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Abstract. The title YNAM stands for Parallel
SImulation (PSI) for Neuronal Assembly Model(NAM).
An instruction driven NAM processor [1] architecture had
been proposed to model a complex stochastic neuronal as-
sembly, capable of modeling a wide class of neuronal mod-
els including the stochastic model proposed in [2]. How-
ever, modeling the neuronal assembly using this processor
will be computationally inefficient as it does not include
special functional units to model the signal processing
characteristics of complex dendritic tree structure. This
paper proposes two processor architectures: one based on
mixed signal approach - the Mixed signal NAM (MNAM)
processor,and the other based on digital approach - the
Digital Dendritic NAM (DDNAM) processor. In reality,
modeling the complex brain functions and its fault sim-
ulation demands enormous computational resources be-
yond the number crunching capability of either a single
MNAM or a single DDNAM processor. The companion
paper, Part-I1 proposes a novel array architecture to meet
this end.

1 Introduction

Several analog VLSI designs have been proposed to
model a biological neuronal assembly. These de-
signs assume deterministic and point source models
for the neurons. However, in reality the neuronal
assemblies are of stochastic nature and the neurons
have finite dimensions. In this context, a novel in-
struction driven NAM processor[1] architecture had
been proposed to model a complex stochastic neu-
ronal assembly. NAM[1] is a general-purpose proces-
sor in the sense that it can model a wide class of
neuronal models including the neuronal model pro-
posed by Gopinath Kallianpur [2] - wherein a neuron
cell is considered as a thin linear cable upon which
the Wiener process is imposed. However, the NAM
processor[1] does not include specific functional units
to model the very important feature - the connectiv-
ity within and across the neuronal assemblies. This
connectivity is established through complex dendritic
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Figure 1: NAM processor.

tree structures. They receive vast bulk of cell’s synap-
tic input and sum them up sub-linearly which goes as
input to the soma. For some neuron types, spatially
extended dendritic trees exist to provide space for
a large number of quasi-independent dendritic com-
partments where the synaptic input to each compart-
ment is boosted by an expansive non-linearity[7]. The
absence of a specific functional unit for modeling the
dendrites in the NAM processor[1] puts it at a great
disadvantage when it is required to simulate a neu-
ronal conglomeration having thousands of intercon-
nected neurons.
This paper,
architectures-

Part-I proposes two processor

e based on mixed signal approach - the Mixed sig-
nal NAM (MNAM) processor

e based on digital approach - the Digital Dendritic
NAM (DDNAM) processor

both evolved from the NAM processor [1]. The moti-
vation for presenting two different architectures is for
providing a balance between cost, performance and
application needs.

In mixed signal model, custom-fabricated intercon-
nects are used to realize the RC model of the den-
drites and the MNAM processor models the soma-
axon portion. In the digital model (DDNAM), an
additional functional unit is integrated into the NAM
processor|[1] to incorporate dendritic tree modeling.

Biologically realistic simulation necessitates mod-
eling of hundreds of thousands of neurons with den-
drites. Such simulation requires an array of DDNAM



or MNAM processors. This paper and the compan-
ion paper, Part-II ushers in Deep Sub Micron (DSM)
technology into the realm of simulation and modeling
of biological neuronal assembly. Such arrays can be
used for fault simulation, modeling the functionality
of visual or auditory cortex and eventually the Brain
itself.

The following section deals with modeling of den-
drites which includes discussions on existing analog
modeling of dendritic tree, mixed signal modeling
and digital modeling. Section 3 contains the simula-
tion results and the comparative analysis of proposed
models.

2 Modeling of Dendritic Trees

2.1 Existing Analog Modeling of Den-
dritic Tree

In present analog VLSI models, the dendritic tree is
modeled as a multibranched, passive cable structure
with multiple synaptic sites as in Silicon Neuromorph
[3]. The core argument favoring analog VLSI is that
it has much better fault tolerance and lesser device
count. However, speed, programmability, stability
with respect to temperature and noise immunity are
poor for realistic simulation of a neuronal conglom-
eration. Additionally, the packing density of devices
is lesser which results in wastage of area.

2.2 Mixed Signal Modeling

To overcome the problem associated with a fully ana-
log based implementation, the dendrites are mod-
eled as analog, and a Mixed signal Neuronal Assem-
bly Model (MNAM) processor models the soma-axon
portion. This leads to the concept of mixed signal de-
sign. The proposed architecture embracing the mixed
signal domain - realizes the dendritic signal process-
ing of the synaptic inputs, through physical inter-
connects which are custom fabricated. Any dendritic
branch is treated as a cable having finite compart-
ments, each modeled as an RC network (refer Fig.2).
The functional units of the MNAM processor are se-
rial and operate at low clock frequencies as it simu-
lates only a single neuron (refer Fig.7). As the in-
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Figure 2: Dendritic tree with two quasi-independent
compartment.

terconnects also conform to the lossy transmission
line model (cable theory), the dendritic processing

is mapped onto them. Here the interconnect dimen-
sions are so varied to match the R and C values of
the dendrites. This exactly models the variations in
the signal characteristics of any synaptic input with
distance and time. This can be realized in a neu-
ronal conglomeration using interconnect based grid
structure and is presented in the companion paper,
Part-II.

Mixed signal architecture needs the inclusion of
Digital to Analog Converter(DAC) and Analog to
Digital Converter(ADC) to the NAM processor[1]. A
current source based DAC and a successive approx-
imation ADC is employed in the model. Extensive
simulations of the signal processing over the dendrites
and the processing within the MNAM processor has
led us to fix 11 bits for the ADC and DAC and 80 bit
floating point for the processor.
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Figure 3: MNAM processor.
2.3 Digital Modeling

The programmability and the speed of the mixed sig-
nal processor is limited when simulating a neuronal
conglomeration. By resorting to digital model the
benefits of multi-giga hertz DSM technology can be
fully utilized and this facilitates the simulation of sev-
eral neurons in a single NAM processor[1]. However,
the NAM processor[1] does not possess a specialized
functional unit to model the dendrites so as to sim-
ulate an ensemble of neurons. Hence a special func-
tional unit is integrated into the NAM processor][1]
to model the dendrites, which leads to a new Digi-
tal Dendritic Neuronal Assembly Model (DDNAM)
Processor.

2.3.1 Mathematical Model of Dendrites and
Method of Solution

A generic dendritic tree is shown in Fig.4. The depo-
larization voltages Vj i (x,t) of the dendrites are ob-
tained from a system of [2"T! — 1] Partial Differential
Equations (PDEs)(refer eqn.1) where ‘n’ is the order
of branching. The PDEs are reduced to s-domain al-
gebraic equations by Laplace Transformation. The
general solution of these PDEs and their correspond-
ing boundary conditions at the nodes and terminals
of the dendritic tree results in 2[2"T! — 1] simultane-
ous equations (refer eqn.2,3,4,5). These simultaneous
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Figure 4: Notation to be employed for a complete den-
dritic binary tree with 'n’ order of branching. Njx
are nodes. Each branch in the above tree having a
length of L\ is characterized by depolarization voltage
of Vj x(z,t), where j=1 to n and k=1 to 27~ for each j,
and O represents soma.

equations are solved by matrix methods.
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2.3.2 Architecture

A Triangular System Solver(TSS) is used to solve the
resulting matrix. The matrix method chosen for T'SS
is the LU decomposition. The architectural design of
the functional unit for performing the LU decompo-
sition is based on [4] to obtain Vj1(L11,s). To obtain
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Figure 5: DDNAM processor.

the time dependent voltage an inverse Laplace trans-
formation algorithm proposed by Zakian[6] is used.
This algorithm can be executed in the GPAU of the
DDNAM.

Due to parallel architecture of the functional units
of the DDNAM processor, it can simulate several neu-
rons with dendritic trees (refer Fig.7). Extensive sim-
ulation of neuronal assembly was performed to de-
termine the dynamic range of the intermediate pa-
rameter values, necessitating a 80 bit floating point
DDNAM processor.

The simulation results of the DDNAM processor,
and the MNAM processor along with the custom fab-
ricated interconnect model are presented in the next
section.

3 Simulation Results

DENDRITES MODELED BY RC
INTERCONNECT

DIGITAL DENDRITIC NAM

N: SOMA-AXON PORTION OF FINITE
DIMENSION OF A NEURON CELL
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Figure 6: Simulation diagram for DDNAM, and MNAM
with RC interconnects modeling the dendrites respec-
tively.

Functional level simulation of the proposed
DDNAM processor (Characteristic length of each
cable(A\)=0.65¢m, Internal resistance/characteristic
length(R) = 975012, Electrotonic length of each
cable=0.1539.), and the MNAM processor with
RC interconnects (Ry = 4KQ em?,Ry = 1500
em, Cyy = 1u F em™2 (vefer Fig.2), length of
each compartment=0.lem, No. of compartments/
branch=10.) was performed. A single DDNAM pro-
cessor simulates the configuration shown in Fig.6 by
event driven simulation. The depolarization voltage
at various nodes EF,GH,I.J (refer Fig.9,10) for the
input currents at nodes A,B,C,D (refer Fig.8) of Fig.6
are provided . The MNAM processor simulates a sin-
gle neuron cell’s soma-axon cable which is fed by the
RC interconnects as shown in Fig.6. The depolariza-
tion voltage at various nodes M,O (refer Fig.11) for



the input voltages at nodes K,L (refer Fig.11) of the
Fig.6 are provided.

4 Conclusion

T'wo processor architectures were proposed for mod-
eling stochastic neuronal assembly. Unlike the NAM
processor presented in [1] the proposed architecture
possesses the capability to model dendritic trees. The
motive behind presenting such architectures is to give
a balance between cost, performance and application
needs. A three neuron structure with single order
branching of dendrites was simulated using the pro-
posed DDNAM processor. In mixed signal model the
MNAM processor was used to simulate the soma-
axon cable of a neuron, the dendrites of single or-
der branching were simulated using custom-designed
interconnects modeling their RC network equivalent.
These architectures pave the way for evolving an ar-
ray processor for simulation of massive neuronal as-
semblies, discussed in the companion paper, Part-II.
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Figure 7: Comparitive analysis of Neuronal Models.
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Figure 8: Input Current at node A,B,C,D.
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Figure 9: Depolarized Voltage at node E,F,G,H.
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Figure 10: Depolarized Voltage at node I,J.

S

Voltage at K(milli Volts)
ousagBE
Voltage at L (milli Volts)
oB888BBE

0 1 2 3 4 5 6 0 1 2 3 4 5 6
Time (milli Seconds) Time (milli Seconds)

g8

Voltage (milliVolts)
o3 888883
Voltage at O (milli Volts)

o8& 888

0 20 20 490 & &0
Time (milli Seconds)

o 1 2 3 4 5 6 0
Time (milli Seconds)

Figure 11: Depolarized Voltage at node K,L,M,0O.



