push negation inwards:

¬Fϕ ≡ G¬ϕ ¬Xϕ ≡ X¬ϕ ¬(ϕUψ) ≡ ¬ϕR¬ψ
¬Gϕ ≡ F¬ϕ ¬(ϕRψ) ≡ ¬ϕU¬ψ

¬Oϕ ≡ H¬ϕ ¬Yϕ ≡ Z¬ϕ ¬(ϕSψ) ≡ ¬ϕT¬ψ
¬Hϕ ≡ O¬ϕ ¬Zϕ ≡ Y¬ϕ ¬(ϕTψ) ≡ ¬ϕS¬ψ

¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ ¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ ¬(ϕ↔ ψ) ≡ ϕ↔ ¬ψ

3This is the case when planning is done via model checking, and the property is the negation
of what constitutes a solution.
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The equivalences involving Y and Z are such, due to their semantics at time
zero. Additionally, note that ϕ→ ψ can be written as ¬ϕ ∨ ψ.

The first step in their procedure is to transform the PLTL formula into
Separated Normal Form (SNF) based on the procedure described in [10], which
is a conjunction of implications that relate past time formulae to future time
ones:

G

(∧
i

(Pi → Fi)

)

The implications, also called rules, are split into four different classes referred
to as start, invariant, next and eventuality rules:

start →
∨
j

lj
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∨
j
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where start is true for the initial states at time zero and false otherwise. Pre-
cise transformation rules are given for all possible PLTL formulae, as well as a
description of cases where the rules cannot be applied. Very little motivation
is given as regards why a conversion to SNF has been used, except that the
variables introduced ‘can be seen as defining the transition relation of an ob-
server automaton’, and that, in the bounded case, the eventuality rules ‘can be
expressed with a fix-point construction’ which allows for a better representation.

Two versions of the transformation rules are given for the final step of ob-
taining purely propositional formulae from the SNF rules. The first are for when
the desired loop length is known, which produces a number of propositional for-
mulae that is O(n ·k2), when all loop lengths of 0..k are considered. With these
rules the number of variables in the encoding is O((|A| + n) · k), where |A| is
the number of atomic propositions in the original PLTL formula, and n is the
number of temporal operators present. The second version of the rules are the
result of loop independence optimisation, by reformulating them and introdu-
cing variables that determine what the loop length is (one for each possible loop
length). A result of this is that the number of propositional formulae produced
is O(n · k).

The only stage that is not covered is the conversion of propositional formulae
into CNF, however they do correctly state that this step can also have a dramatic
effect on how long the resulting formula takes to be processed by a SAT solver.
One of the major problems with existing CNF conversion algorithms is that, in
order for them to run in linear time, they introduce a considerable number of
new variables.

The experimental results for this approach support their initial claim that
the new encoding is superior to the usual encoding for PLTL described in [2]. It
is shown that the usual encoding suffers badly for formulae with a large number
of nested PLTL operators, whereas their encoding does not, a result that they
attribute to its bounded nature. While for some simple properties their method
is slightly slower, it does appear to be faster for more complicated instances.
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A downside to the proposed encoding is that the shortest counter example,
or witness, is not always found. This means that higher bounds have to be
checked, although on the evidence of the test results, the runtime is still better.

3.2 The Approach of Latvala et al.

The method presented in [15] builds upon their earlier work for encoding pure
LTL given in [14] to accommodate past operators. It assumes that the formula
is in Positive Normal Form (PNF), where negations apply to propositional for-
mulae only. This can be done in linear time with respect to the number of PLTL
operators in the formula, but because the negations are not pushed right down
to the atomic variables, it takes less time than is required to convert the formula
into NNF.

Intuitively, the conversion process described involves making copies of the
initial k step paths in the model. The number of copies required is determined
by the maximum number of nested past operators δ(ϕ) of the formula (termed
the past operator depth). The reason for this limit is that the truth of a formula
in the ith iteration of a loop, where i > δ(ϕ) is the same as for in iteration δ(ϕ)
since it can only ‘look back’ as far as δ(ϕ) loops. This was originally shown in
[13] and later independently in [2].

In the paper by Cimatti et al. they cited the ability to utilise the fix-point
construction for the eventuality rules as a motivating factor for using SNF as
an intermediary translation, however fix-points are also used in the approach
by Latvala et al.

The conversion rules are presented and described, but as with the paper
by Cimatti et al. they do not discuss the subsequent required conversion from
propositional formulae into CNF. Copies of the model variables present in the
property are made for each time step for which they are required, with k vari-
ables also being introduced to determine the loop length. Due to the loop
unrolling process, the transition relation of the model also has to be unrolled by
k · δ(ϕ) steps. The size of the final formula is O(|l|+k · |T |+k · δ(ϕ) · |ϕ|), where
l is the formula which determines the length of the loop, T is the transition
relation and ϕ is the property being checked. Since δ(ϕ) can be O(|ϕ|), this is
quadratic in the formula size in the worst case. However, it is still linear with
respect to the bound which they point out is often the most important factor
when searching for long counter examples.

Latvala et al. compare their new encoding with the same one as Cimatti et
al. (used in NuSMV 2 [7]) due to the fact that it is currently the only PLTL
conversion process which has been implemented in a published bounded model
checker. The focus of their testing is on the scalability of the encoding and,
from the results, the growth rate does appear to be linear with respect to the
bound. Only the runtime appears to grow at a (marginally) faster rate which
could potentially be due to the increased formula size, rather than any increased
complexity. This behaviour was also exhibited for real-life examples, with the
linear growth appearing to hold except for the runtime which again grows at
a slightly faster rate. They also find that the usual encoding suffers badly for
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formulae with a high number of nested past operators.
Having only been made aware of the paper by Cimatti et al. towards the end

of their work, they provide a short comparison, stating that it is less efficient
at least in cases where size of the transition relation is larger than size of the
property. Additionally, the method given by Latvala et al. will often find a
shorter counter example.

3.3 Discussion

Both methods successfully reduce the size of the propositional formula produced
by the conversion from PLTL, which in turn reduces the overall runtime. The
biggest problem with the usual encoding method is that nested past operators
cause a severe blow-up in the size of the formula, and this has been eliminated by
both approaches. As they tackle the problem from completely different angles,
it is hard to see how the results from one could benefit the other. However,
it is important that further testing with harder problem instances is carried
out, thus providing a much better indication of each method’s strengths and
weaknesses. Furthermore, applying the two processes to the same problem
instances is paramount in determining how they compare to each other.

4 CNF Conversion

In this section, we look at a method of converting a propositional formula into
CNF that keeps the number of clauses to a minimum as well as introducing
as few new variables as possible [12]. The authors compare it to the structure-
preserving method of Plaisted and Greenbaum [19], and to the optimal encoding
presented by Thierry Boy de la Tour in [4].

In the paper by Jackson and Sheridan, the starting point is a representation
of Boolean formulae called Reduced Boolean Circuits (RBCs) that were pro-
posed by Abdulla, Bjesse and Eén in [1]. An RBC is a Directed Acyclic Graph
(DAG) where each vertex is either the equivalence or conjunction operator, and
the incoming edge determines whether or not the sub-formula rooted at that
vertex is negated or not. A consequence of this structure is that the root vertex
has an incoming edge which allows for the overall formula to be represented pos-
itively or negatively. By imposing a total order on the vertices, RBCs provide
a canonical form for propositional formulae. It is straight-forward to build the
RBC for a propositional formula and can be done in linear time with respect to
the size of the formula.

The paper presents formulations of three well-known conversion procedures
such that they are defined over RBCs. Note that equivalences can be repres-
ented as a disjunction of two conjunctions, and disjunctions are just negated
conjunctions (with negated operands) as shown here:

x↔ y ≡ (x∧y)∨(¬x∧¬y) ¬(x↔ y) ≡ (x∧¬y)∨(¬x∧y) x∨y ≡ ¬(¬x∧¬y)
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As such, we can, if required, only consider the conjunction operator, and whether
the formula is positive or negative.

4.1 Standard CNF Conversion

The first algorithm presented does not carry out any renaming of sub-formulae,
and thus does not introduce any new variables. The drawback though is that it
can produce an exponential number of clauses.

Leaf vertices in the RBC (corresponding to atomic propositions) are repres-
ented by a single clause containing the variable with the same polarity of the
edge that leads to it. For all other vertices, the two clause sets are combined
as follows, depending on whether the edge coming into the vertex is positive or
negative. If the incoming edge is positive then the result is simply the union of
the two sets, if it is negative then the result is the cross-product.

4.2 Structure Preserving Conversion

The second algorithm presented is the structure-preserving method given in [19]
where each sub-formula is renamed with a new variable. For example, in the
formula (a ∧ b ∧ c) ∨ (d ∧ e ∧ f) the left-hand side can be renamed to give the
following equi-satisfiable formula:

xa∧b∧c ∨ (d ∧ e ∧ f) ∧ xa∧b∧c ↔ (a ∧ b ∧ c)

In fact, such an equivalence can be replaced by just an implication if the
vertex representing the sub-formula only has positive or negative edges leading
to it, with the direction corresponding to the polarity of those edges. The
only exception is where it is a sub-formula of an equivalence node, since such
formulae are actually referenced in both polarities, regardless of the incoming
edges. This procedure introduces one new variable for every vertex in the RBC,
which dramatically increases the potential search space of the formula produced.
Furthermore, the clauses produced only ever contain two or three literals — one
for the vertex of the sub-formula being renamed, and one for each of its two
children.

Given RBC vertices x and y representing (a ∧ b) and (c ↔ d) respectively
(i.e. (a ∧ b) has been renamed as x and (c ↔ d) has been renamed as y), this
algorithm produces the following clauses:

x↔ (a ∧ b) produces {(x ∨ ¬a ∨ ¬b) , (¬x ∨ a) , (¬x ∨ b)}
y ↔ (c↔ d) produces {(y ∨ c ∨ d) , (y ∨ ¬c ∨ ¬d) , (¬y ∨ c ∨ ¬d) , (¬y ∨ ¬c ∨ d)}

Note that the truth assignments of the introduced variables will always follow
from a complete assignment to the variables in the original formula. Since the
algorithm just visits each node in the RBC once, its runtime is O(|V |) where
|V | is the total number of vertices.
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The other algorithms only differ to this method in respect to deciding which
sub-formulae should be renamed. In their case, the children of an RBC node
can be sets of clauses, not just variables.

4.3 Boy de la Tour Conversion

The third procedure is the encoding given by Boy de la Tour in [4] where the
renaming of sub-formulae is only carried out when it would produce less clauses
than if no renaming were to be done. If a new variable is not introduced then the
sub-formulae are combined as described by the standard conversion algorithm,
above. For a given vertex, the number of clauses that would be produced by
each option can be calculated in O(|V |) time, giving the overall algorithm a
runtime that is O(|V 2|). While this is worse than the structure preserving al-
gorithm, which is linear in the number of vertices, it was shown to be optimal
for formulae that do not contain equivalences. Unfortunately, numbers involved
in the calculations can easily become too large, making the algorithm imprac-
tical in reality. Nonnengart et al. reformulated part of the algorithm to avoid
this problem [17] but Jackson and Sheridan suggest that its complexity hinders
attempts to correctly implement it.

4.4 Compact Conversion

Jackson and Sheridan’s algorithm4 generates the clauses from the leaves of the
RBC upwards, after having initially determined the positive and negative ref-
erence counts for the individual vertices.

Because the algorithm works from the leafs of the RBC up to the root,
the number of clauses that will be produced for a given vertex can easily be
determined. If no renaming is done and the vertex is a positive conjunction
then number of clauses generated will just be the total generated for the two
child vertices. If the vertex is a negative conjunction (i.e. a disjunction) then
the result is the product of the number of clauses generated for each child. If
one of the sub-formulae is renamed, then the total number of clauses that will
be produced is also just the total number produced for both children.

The calculations that determine whether a sub-formula should be renamed
or not assume that each vertex only has one edge coming into it. This is not the
case with RBCs that share sub-formulae, so the calculations have to be modified
to handle them. Sub-formulae have the potential to be referenced both positively
and negatively, with each producing a different set of clauses. As such, there
are up to four possible pairs of clause sets that can be combined for a given
vertex, depending upon the connective and polarity. Additionally, each pair of
clause sets can be combined with any number of other pairs. For the conversion
to remain optimal, sub-formulae which are referenced more than once in the
same polarity have to be renamed if more than one new clause is generated by

4They have termed it the compact conversion since it produces less clauses than the struc-
ture preserving method, and requires less code to implement than the version of Boy de la
Tour’s algorithm given by Nonnengart et al.
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not renaming it. Otherwise, the calculation used in the non-sharing case can be
used.

The algorithm requires just one pass of the RBC from bottom to top, and
no extra work is required at each vertex to work out whether a sub-formulae
should be renamed or not, therefore the overall runtime is O(|V |).

The results presented in their paper show that, on average, the number of
clauses produced is about two thirds less than with the standard conversion
procedure, and about one tenth less than with the structure preserving method
(where implications never replace equivalences for sub-formula referenced in only
one polarity). The models used for testing are industrial benchmarks, so the
results have some relevance to practical situations. It is, however, the solving
time that we wish to reduce, and in a number of cases this happens, but for a
few the time required actually increases. Further tests need to be carried out
to determine if this difference is due to the CNF formula being harder, or if it
is a result of the variable ordering heuristics used by the solver. Either way, it
shows that simply reducing the number of clauses and variables in the formula
does not guarantee that it will take less time to find a solution.

5 Conclusions

For bounded model checking, the number of variables in the CNF formula pro-
duced must be at least k · |M |, where |M | is the number of variables in the
model5 since each variable must be given a value at each time step to specify a
unique counter example. The aim is to generate a set of clauses that allows the
values of these variables to be determined as easily and quickly as possible. It
is commonly thought that this means producing formulae with as few clauses
and variables as possible. There is a trade-off between these two goals however,
as is shown by the standard CNF conversion process — no extra variables are
introduced, but there may be an exponential number of clauses. Due to the
ability for modern SAT solvers to cope with millions of variables, the focus has
been on simply reducing the number of clauses in the formula, the reasoning
being that it will be easier to solve due to the fewer constraints present. While
this tactic works in certain circumstances, it is not guaranteed to do so in all
cases. As mentioned earlier, the structure-preserving algorithm only produces
clauses that contain two or three literals with the introduced variables appear-
ing in a very small number of those clauses. The compact method however,
generates significantly longer clauses with each introduced variable present in a
higher percentage of them. The effect that these differences have on the solving
process is rarely considered, if at all, and a better understanding of them may
yield better heuristics for generic CNF conversion algorithms.

The task of generating formula which are ‘easier’ to solve is somewhat more
difficult, due in no small part to a lack of understanding about what exactly
makes one representation of a formula ‘harder’ than another one. One reason

5This is not strictly true since cone of influence (COI) reduction can remove those variables
that have no effect on the ones in the property being checked.
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may be that the exact relationships between the variables are not captured as
succinctly in the ‘harder’ version, resulting in portions of the search space that
do not lead to a solution being cut off later than they should be. Recently,
Ostrowski et al. presented a method for obtaining information about such re-
lationships from general CNF formulae, and showed that it could dramatically
reduce the time required to find a solution [18]. This suggests that it is in-
deed the representation of relationships between the variables that determine
the difficulty of a particular formula.

Both papers presented that deal with conversion from PLTL to propositional
formulae show a speed-up in the solving time, which suggests that the encodings
are somehow ‘better’ than traditional methods. So far the only guide is that
smaller (fewer connectives) is better — which also lends weight to the hypothesis
that it is really due to the relationship between the variables being captured
more succinctly. The SNF representation for PLTL formulae is designed to
capture the relationship between model variables across different time steps,
and thus appears to be a good initial step in producing simpler formulae. If this
is indeed the case then the representation of the transition relation will also play
an important part in how long it takes to solve the resulting formula. In the
context of bounded model checking, larger and larger formulae are successively
checked as the bound increases, so it is also important that the formula size
grows as slowly as possible with respect it. Both methods achieve this with
linear growth, improving over the apparent O(k3) growth of the algorithm given
in [2] that Latvala et al. observed in their experiments.
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