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ANSWERS TO QUESTIONS

Q5.1. No.  The book takes a shorter time in its upward motion.  When it is sliding up the ramp its
acceleration is larger in magnitude,     g ksin cosθ µ θ+( ) , than when the book is sliding down with
acceleration     g ksin cosθ µ θ−( ) .

Q5.2 Kinetic friction is less than static friction.

Q5.3 Don’t slam on the brakes, but gradually increase pressure to keep the car from skidding with the
wheels locked.  (This is especially important on wet roads.)  With no relative sliding motion between
rubber and road, static friction can stop the car, instead of weaker kinetic friction.

Q5.4 The car exerts the same force as twenty people.  (This is twice as much as ten people on each end.)

Q5.5 A torque is exerted by the force of the water times the distance between the outlets.

Q5.6 Same principle as the centrifuge.  All the material inside the cylinder tends to move along a straight-
line path, but the walls of the cylinder exert an inward force to keep everything moving around in a
circular path.

Q5.7 The ball would not behave as it would when dropped on the Earth.  As the astronaut holds the ball,
she and the ball are moving with the same angular velocity.  The ball, however, being closer to the
center of rotation, is moving with a slower tangential velocity.  Once the ball is released, it acts
according to Newton's first law, and simply drifts with constant velocity in the original direction of its
velocity when released — it is no longer "attached" to the rotating space station.  Since the ball follows
a straight line and the astronaut follows a circular path, it will appear to the astronaut that the ball will
"fall to the floor".  But other dramatic effects will occur.  Imagine that the ball is held so high that it is
just slightly away from the center of rotation.  Then, as the ball is released, it will move very slowly
along a straight line.  Thus, the astronaut may make several full rotations around the circular path
before the ball strikes the floor.  This will result in three obvious variations with the Earth drop.  First,
the time to fall will be much larger than that on the Earth, even though the feet of the astronaut are
pressed into the floor with a force that suggests the same force of gravity as on Earth.  Second, the ball
may actually appear to bob up and down if several rotations are made while it "falls".  As the ball
moves in a straight line while the astronaut rotates, sometimes she is on the side of the circle on which
the ball is moving toward her and other times she is on the other side, where the ball is moving away
from her.  The third effect is that the ball will not drop straight down to her feet.  In the extreme case
we have been imagining, it may actually strike the surface while she is on the opposite side, so it looks
like it ended up "falling up".  In the less extreme case, in which only a portion of a rotation is made
before the ball strikes the surface, the ball will appear to move backward relative to the astronaut as it
falls.

Q5.8 Inertial reaction.  The water tends to move along a straight line, but the bucket pulls it in and around in
a circle.

Q5.9 There is no such force.  If the passenger slides outward across the slippery car seat, it is because the
passenger is moving forward in a straight line while the car is turning under him.  If the passenger
pushes hard against the outside door, the door is exerting an inward force on him.  No object is
exerting an outward force on him, but he should still buckle his seatbelt.

Q5.10 Sometimes seatbelts do not help.  Blood pressure cannot supply the force necessary both to balance the
gravitational force and to provide the centripetal acceleration, to keep blood flowing up to the pilot's
brain.

Q5.11. The speed changes. The tangential force component causes tangential acceleration.
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Q5.12 Steeper.  The acceleration of gravity is weaker on the moon.  Replace T with n and Figure 5.11 becomes
the free-body diagram for a car on a frictionless banked curve.  The angle of banking is given by the
equation     tan /θ = v rg2  from Example 5.6.

Q5.13 Face area and drag coefficient change when a skydiver opens a parachute.

Q5.14 The larger drop has higher terminal speed. In the case of spheres, the text demonstrates that terminal
speed is proportional to the square root of radius.  When moving with terminal speed, an object is in
equilibrium and has zero acceleration.

Q5.15 Lower air density reduces air resistance, so a tank-truck-load of fuel takes you farther.

Q5.16 If astronauts were indeed weightless, meaning that there were no gravitational force on them, they
would move in a straight-line path tangent to the orbit rather than following the orbit around the
Earth.  In the space shuttle just above the atmosphere, gravity is only slightly weaker than at the
Earth's surface.  There is no way to get "beyond" a long-range force described by an inverse square law.
Gravity does its job most clearly on an orbiting spacecraft, because the craft feels no other forces and is
in free fall.

Q5.17. The thesis is false. The moment of decay of a radioactive atomic nucleus (for example) cannot be
predicted. Quantum mechanics implies that the future is indeterminate. On the other hand, our sense
of free will, of being able to make choices for ourselves that can appear to be random, may be an
illusion. It may have nothing to do with the subatomic randomness described by quantum mechanics.
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PROBLEM SOLUTIONS

5.1 For equilibrium:   f F=  and 
  
n Fg=

Also,   f n= µ i.e., 
  
µ = =f

n
F
Fg

    
µs = ( )

75 0.  N
25.0 9.80  N

 = 
  

0 306.

and
    
µk = ( )

60 0
9 80
.
.
 N

25.0  N
 =

  
0 245.

5.2
  
Σ =F may y :     + − =n mg 0

  f n mgs s s≤ =µ µ

This maximum magnitude of static friction acts so long as the tires roll without skidding.

  Σ =F max x :   − =f mas

The maximum acceleration is   a gs= −µ

The initial and final conditions are:     xi = 0,     vi = =50 0 22 4. . mi/h  m/s ,       
    
vf = 0

    
v v a x xf i f i

2 2 2= + −( ) :     
− = −v gxi s f

2 2µ

(a)
    
x

v
gf

i=
2

2µ
    

xf =
( )

( )( ) =
22 4

2 0 100 9 80

2

2
.

. .

 m/s

 m/s   
256 m

(b)
    
x

v
gf

i=
2

2µ
    

xf =
( )

( )( ) =
22 4

2 0 600 9 80

2

2
.

. .

 m/s

 m/s   
42 7.  m

*5.3 (a) The person pushes backward on the floor. The floor pushes forward on
the person with a force of friction. This is the only horizontal force on
the person. If the person's shoe is on the point of slipping the static
friction force has its maximum value.

  Σ =F max x :   f n mas x= =µ

  
Σ =F may y :     n mg− = 0

  ma mgx s= µ
    
a gx s= = ( ) =µ 0 5 9 8 4 9. . . m/s  m/s2 2

    
x x v t a tf i xi x= + + 1

2
2

    
3 0 0

1
2

4 9 2 m  m/s2= + + ( ). t   t =   
1 11.  s

(b)
    
x gtf s= 1

2
2µ

    
t

x

g
f

s
= = =

2 2 3
µ

(
)( )

 m)
(0.8 9.8 m/s2   

0 875.  s
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*5.4 If all the weight is on the rear wheels,

(a)   F ma= :   µsmg ma=

But 
    
∆ = =x

at gts
2 2

2 2
µ

so
    
µs

x
g t

= ∆2
2 :

    
µs =

( )( )
( )

=
2 0 250 1609

4 96 2
.

) .

 mi  m/mi

(9.80 m/s  s2   
3 34.

(b) Time would increase, as the wheels would skid and only kinetic friction would act; or perhaps the
car would flip over.

*5.5 If the load is on the point of sliding forward on the bed
of the slowing truck, static friction acts backward on
the load with its maximum value, to give it the same
acceleration as the truck

  Σ =F max x :     − =f m axload

  
Σ =F may y :     n m g− =load 0

  − =µs xmg ma   a gx s= −µ

    
v v a x xxf xi x f i

2 2 2= + −( )     
0 2 02= + −( ) −( )v g xxi s fµ

(a)

    

x
v

gf
xi

s
= = ( )

( )( ) =
2 2

2
12

2 0 5 9 8µ
 m/s

 m/s2. .   
14 7.  m

(b) From the expression 
    
x v gf xi s= 2 2µ , 

  
neither mass affects the answer .

5.6     m Fsuitcase  kg,   N= =20 0 35 0. .

  Σ =F max x :     − + =20 0 0. cos N F θ

  
Σ =F may y :

    
+ + − =n F Fsinθ g 0

(a)     F cos .θ = 20 0 N
  
cos

.
.θ = =20 0

0 571
 N

35.0 N

  
θ = °55 2.

(b)
    
n F Fg= − = − ( )[ ]sin . .θ 196 35 0 0 821  N

    
n = 167 N
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5.7     m x t= ° = =3 00 2 00 1 50. . . kg,  = 30.0 ,   m,   sθ

(a)
    
x at= 1

2
2 :

    
2 00 1

2
2.  m 1.50 s= ( )a

    
a =

( )
=4 00

1 50 2
.

.   
1 78.  m/s2

    Σ = + + =F n f g am m : Along   x :     0 30 0− + ° =f mg masin .

    f m g a= ° −( )sin .30 0

Along   y :     n mg+ − ° =0 30 0 0cos .

    n mg= °cos .30 0

(b)
    
µk

f
n

m g a
mg

= =
° −( )
°

sin .
cos .

30 0
30 0     

µk
a

g
= ° −

°
=tan .

cos .
30 0

30 0   
0 368.

(c)     f m g a= ° −( )sin .30 0     f = ° −( ) =3 00 9 80 30 0 1 78. . sin . .
  

9 37.  N

(d)
    
v v a x xf i f i

2 2 2= + −( )  where 
    
x xf i− = 2 00.  m

    
vf

2 0 2 1 78 2 00 7 11= + ( )( ) =. . .  m /s2 2
    
vf = =7 11.  m /s2 2

  
2 67.  m/s

5.8     T f ak− = 5 00.  (for 5.00 kg mass)

    9 00 9 00. .g T a− =  (for 9.00 kg mass)

Adding these two equations gives:

    9 00 9 80 0 200 5 00 9 80 14 0. . . . . .( ) − ( )( ) = a

    a = 5 60.  m/s2

    ∴ = ( ) + ( )( ) = T 5 00 5 60 0 200 5 00 9 80. . . . .
  

37 8.  N
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*5.9 (a) See Figure to the right

(b)     68 0 2 2. − − =T m g m aµ (Block #2)

    T m g m a− =µ 1 1 (Block #1)

Adding,     68 0 1 2 1 2. − +( ) = +( )µ m m g m m a

    
a

m m
g=

+( ) − =68 0

1 2

. µ
  
1 29.  m/s2

    T m a m g= + =1 1µ
  

27 2.  N

5.10     − + =f mgsinθ 0 and     + − =n mgcosθ 0

with   f n= µ

yield     µ θs c= = ° =tan tan .36 0
  

0 727.     µ θk c= = ° =tan tan .30 0
  

0 577.

*5.11 (Case 1, impending upward motion)

Setting     Σ =Fx 0:     P ncos .50 0 0° − =

    f ns s,max = µ :     f P P Ps s,max cos . . . .= ° = ( ) =µ 50 0 0 250 0 643 0 161

Setting 
    
Σ =Fy 0:     P Psin . . . .50 0 0 161 3 00 9 80 0° − − ( ) =

    Pmax =
  

48 6.  N

(Case 2, impending downward motion)

As in Case 1,     f Ps,max .= 0 161

Setting 
    
Σ =Fy 0:     P Psin . . . .50 0 0 161 3 00 9 80 0° + − ( ) =

    Pmin =
  

31 7.  N

5.12 (a)
    
F

mv
r

= =
× ×( )

×
=

−

−

2 31 6 2

10

9 11 10 2 20 10

0 530 10

. .

.

 kg  m/s

 m   
8 32 10 8. × −  N  inward

(b)
    
a

v
r

= =
×( )
×

=−

2 6 2

10

2 20 10

0 530 10

.

.

 m/s

 m   
9 13 1022. ×  m/s   inward2
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5.13     m r= =3 00 0 800. , . kg   m . The string will break if the tension
exceeds the weight corresponding to 25.0 kg, so

    T Mgmax . .= = ( ) =25 0 9 80 245 N

When the 3.00 kg mass rotates in a horizontal circle, the tension
causes the centripetal acceleration,

so
    
T

mv
r

v= = ( )2 23 00
0 800
.
.

Then 
    
v

rT
m

T T2 0 800
3 00

0 800
3 00

0 800 245
3 00

65 3= = ( ) ≤ ( ) = ( ) =.
.

.
.

.
.

. /max  m s2 2

and     0 65 3≤ ≤v .

or
    

0 8 0≤ ≤v . 8 m/s

*5.14
    
v

r
T

= = ( ) =2 2 3 00
12 0

1 57
π π .

.
.

 m
 s

 m/s

(a)
    
a

v
r

=
2

    
a = ( ) =

1 57
3 00

2.
.

 m/s
 m   

0 822.  m/s  toward the center2

(b) For no sliding motion,
    
f mas = = ( ) =45 0 0 822. . kg  m/s2

  
37 0.  N  toward the center

(c)   f mgs = µ
  

µ = ( ) =
37 0.  N

45.0 kg 9.80 m/s2   
0 0839.

5.15   n mg= since
    
ay = 0

The force causing the centripetal acceleration is the
frictional force f.

From Newton's second law
    
f ma

mv
rc= =

2

But the friction condition is   f ns≤ µ

i.e., 
    

mv
r

mgs

2
≤ µ

    
v r gs≤ = ( )( )µ 0 600 35 0 9 80. . . m  m/s2

  v ≤   
14 3.  m/s
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5.16
    
T mgcos . . .5 00 80 0 9 80° = = ( )( ) kg  m/s2

(a)     T = 787 N:   T =
    

68 6 784.  N  N( ) + ( )i j

(b)     T macsin .5 00° = :
    

ac = 0 857.  m/s2  toward the center of the circle.

The length of the wire is unnecessary information. We could, on the
other hand, use it to find the radius of the circle, the speed of the bob,
and the period of the motion.

5.17 Let the tension at the lowest point be T.

  Σ =F ma:
    
T mg ma

mv
rc− = =

2

    
T m g

v
r

= +






2

    
T = + ( )










=85 0 9 80

8 00
10 0

1 38
2

. .
.

.
. kg  m/s

 m/s
 m

 kN > 1000N2

  
He doesn t make it across the river because the vine breaks.′

5.18 (a)
    
Σ = =F ma

mv
Ry y

2

    
mg n

mv
R

− =
2

  n =
    

mg
mv

R
−

2

(b) When     n = 0, 
    
mg

mv
R

=
2

Then,   v =
  

gR

5.19
    
Σ = = +F

mv
r

mg ny

2

But     n = 0 at this minimum speed condition, so

    

mv
r

mg v gr
2

9 80 1 00= ⇒ = = ( )( ) =. . m/s  m2
  

3 13.  m/s
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*5.20 (a)
    
a

v
rc = = ( ) =
2 24 00

12 0
.

.
 m/s

 m   
1 33.  m/s2

(b)     a a ac t= +2 2

    a = ( ) + ( ) =1 33 1 202 2. .
  
1 79.  m/s2

at an angle 
    
θ =






=−tan 1 a

a
c

t   
47 9. ° inward

5.21 (a)
    
a

v
rc =
2

    

r
v
ac

= = ( )
( ) =

2 213 0

2 9 80

.

.

 m/s

 m/s2   
8 62.  m

(b) Let n be the force exerted by the rail.

Newton's law gives
    
Mg n

Mv
r

+ =
2

    
n M

v
r

g M g g= −






= −( ) =

2
2

    
Mg,  downward

(c)
    
a

v
rc =
2

    
ac =

( ) =
13 0

20 0

2.
.
 m/s

 m   
8 45.  m/s2

If the force exerted by the rail is     n1,

then
    
n Mg

Mv
r

Mac1

2
+ = =

    n M a gc1 = −( )        which is   < 0, since     ac = 8 45.  m/s2

Thus, the normal force would have to point away from the center of the curve. Unless they have
belts, the riders will fall from the cars. To be safe we must require     n1 to be positive. Then   a gc > .
We need

    

v
r

g
2
> or

    
v rg> = ( )( )20 0 9 80. . m  m/s2

    v > 14 0.  m/s



Chapter 5

109

5.22 (a)   a g bv= −

When   v vT= ,     a = 0 and   g bvT=
  
b

g
vT

=

The Styrofoam falls 1.50 m at constant speed   vT  in 5.00 s.

Thus,
    
v

y
tT = = =1 50

0 300
.

.
 m

5.00 s
 m/s

Then
    
b = =9 80.  m/s

0.300 m/s

2

  
32 7 1.  s−

(b) At     t = 0,     v = 0  and   a g= =
  

9 80.  m/s2  down

(c) When      v = 0 150.  m/s,
    
a g bv= − = − ( )( ) =−9 80 32 7 0 1501. . . m/s  s  m/s2

  
4 90 2.  m/s  down

*5.23 (a) At terminal velocity,   R v b mgT= =

    
∴ = =

× ( )
×

=
−

− 
 kg  m/s

 m/s

2

b
mg
vT

3 00 10 9 80

2 00 10

3

2

. .

.   
1 47.  N s/m⋅

(b) From Equation 5.6, the velocity of the bead is

    
v v eT

bt m= −( )−1 /
    v vT= 0 632.   when     e

bt m− =/ .0 368

or at time 
    
t

m
b

= −

 ( ) =ln .0 368

  
2 04 10 3. × − s

(c) At terminal velocity,   R v b mgT= = =
  

2 94 10 2. × − N

5.24 (a)
  
ρ = m

V
,     A = 0 0201.  m2 ,

    
R ADv mgT= =1

2
2ρair

    
m V= = ( )




=ρ πbead

3 g/cm  cm  kg0 830
4
3

8 00 1 783. . .

Assuming a drag coefficient of     D = 0 500.  for this spherical object, and taking the density of air at
20°C from the endpapers, we have

    

vT =
( )( )
( )( ) =

2 1 78 9 80

0 0201

. .

.

 kg  m/s

0.500 1.20 kg/m  m

2

3 2   
53 8.  m/s

(b)
    
v v gh ghf i

2 2 2 0 2= + = + :

    

h
v

g
f= = ( )

( ) =
2 2

2
53 8

2 9 80

.

.

 m/s

 m/s2   
148 m
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5.25 (a)   v t v ei
ct( ) = −

    v v ei
c20 0 5 00 20 0. . . s( ) = = − ,     vi = 10 0.  m/s

So     5 00 10 0 20 0. . .= −e c and
    
− = ( )20 0 1

2
. lnc

    
c = −

( )
=

ln

.

1
2

20 0   
3 47 10 2 1. × − −s

(b) At     t = 40 0.  s     v e c= ( ) = ( )( ) =−10 0 10 040 0. .. m/s  m/s 0.250
  

2 50.  m/s

(c)   v v ei
ct= −

  
a

dv
dt

cv ei
ct= = − =−

  
−c v

5.26   Σ =F max x :
    
− = =kmv ma m

dv
dtx

2

    
− =∫ ∫ −k dt

t
v

v
v

dv
f0

2

    

− −( ) =
−

= − +
−

k t
v

v

v

v v
f

f
0

1
1 11

  v =

    

v

k tv
f

f1+

5.27 (a) When   v vT= ,     a = 0,     Σ = − + =F mg CvT
2 0

    
v

mg
CT = − = −

×( )( )
×

=
−

−

4 80 10 9 804

5

. . kg  m/s

2.50 10  kg/m

2

  
−13 7.  m/s

(b)
t(s) x(m) v(m/s) F(mN)

    
a m/s2( )

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2

0
0

–0.392
–1.168
–2.30
–3.77
–5.51
–7.48
–9.65

–11.96
–14.4

0
–1.96
–3.88
–5.6832
–7.3068
–8.7107
–9.8803

–10.823
–11.563
–12.13
–12.56

– 4.704
– 4.608
– 4.3276
–3.8965
–3.3693
–2.8071
–2.2635
–1.7753
–1.3616
–1.03
–0.762

–9.8
–9.5999
–9.0159
–8.1178
–7.0193
–5.8481
–4.7156
–3.6986
–2.8366
–2.14
–1.59

... listing results after each fifth step

3
4
5

–27.4
–41.0
–54.7

–13.49
–13.67
–13.71

–0.154
–0.0291
–0.00542

–0.321
–0.0606
–0.0113

The hailstone reaches 99.95% of   vT  after 5.0 s, 99.99% of   vT  after 6.0 s, 99.999% of   vT  after 7.4 s.
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5.28 (a) At     v v a mg bvT T= = − + =,    0 0,
    
v

mg
bT = =

×( )( )
×

=
−

−

3 00 10 3

2

.  kg 9.80 m/s

3.00 10  kg/s

2

  
0 980.  m/s

(b) t(s) x(m) v(m/s) F(mN)     a (m/s2)

0
0.005
0.01
0.015

2
2
1.999755
1.9993

0
–0.049
–0.09555
–0.13977

–29.4
–27.93
–26.534
–25.2

–9.8
–9.31
–8.8445
–8.40

. . . we list the result after each tenth iteration

0.5
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65

1.990
1.965
1.930
1.889
1.845
1.799
1.752
1.704
1.65
1.61
1.56
1.51
1.46

–0.393
–0.629
–0.770
–0.854
–0.904
–0.935
–0.953
–0.964
–0.970
–0.974
–0.977
–0.978
–0.979

–17.6
–10.5
–6.31
–3.78
–2.26
–1.35
–0.811
–0.486
–0.291
–0.174
–0.110
–0.0624
–0.0374

–5.87
–3.51
–2.10
–1.26
–0.754
–0.451
–0.270
–0.162
–0.0969
–0.0580
–0.0347
–0.0208
–0.0125

Terminal velocity is never reached. The leaf is at 99.9% of   vT  after 0.67 s.  The fall to the ground
takes about 2.14 s.  Repeating with     ∆ =t 0 001.  s , we find the fall takes 2.14 s.

*5.29 (a) At terminal velocity,     Σ = = − +F mg CvT0 2 .

    
C

mg
vT

= =
( )( )

( )
=2 2

0 142 9 80. . kg  m/s

42.5 m/s

2

  
7 70 10 4. × − kg/m

(b)
    
Cv2 4 27 70 10= ×( )( ) =−.  kg/m 36.0 m/s

  
0.998 N

(c)
Elapsed
Time (s)

Altitude
(m)

Speed
(m/s)

Resistance
Force (N)

Net
Force (N)

Acceleration

  
m/s2( )

0.00000
0.05000

…
2.95000
3.00000
3.05000

…
6.25000
6.30000

0.00000
1.75792

48.62327
48.64000
48.63224

1.25085
–0.10652

36.00000
35.15842

0.82494
0.33476

–0.15527

–26.85297
–27.14736

–0.99849
–0.95235

–0.00052
–0.00009

0.00002

0.55555
0.56780

–2.39009
–2.34395

–1.39212
–1.39169
–1.39158

–0.83605
–0.82380

–16.83158
–16.50667

–9.80369
–9.80061
–9.79987

–5.88769
–5.80144

Maximum height is about 
  

49 m . It returns to the ground after about 
  

6 3.  s  with a speed of

approximately 
  

27 m/s .
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5.30 (a) time(s) x(m) y(m) with θ we find range

0
0.100
0.200
0.400
1.00
1.92
2.00
4.00
5.00
6.85

0
7.81

14.9
27.1
51.9
70.0
70.9
80.4
81.4
81.8

0
5.43

10.2
18.3
32.7
38.5
38.5
26.7
17.7
0

30.0°
35.0°
25.0°
20.0°
15.0°
10.0°
17.0°
16.0°
15.5°
15.8°
16.1°
15.9°

86.410 m
81.8 m
90.181 m
92.874 m
93.812 m
90.965 m
93.732 m
93.8398 m
93.829 m
93.839 m
93.838 m
93.8402 m

(b)   range =
  

81 8.  m (c) So we have maximum range at θ =
  

15 9. °

5.31
    
F

Gm m
r

= =
×( )( )( )
( )

=
−

1 2
2

11

2

6 672 10 2 2

0 30

.

.   
2 97 10 9. × − N

5.32
    
F k

q q

r
e=
( )

= ×( ) +( ) −( )
( )

1 2

12
2

9
28 99 10

40 40

2000
.   = − × =3 60 106.  N (attractive) 

  
3 60 106. ×  N  downward

5.33 For two 70–kg persons, modeled as spheres,

    
F

Gm m
rg = =

× ⋅( )( )( )
( )

−
1 2
2

11

2

6 67 10 70 70

2

. / N m kg  kg  kg

 m

2 2

  
~ 10 7− N

*5.34 (a)
    
v

r
T

= =
×( ) 




=2 2 3 84 10

27 3
1

86 400

8
π π .

.

 m

 d
 d

 s   
1 02 103. × m/s

(b)
    
a

v
rc = =

×( )
×

=
2 3 2

8

1 02 10

3 84 10

.

.

 m/s

 m   
2 72 10 3. × −  m/s toward Earth2

(c)
        
g = −GM

r
E

2 ~ . Newton did not know the value of G or   ME . To follow his logic about the inverse-

square law, we make a ratio relating the surface gravitational field     g GM RE Esurf =
2  and that at

the Moon     g GM rr E= 2 .

    

g
g

GM
r

R
GM

r E E

Esurf
= 2

2

    
g g

R
rr
E= = ×

×






=surf

2 m/s
 m
 m

2

2

6

8

2

9 8
6 37 10
3 84 10

.
.
.   

2 70 10 3. × −  m/s toward Earth2

The two values agree within 1%.
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5.35
    
a

MG

RE

=
( )

= =
4

9 8
162

.  m/s2

  
0 613.  m/s2  toward the earth

*5.36 (a) We require that 
    

GM m
r

mv
r

E
2

2
= , but 

    
g

M G
R

E

E
= 2

In this case     r RE= 2 therefore, 
    

g v
RE4 2

2
=

or 
    
v

gRE= =
×( )

=
2

9 80 6 37 10

2

6. . m/s  m2

  
5 59 103. × m/s

(b)
    
T

r
v

= =
( ) ×( )

×
=2 2 2 6 37 106

π π .  m

5.59 10  m/s3   
239 min

(c)
    
F

GM m

R

mgE

E

=
( )

= =
( )( )

=
2 4

300 9 80
2

 kg  m/s

4

2.

  
735 N

*5.37 The orbit radius is     r = × + = ×1 70 10 100 1 80 106 6. . m  km  m .

  Σ =F m as :
    

GM m
r

m r
rT

m am s s
s2

2 2 2

2
2= =π

(a)

    

a
GM

r
m= =

×( ) ×( )
×( )

=
−

2

11 22

6 2

6 67 10 7 40 10

1 80 10

. .

.  m
 
  
1 52.  m/s2

(b)
    
a

v
r

=
2

    
v = ( ) ×( ) =1 52 1 80 106. . m/s  m2  

  
1 66.  km/s

(c)
    
v

r
T

= 2π

    
T =

×( )
×

=
2 1 80 10

1 66 10

6

3

π .

.
 
  

6820 s
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*5.38 Applying Newton's second law to each object gives:

(1)     T f m g a1 1 2= + +( )sinθ

(2)     T T f m g a2 1 2− = + +( )sinθ

(3)     T M g a2 = −( )

Parts (a) and (b): Equilibrium (    a = 0)
and frictionless incline (    f f1 2 0= = )

Under these conditions, the equations reduce to

(1’)
    

T mg1 2= sinθ

(2’)     T T mg2 1− = sinθ

(3’)     T Mg2 =

Substituting (1’) and (3’) into equation (2’) then gives 
    

M m= 3 sinθ

so equation (3’) becomes 
    

T mg2 3= sinθ

Parts (c) and (d):     M m= 6 sinθ  (double the value found above), and     f f1 2 0= = . With these conditions
present, the equations become

    T m g a1 2= +( )sinθ     T T m g a2 1− = +( )sinθ  and     T m g a2 6= −( )sinθ

Solved simultaneously, these yield

    

a
g=
+

sin
sin
θ
θ1 2

, 

    

T mg1 4
1

1 2
= +

+






sin
sin
sin

θ θ
θ

and

    

T mg2 6
1

1 2
= +

+






sin
sin
sin

θ θ
θ

Part (e): Equilibrium (    a = 0) and impending motion up the incline so     M M= max  while

    f mgs1 2= µ θcos  and     f mgs2 = µ θcos , both directed down the incline. Under these
conditions, the equations become

    T mg s1 2= +( )sin cosθ µ θ ,     T T mg s2 1− = +( )sin cosθ µ θ , and     T M g2 = max ,

which yield 
    

M m smax sin cos= +( )3 θ µ θ

Part (f): Equilibrium (    a = 0) and impending motion down the incline so     M M= min , while

    f mgs1 2= µ θcos  and     f mgs2 = µ θcos , both directed up  the incline. Under these
conditions, the equations are

    T mg s1 2= −( )sin cosθ µ θ ,     T T mg s2 1− = −( )sin cosθ µ θ , and     T M g2 = min ,

which yield 
    

M m smin sin cos= −( )3 θ µ θ

Part (g):
    

T T M g M g mgs2 2 6,max ,min max min cos− = − = µ θ
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5.39 (a) The crate is in equilibrium, just before it starts to move. Let the normal force acting on it be n and
the friction force,   fs.

Resolving vertically:
    
n F Pg= + sinθ

Horizontally:     P fscosθ =

But,   f ns s≤ µ

i.e., 
    
P F Ps gcos sinθ µ θ≤ +( )

or 
    
P Fs s gcos sinθ µ θ µ−( ) ≤

Divide by   cosθ :
    
P Fs s g1−( ) ≤µ θ µ θtan sec

Then
    

P
Fs g

s
minimum =

−
µ θ

µ θ
sec

tan1

(b)
    
P = ( )

−
0 400 100

1 0 400
. sec

. tan
 N θ

θ

θ  (deg) 0.00 15.0 30.0 45.0 60.0

P (N) 40.0 46.4 60.1 94.3 260

If the angle were   68 2. ° or more, the expression for P would go to infinity and motion would
become impossible.

5.40 With motion impending,     n T mg+ − =sinθ 0

    f mg Ts= −( )µ θsin

and     T mg Ts scos sinθ µ µ θ− + = 0

so
    
T

mgs

s
=

+
µ
θ µ θcos sin

To minimize T, we maximize     cos sinθ µ θ+ s

    

d
d s sθ

θ µ θ θ µ θcos sin sin cos+( ) = = − +0

(a)     θ µ= = =− −tan tan 0.3501 1
s   

19 3. °

(b)
    
T =

( )( )
° + °

=
0 350 1 30 9 80

19 3 0 350 19 3

. . .

cos . . sin .

 kg  m/s2

  
4 21.  N
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*5.41 For the system to start to move when released,
the force tending to move     m2  down the incline,

    m g2 sinθ , must exceed the maximum friction
force which can retard the motion:

    f f f n ns smax max max= + = +1 2 1 1 2 2, , , ,µ µ

    f m g m gs smax , , cos= +µ µ θ1 1 2 2

From Table 5.1,     µs, .1 0 610= (aluminum on steel)

and     µs, .2 0 530= (copper on steel).

With     m m1 22 00 6 00 30 0= = = °. . . , kg,   kg,  θ

the maximum friction force is found to be     fmax  N= 38 9. .

This exceeds the force tending to cause the system to move,

    
m g2 6 00 9 80 29 4sin . . sin .θ = ( ) ° = kg  m/s 30  N2

Hence, 
  

the system will not start to move when released .

The friction forces increase in magnitude until the total friction force retarding the motion,

    f f f= +1 2, equals the force tending to set the system in motion. That is, until

    
f m g= =2 29 4sin .θ  N .

*5.42     Σ =F m a1 1 :     − ° − + =m g f T m ak1 1 135 0sin . ,

    −( )( ) ° − ( )( ) ° + = ( )3 50 9 80 35 0 3 50 9 80 35 0 3 50 1 50. . sin . . . cos . . .µs T (1)

    Σ =F m a2 2 :     + ° − − =m g f T m ak2 2 235 0sin . ,

    +( )( ) ° − ( )( ) ° − = ( )8 00 9 80 35 0 8 00 9 80 35 0 8 00 1 50. . sin . . . cos . . .µs T (2)

Solving equations (1) and (2) simultaneously gives

(a)
    
µk = 0 0871.

(b)
    

T = 27 4.  N
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*5.43 (a) First, draw a free-body diagram, (top figure) of the top block.

Since 
    
ay = 0,     n1 19 6= .  N

And     f nk k= = ( ) =µ 1 0 300 19 6 5 88. . . N  N

  Σ =F max T      10 0 5 88 2 00. . . N  N  kg− = ( )aT

or     aT = 2 06.  m/s2 (for top block)

Now draw a free-body diagram (middle figure) of the bottom
block and observe that

  Σ =F Max B gives     f aB= = ( )5 88 8 00. . N  kg

or     aB = 0 735.  m/s2  (for the bottom block)

In time t, the distance each block moves (starting from rest) is

    
d a tT T= 1

2
2

and
    
d a tB B= 1

2
2

For the top block to reach the right edge of the bottom block,
(see bottom figure) it is necessary that

  d d LT B= +  or 
    
1
2

2 1
2

22 06 0 735 3 00. . . m/s  m/s  m2 2( ) = ( ) +t t

which gives:   t =   
2 13.  s

(b) From above,
    
dB = ( )( ) =1

2
20 735 2 13. . m/s  s2

  
1 67.  m
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*5.44 (a)

    f n1 1  and   appear in both diagrams as action-reaction pairs

(b) 5.00 kg:   Σ =F max :     n m g1 1 5 00 9 80 49 0= = ( ) =. . .  N     f T1 0− =

    T f mg= = = ( )( ) =1 0 200 5 00 9 80µ . . .
  

9 80.  N

10.0 kg:   Σ =F max :     45 0 10 01 2. .− − =f f a

    
Σ =Fy 0:     n n2 1 98 0 0− − =.

    f n n2 2 1 98 0 0 20 49 0 98 0 29 4= = +( ) = +( ) =µ µ . . . . .  N

    45 0 9 80 29 4 10 0. . . .− − = a   a =   
0 580.  m/s2

*5.45 We must consider separately the disk when it is in contact with
the roof and when it has gone over the top into free fall. In the first
case, we take x and y as parallel and perpendicular to the surface
of the roof:

  
Σ =F may y :     + − =n mgcosθ 0     n mg= cosθ

then friction is     f n mgk k k= =µ µ θcos

  Σ =F max x :     − − =f mg mak xsinθ

    a g gx k= − − = − ° − °( ) = −µ θ θcos sin . cos sin . .0 4 37 37 9 8 9 03 m/s  m/s2 2

The Frisbee goes ballistic with speed given by

    
v v a x xxf xi x f i

2 2 22 15 2 9 03 10 0 44 4= + −( ) = ( ) + −( ) −( ) = m/s  m/s  m  m s2 2 2. . /

    
vxf = 6 67.  m/s

For the free fall, we take x and y horizontal and vertical:

    
v v a y yyf yi y f i

2 2 2= + −( )

    
0 6 67 37 2 9 8 10 372= °( ) + −( ) − °( ). sin . sin m/s  m/s  m 2 yf

    
yf = + ( ) =6 02

4 01
19 6

2

.
.
.

 m
 m/s
 m/s2   

6 84.  m
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5.46 (a) While the car negotiates the curve, the accelerometer is at the angle θ .

Horizontally: 
    
T

mv
r

sinθ =
2

Vertically:     T mgcosθ =

where r is the radius of the curve, and v is the speed of the car.

By division,
    
tanθ = v

rg

2

Then
    
a

v
r

gc = =
2

tanθ :
    
ac = ( ) °9 80 15 0. tan . m/s2

  ac =   
2 63.  m/s2

(b)
    
r

v
ac

=
2

    
r = ( ) =

23 0
2 63

2.
.

 m/s
 m/s2   

201 m

(c)
    
v rg2 201 9 80 9 00= = ( )( ) °tan . tan .θ  m  m/s2

  v =
  
17 7.  m/s

*5.47 (a) Since the object of mass     m2  is in equilibrium, 
    
Σ = − =F T m gy 2 0,

or   T =
    

m g2

(b) The tension in the string provides the required centripetal acceleration of the puck.

Thus,   F Tc = =
    

m g2

(c) From 
    
F

m v
Rc = 1

2

we have  
    
v

RF
m

c= =
1     

m
m

gR2

1
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*5.48 (a) See Figure (a) to the right.

(b) See Figure (b) to the right.

(c) For the pin,

  
Σ =F may y :     Ccosθ − =357 0 N

    C = 357 N/cosθ

For the foot,

  
Σ =F may y :     + − =n CB cosθ 0

  nB =
  

357 N

(d) For the foot with motion impending,

  Σ =F max x :     + − =f Cs ssinθ 0

    µ θs B sn C= sin

    
µ θ θ θ

θs
s

B

s s
s

C
n

= = ( ) =sin cos sin
tan

357
357

 N/
 N

(e) The maximum coefficient is

    µ θs s= = ° =tan tan .50 2
  
1 20.

5.49 (a) Since the centripetal acceleration of a person is
downward (toward the axis of the earth), it is
equivalent to the effect of a falling elevator.
Therefore,

    
′ = −F F

mv
rg g

2
 or 

  
F Fg g> ′

(b) At the poles     v = 0,and 
    
′ = = = ( ) =F F mgg g 75 0 9 80. .

  
735 N  down.

At the equator, 
    
′ = − = − ( ) =F F mag g c 735 75 0 0 0337 N  N. .

  
732 N  down.
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5.50 On the level road, the centripetal acceleration must be provided by
a force of friction between car and road. However, if the road is
banked at an angle θ , the normal force, n, has a horizontal
component n sin θ  pointing toward the center of the circular path
followed by the car. We assume that only the component n sin θ
causes the centripetal acceleration. Therefore, the banking angle
we calculate will be one for which no frictional force is required. In
other words, a car moving at the correct speed (13.4 m/s) can
negotiate the curve even on an icy surface. Newton’s second law
written for the radial direction gives

    
n

mv
r

sinθ =
2

(1)

The car is in equilibrium in the vertical direction.

Thus, from 
    
ΣFy = 0, we have     n mgcosθ = (2)

Dividing (1) by (2) gives     tan /θ = v rg2

  

θ = ( )
( )( )













=−tan

.

.
1

213 4

50 9 80

 m/s

 m  m/s2   
20 1. °

If a car rounds the curve at a speed lower than 13.4 m/s, the driver will have to rely on friction to
keep from sliding down the incline. A driver who attempts to negotiate the curve at a speed
higher than 13.4 m/s will have to depend on friction to keep from sliding up the ramp.

5.51 Standing on the inner surface of the rim, and moving with it, each person will feel a normal force
exerted by the rim. This inward force causes the   3 00.  m/s2 centripetal acceleration:

    
a

v
rc =
2

:
    
v a rc= = ( )( ) =3 00 60 0 13 4. . . m/s  m  m/s2

The period of rotation comes from 
    
v

r
T

= 2π
:

    
T

r
v

= = ( ) =2 2 60 0
13 4

28 1
π π .

.
.

 m
 m/s

 s

so the frequency of rotation is
    
f

T
= = = 



 =

1 1
28 1

1
28 1

60
. . s  s

 s
1 min   

2 14.  rev/min
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5.52
    
v

mg
b

bt
m

= 

 − −











1 exp where     exp( )x ex=  is the exponential function.

At   t →∞ , 
  
v v

mg
bT→ =

At     t = 5 54.  s,
    
0 500 1

5 54
9 00

. exp
.

.
v v

b
T T= − − ( )

















 s
 kg

    
exp

.
.

.
− ( )




=b 5 54

9 00
0 500

 s
 kg

;

    

− ( ) = = −b 5 54
0 500 0 693

.
ln . .

 s
9.00 kg

;

    
b = ( )( )

=
9 00 0 693

5 54
1 1

. .
.

.
 kg

 s
3 m/s

(a)
  
v

mg
bT =

    
vT =

( )( )
=

9 00.  kg 9.80 m/s

1.13 kg/s

2

  
78 3.  m/s

(b)
    
0 750 1

1 13
9 00

. exp
.

.
v v

t
T T= − −









 s     

exp
.

.
.

−



 =

1 13
9 00

0 250
t

 s

    
t =

−
=9 00 0 250

1 13
. (ln . )

.
 s

  
11 1.  s

(c)
    

dx
dt

mg
b

bt
m

= 

 − −










1 exp ;
    

dx
mg
b

bt
mx

x
dt

t
= 



 − −









∫∫ 00

1 exp

    
x x

mgt
b

m g
b

bt
m

mgt
b

m g
b

bt
m

t

− = +






−



 = +







−



 −







0

2

2
0

2

2 1exp exp

At     t = 5 54.  s,

    

x = ( ) +
( ) ( )

( )













−( ) −[ ]9 00 9 80
5 54

1 13

9 00 9 80
0 693 1

2

2. .
.

.

. .
exp . kg  m/s

 s
 kg/s

 kg  m/s

1.13  m/s
2

2

    x = + ( ) =434 626 m  m -0.500
  
121 m

5.53 (a)
    
n

mv
R

=
2

    f mg− = 0

  f ns= µ
    
v

R
T

= 2π

  T =
    

4 2π µR
g

s

(b)   T =
  

2.54 s

  
ω = 



 =

1 60 rev
2.54 s

 s
min   

23 6.  rev/min

motion               forces
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5.54 At terminal velocity, the accelerating force of gravity is balanced by frictional drag:

    mg arv br v= + 2 2

(a)
    
mg v v= ×( ) + ×( )− −3 10 10 0 870 109 10 2. .

For water, 
    
m V= = ( )





−ρ π1000
4
3

10 5 3
 kg/m  m3

    
4 11 10 3 10 10 0 870 1011 9 10 2. . .× = ×( ) + ×( )− − −v v

Assuming v is small, ignore the second term on the right hand side: 
    

v = 0 0132.  m/s

(b)
    
mg v v= ×( ) + ×( )− −3 10 10 0 870 108 8 2. .

Here we cannot ignore the second term because the coefficients are of nearly equal magnitude.

    
4 11 10 3 10 10 0 870 108 8 8 2. . .× = ×( ) + ×( )− − −v v

    
v =

− ± ( ) + ( )( )
( ) =

3 10 3 10 4 0 870 4 11
2 0 870

2. . . .
.   

1 03.  m/s

(c)
    
mg v v= ×( ) + ×( )− −3 10 10 0 870 107 6 2. .

Assuming     v > 1 m/s, and ignoring the first term:

    
4 11 10 0 870 105 6 2. .× = ×( )− − v   v =

  
6 87.  m/s

5.55
    
Σ = − − = ° − ° − = =F L T mg L T may y y ycos . sin . .20 0 20 0 7 35 0 N

    
Σ = + = ° + ° =F L T L T m

v
rx x x sin . cos .20 0 20 0
2

    
m

v
r

2 2

0 750
60 0 20 0

16 3= ( )
( ) °

=.
. cos .

. kg
35.0 m/s

 m
 N

    ∴ ° + ° =  NL Tsin . cos . .20 0 20 0 16 3

    L Tcos . sin . .20 0 20 0 7 35° − ° =  N

    
L T+ °

°
=

°
cos .
sin .

.
.

20 0
20 0

16 3
20 0

 N
sin     

L T− °
°
=

°
sin .
cos .

.
.

20 0
20 0

7 35
20 0

 N
cos

    
T cot . tan .

.
sin .

.
cos .

20 0 20 0
16 3

20 0
7 35

20 0
° + °( ) =

°
−

°
 N  N

    T 3 11 39 8. .( ) =  N   T =
  

12 8.  N
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*5.56 (a) The bead moves in a circle with radius     r R= sinθ  at a
speed of

    
v

r
T

R
T

= =2 2π π θsin

The normal force has
an inward radial component of     nsinθ
and an upward component of     ncosθ .

  
Σ =F may y :     n mgcosθ − = 0

or
    
n

mg=
cosθ

Then 
    
Σ = =F n m

v
rx sinθ
2

 becomes 
    

mg m
R

R
Tcos

sin
sin

sin
θ

θ
θ

π θ





= 





2 2

which reduces to 
    

g R
T

sin
cos

sinθ
θ

π θ= 4 2

2 .

This has two solutions:   sinθ θ= ⇒ = °0 0 (1)

and 
    
cosθ

π
= gT

R

2

24
(2)

If     R = 15 0.  cm and     T = 0 450.  s , the second solution yields

  
cos

. .

.
.θ

π
=
( )( )

( )
=

9 80 0 450

4 0 150
0 335

2

2

 m/s  s

 m

2

and   θ = °70 4.

Thus, in this case, the bead can ride at two positions 
  
θ = °70 4.  and 

  
θ = °0 .

(b) At this slower rotation, solution (2) above becomes

  
cos

. .

.
.θ

π
=
( )( )

( )
=

9 80 0 850

4 0 150
1 20

2

2

 m/s  s

 m

2

, which is impossible.

In this case, the bead can ride only at the bottom of the loop, 
  
θ = °0 . The loop’s rotation must be

faster than a certain threshold value in order for the bead to move away from the lowest position.

*5.57   v v kxi= −  implies the acceleration is
    
a

dv
dt

k
dx
dt

kv= = − = −0

Then the total force is   Σ = = −( )F ma m kv

The resistive force is opposite to the velocity:
    
Σ = −F vkm
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ANSWERS TO EVEN NUMBERED PROBLEMS

  2. (a) 256 m (b) 42.7 m

  4. (a) 3.34
(b) Time would increase, as the wheels would skid and only kinetic friction would act; or perhaps the

car would flip over.

  6.  (a) 55.2° (b) 167 N         (See the solution for free body diagram.)

  8. 37.8 N

10.     µ µs k= =0 727 0 577. ,  .

12. (a)   8 32 10 8. × −  N inward, toward the nucleus (b)   9 13 1022. ×  m/s2  inward

14. (a)   0 822.  m/s2 toward the center (b) 37.0 N toward the center (c) 0.083 9

16. (a) 68.6 N toward the center of the circle and 784 N up (b)   0 857.  m/s2

18. (a)     mg mv R− 2 /  upward (b)   gR

20. (a)   1 33.  m/s2  radially inward (b)   1 79.  m/s  at 47.92 °  inward from the tangent

22. (a)   32 7 1.  s− (b)   9 80.  m/s2 down (c)   4 90.  m/s2  down

24. (a) 53.8 m/s (b) 148 m

26. See the solution.

28. (a) 0.980 m/s (b) See the solution.

30. (a) See the solution. (b) 81.8 m (c) 15.9°

32.   3 60 106. ×  N downward
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34. (a) 1.02 km/s (b)   0 00272.  m/s2 toward the Earth
(c)   0 00270.  m/s2 toward Earth

36. (a)   5 59 103. ×  m/s (b) 239 min (c) 735 N downward

38. (a) M = 3m sin θ (b)     T mg1 2= sin ,θ      T mg2 3= sinθ

(c) a = 
g sin θ

1 + 2 sin θ (d)
    
T mg1 4

1
1 2

= +
+





sin

sin
sin

,θ θ
θ     

T mg2 6
1

1 2
= +

+




sin

sin
sin

θ θ
θ

(e)     M mmax sin cos= +( )3 θ µ θs (f)     M m smin sin cos= −( )3 θ µ θ
(g)     T T M M g mgs2 2 6,max ,min max min cos− = −( ) = µ θ

40. (a) 19.3° (b) 4.21 N

42. (a) 0.087 1 (b) 27.4 N

44. (a) See the solution. (b) T = 9.80 N,     a = 0 580.  m/s2

46. (a)   2 63.  m/s2 (b) 201 m (c) 17.7 m/s

48. (a) and (b)   See the solution. (c) 357 N (e) 1.20

50. 20.1°

52. (a) 78.3 m/s (b) 11.1 s (c) 121 m

54. (a) 0.013 2 m/s (b) 1.03 m/s (c) 6.87 m/s

56. (a) either 70.4° or  0° (b) 0°


