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ANSWERS TO QUESTIONS

Q7.1 Both agree on the change in potential energy, and the kinetic energy.  They may disagree on the value
of gravitational potential energy, depending on their choice of a zero point.

Q7.2 (a) mgh is provided by the muscles.
(b) energy must be supplied to the muscles to keep the weight aloft.
(c) to lower slowly requires muscular work against gravity.

Q7.3 Lift a book from a low shelf to a high shelf. The net change in its kinetic energy is zero, but the book-
Earth system increases in gravitational potential energy. Stretch a rubber band to encompass the ends
of a ruler. It increases in elastic energy. Rub your hands together or let a pearl drift down at constant
speed in a bottle of shampoo. Each system (two hands; pearl and shampoo) increases in internal
energy.

Q7.4 Yes.  Although to get started, a push on the ski poles is necessary to overcome friction.

Q7.5 Same amount of work.  However, this is done over a much longer time (lower power output) in the
first case.

Q7.6 No. The rock has an acceleration of larger magnitude on the way up, so its upward motion occupies
less time than its downward motion. A net force of greater magnitude acts on it when it is moving up.
Then gravity and air resistance are in the same direction.

Q7.7 The original kinetic energy of the skidding can into degraded into kinetic energy of random molecular
motion in the tires and the road: it is internal energy. If the brakes are used properly, the same energy
appears as internal energy in the brake shoes and drums.

Q7.8 Potential energy of plates under stress plus gravitational energy is released when the plates "slip".

Q7.9 All the energy is supplied by foodstuffs that gained their energy from the sun.

Q7.10 The total energy of the ball-Earth system is conserved.  Since the system initially has gravitational
energy mgh and no kinetic energy, the ball will again have zero kinetic energy when it returns to its
original position.  Air resistance will cause the ball to come back to a point slightly below its initial
position.  On the other hand, if anyone gives a forward push to the ball anywhere along its path, the
demonstrator will have to duck.

Q7.11 Gravitational energy is proportional to mass, so it doubles.

Q7.12 In stirring cake batter and in weightlifting, your body returns to the same conformation after each
stroke.  During each stroke chemical energy is irreversibly converted into output work (and internal
energy).  This observation proves that muscular forces are nonconservative.

Q7.13 Let the gravitational energy be zero at the lowest point in the motion.  If
you start the vibration by pushing down on the block (2), its kinetic
energy becomes extra elastic potential energy in the spring (  Us ).  After
the block starts moving up at its lower turning point (3), this energy
becomes both kinetic energy (K) and gravitational potential energy (

  
Ug ),

and then just gravitational energy when the block is at its greatest
height (1).  The energy then turns back into kinetic and elastic potential
energy, and the cycle repeats.
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Q7.14 A graph of potential energy versus position is a straight horizontal line for a particle in neutral
equilibrium.  The graph represents a constant function.

Q7.15 The ball is in neutral equilibrium.

Q7.16 Chemical energy in the fuel turns into internal energy as the fuel burns.  Most of this leaves the car by
heat through the walls of the engine and by matter transfer in the exhaust gases.  Some leaves the
system of fuel by work done to push down the piston.  Of this work, a little results in internal energy in
the bearings and gears, but most becomes work done on the air to push it aside.  The work on the air
immediately turns into internal energy in the air.  If you use the windshield wipers, you take energy
from the crankshaft and turn it into extra internal energy in the glass and wiper blades and wiper-
motor coils.  If you turn on the air conditioner, your end effect is to put extra energy out into the
surroundings.  You must apply the brakes at the end of your trip.  As soon as the sound of the engine
has died away, all you have to show for it is thermal pollution.

Q7.17 Kinetic energy is greatest at the starting point.  Gravitational energy is a maximum at the top of the
flight of the ball.
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PROBLEM SOLUTIONS

7.1 (a) With our choice for the zero level for potential energy when the car
is at point B,

    
UB = 0

When the car is at point A, the potential energy of the car-Earth
system is given by

  UA = mgy

where y is the vertical height above zero level.  With  135 ft = 41.1 m,

this height is found as: y = (41.1 m) sin 40.0° = 26.4 m

Thus,
    
UA = ( )( )( ) =1000 9 80 26 4 kg  m/s  m2. .  

  
2 59 105. × J

The change in potential energy as the car moves from A to B is

    U UB A− = − × =0 2 59 105.  J  
  

− ×2 59 105. J

(b) With our choice of the zero level when the car is at point A, we have 
    
UA = 0

The potential energy when the car is at point B is given by   UB = mgy where y is the vertical
distance of point B below point A.  In part (a), we found the magnitude of this distance to be 26.5
m.  Because this distance is now below the zero reference level, it is a negative number.

Thus,
    
UB = ( )( ) −( ) =1000 9 80 26 5 kg  m/s  m2. .

  
− ×2 59 105. J

The change in potential energy when the car moves from A to B is

    U UB A− = − × − =2 59 10 05.  J
  

− ×2 59 105. J

7.2 (a) We take the zero configuration of system potential
energy with the child at the lowest point of the
arc. When the string is held horizontal initially,
the initial position is 2.00 m above the zero level.
Thus,

    
U mgyg = = ( )( ) =400 2 00 N  m.

  
800 J

(b) From the sketch, we see that at an angle of 30.0°
the child is at a vertical height of

  2 00 1 30 0. cos . m( ) − °( ) above the lowest point of
the arc. Thus,

    
U mgyg = = ( )( ) − °( ) =400 2 00 1 30 0 N  m. cos .

  
107 J

(c) The zero level has been selected at the lowest point of the arc. Therefore, 
    
Ug = 0  at this location.
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*7.3 The volume flow rate is the volume of water going over the falls each second:

  3 m 0.5 m 1.2 m/s  m s3( )( ) = 1 8. /

The mass flow rate is
    

m
t

V
t

= = ( )( ) =ρ 1000 1 8 1800 kg/m  m s  kg/s3 3. /

If the stream has uniform width and depth, the speed of the water below the falls is the same as
the speed above the falls. Then no kinetic energy, but only gravitational energy is available for
conversion into internal and electric energy.

The input power is
      
Pin

2energy
 kg/s  m/s  m  J/s= = = = ( )( )( ) = ×

t
mgy

t
m
t

gy 1800 9 8 5 8 82 104. .

The output power is
      
P Puseful efficiency  W= ( ) = ×( ) =in 0 25 8 82 104. .

  
2 20 104. × W

The efficiency of electric generation at Hoover Dam is about 85%, with a head of water (vertical
drop) of 174 m.  Intensive research is underway to improve the efficiency of low head generators.

7.4 (a) Energy of the particle-Earth system is
conserved as the particle moves between point
P and the apex of the trajectory.

Since the horizontal component of velocity is
constant,

    
1
2

2 1
2

2 1
2

2 1
2

2mv mv mv mv mghi ix iy ix= + = +

  
viy  =   2 9 80 20 0( . )( . ) =

  
19 8.  m/s

(b)
    
∆K W mgP B g| . . . .→ = = ( ) = ( )( )( ) =60 0 0 500 9 80 60 0 m  kg  m/s  m2

  
294 J

(c) Now let the final point be point B.
  
v vxi xf= =  30.0 m/s

    
∆K mv mvP B yf yi| → = − =1

2
2 1

2
2 294 J

    
v

m
vyf yi

2 22
294 1176 392= ( ) + = +

  
vyf =–39.6 m/s

    vB =
    

30 0 39 6. . m/s  m/s( ) − ( )i j
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7.5
  
U K U Ki i f f+ = + : mgh + 0 = mg(2R) + 

    
1
2

2mv

g(3.50 R) = 2 g(R) + 
    
1
2

2v

    
v g R= 3 00.   

    
F m

v
R

=∑
2

: n + mg = m 
    

v
R

2

    
n m

v
R

g m
g R

R
g= −









 = −





2 3 00.
 = 2.00 mg

    
n = ×( )( )−2 00 5 00 10 9 803. . . kg  m/s2  = 

  
0 0980.  N downward

7.6 From leaving ground to the highest point,
  
K U K Ui i f f+ = +

    

1
2

6 00 0 0 9 802m m y. . m/s  m/s2( ) + = + ( )

The mass makes no difference: ∴ y = 

  

6 00

2 9 80

2.

.

 m/s

 m/s2
( )

( )( ) = 
  
1 84.  m

*7.7 (a) Energy of the object-Earth system is conserved as the object moves between the release point and
the lowest point. We choose to measure heights from     y = 0 at the top end of the string.

  
K U K Ug i g f

+( ) = +( ) :
    
0 1

2
2+ = +mgy mv mgyi f f

    
9 8 2 30 9 8 21

2
2. cos . m/s  m  m/s  m2 2( ) − °( ) = + ( ) −( )vf

    
vf = ( )( ) − °( ) =2 9 8 2 1 30. cos m/s  m2

  
2 29.  m/s

(b) Choose the initial point at   θ = °30  and the final point at   θ = °15 :

    
0 30 151

2
2+ − °( ) = + − °( )mg L mv mg Lfcos cos

    
v gLf = ° − °( ) = ( )( ) ° − °( ) =2 15 30 2 9 8 2 15 30cos cos . cos cos m/s  m2

  
1 98.  m/s
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*7.8 (a) The force needed to hang on is equal to the force F the
trapeze bar exerts on the performer.

From the free-body diagram for the performer’s body, as
shown,

F – mg cos θ = 
      
m

v2

l

or F = mg cos θ + 
      
m

v2

l

Apply conservation of mechanical energy of the performer-Earth system as the performer moves
between the starting point and any later point:

      
mg mg mvil l l l−( ) = −( ) +cos cosθ θ 1

2
2

Solve for       mv2/l and substitute into the force equation to obtain F =
    

mg i3 2cos cosθ θ−( )

(b) At the bottom of the swing, θ = 0° so F = mg(3 – 2 cos θi)

F = 2mg = mg(3 – 2 cos   θi)

which gives   θi  = 
  

60 0. °

7.9 Using conservation of energy for the system of the Earth and the
two objects

(a) (5.00 kg)g(4.00 m) = (3.00 kg)g(4.00 m) +
    
1
2

25 00 3 00. .+( )v

    v = =19 6.  
  

4 43.  m/s

(b) Now we apply conservation of energy for the system of the
3.00 kg object and the Earth during the time interval between the
instant when the string goes slack and the instant at which the
3.00 kg object reaches its highest position in its free fall.

    
1
2

23 00.( )v  = mg ∆y = 3.00g ∆y

∆y = 1.00 m

    ymax  = 4.00 m + ∆y =
  

5 00.  m
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*7.10 The force of tension and subsequent force of compression in
the rod do no work on the ball, since they are perpendicular
to each step of displacement.  Consider energy conservation
of the ball-Earth system between the instant just after you
strike the ball and the instant when it reaches the top.  The
speed at the top is zero if you hit it just hard enough to get it
there.

  
K U K Ui gi f gf+ = + :

    

1
2

0 0 22mv mg Li + = + ( )

    v gLi 4 4 9 80 0 770= ( )( ). .

    v gLi 4  = 
  

5 49.  m/s

7.11 (a)
  
U K K Uf i f i= − +

  
U f  = 30.0 – 18.0 + 10.0 =

  
22 0.  J

    
E = 40 0.  J

(b) Yes,     ∆ ∆ ∆E K Umech = +  is not equal to zero.  For conservative forces  ∆K + ∆U = 0.

*7.12 (a)
    
W d= ⋅∫ F r and if the force is constant, this can be written as

    
W d= ⋅ =∫F r

    
F r r⋅ −( )f i ,  which depends only on end points,  not path.

(b)
      
W d dx dy dx dy= ⋅ = +( ) ⋅ +( ) = ( ) + ( )∫∫ ∫∫F r i j i j3 4 3 00 4 00

0

5 00

0

5 00
. .

..
 N  N

 m m

    
W x y= ( ) + ( ) =3 00 4 00 15 00

5 00
0
5 00. . .. . N  N  J + 20.0 J = m  m

  
35 0.  J

The same calculation applies for all paths.
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*7.13 (a)
      
W dx y x y dxOA = ⋅ +( ) =∫ ∫i i j2 22

0

5 00

0

5 00. . m  m

and since along this path, y = 0     WOA = 0

      
W dy y x x dyAC = ⋅ +( ) =∫ ∫j i j2 2

0

5 00 2
0

5 00. . m  m

For     x = 5 00.  m,     WAC = 125 J

and     WOAC = + =0 125
  
125 J

(b) WOB = 
      

dyj
0

5 00. m
∫ ⋅ (2yi +     x

2j) = 
    

x dy
m 2

0

5 00.
∫

since along this path, x = 0, WOB = 0

      
W dx y x ydxBC = ⋅ +( ) = ∫∫ i i j2 22

0

5 00

0

5 00 ..  m m

since     y = 5 00.  m ,     WBC = 50 0.  J

    WOBC = + =0 50 0.  
  

50 0.  J

(c)
      
W dx dy y x ydx x dyOC = +( ) ⋅ +( ) = +( )∫ ∫i j i j2 22 2

Since   x y=   along   OC , 
    
W x x dxOC = +( ) =∫ 2 2

0

5 00.  m
 
  

66 7.  J

(d) F is 
  

nonconservative   since the work done is path dependent.

7.14 The distance traveled by the ball from the top of the arc to the bottom is   πR . The work done by
the non-conservative force, the force exerted by the pitcher,

is     ∆ ∆E F r F R= ° = ( )cos0 π .

We shall assign the gravitational energy of the ball-Earth system to be zero with the ball at the
bottom of the arc.

Then
    
∆E mv mv mgy mgyf i f imech = − + −1

2
2 1

2
2

becomes
    
1
2

2 1
2

2mv mv mgy F Rf i i= + + ( )π

or
    
v v gy

F R
mf i i= + + ( ) = ( ) + ( )( ) + ( ) ( )2 22

2
15 0 2 9 80 1 20

2 30 0 0 600
0 250

π π
. . .

. .
.

  
vf =

  
26 5.  m/s
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*7.15 As the locomotive moves up the hill at constant speed, its output power goes into internal energy
plus gravitational energy of the locomotive-Earth system:

      Pt mgy f r mg r f r= + ∆ = ∆ + ∆sinθ
      
P = +mgv fvf fsinθ

As the locomotive moves on level track,

    P = fvi
    
1000

1
 hp

746 W
 hp

27 m/s






= ( )f     f = ×2 76 104.  N

Then also
    
746000 160000 9 8

5
100

2 76 104 W  kg  m/s
 m
 m

 N2= ( )( ) 



 + ×( ). .v vf f

    
vf =

×
=746000

1 06 105
 W

 N.   
7 04.  m/s

*7.16 (a)
    
1
2

2 1
2

2 1
2

2 1
2

2mv kx mv kxi i f f+ = +

    
0

1
2

10 0 18
1
2

0 15 02 2+ ( ) −( ) = ( ) + N/m  m  kg. . vf

    
vf = ( )

⋅






⋅
⋅





 =0 18

10 1
1

.  m
 N

0.15 kg m
 kg m
 N s2   

1 47.  m/s

(b)
  
K U K Ui si f sf+ = +

    
0 10 0 18 0 15 10 0 25 0 181

2
2 1

2
2 1

2
2+ ( ) −( ) = ( ) + ( ) −( ) N/m  m  kg  N/m  m  m. . . .vf

    
0 162 0 15 0 02452. . . J =  kg  J1

2 ( ) +vf
    
vf = ( ) =2 0 138

0 15
.

.
 J

 kg   
1 35.  m/s

*7.17 Choose the zero point of gravitational potential energy of the object-spring-Earth system as the
configuration in which the object comes to rest. Then because the incline is frictionless, we have

  E EB A= :

  
K U U K U UB gB sB A gA sA+ + = + +

or
    
0 0 0 0 1

2
2+ +( ) + = + +mg d x kxsinθ

Solving for d gives   d =
    

kx
mg

x
2

2 sinθ
−
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*7.18 (a) At the equilibrium position for the object, the tension in the spring equals the weight of the object.
Thus, elongation of the spring when the object is at equilibrium is:

    kx mg0 = :
    
x

mg
k0

0 120 9 80
40 0

0 0294= = ( )( ) =. .
.

.  m

The object moves with maximum speed as it passes through the equilibrium position.  Use energy
conservation for the object-spring-Earth system, taking 

    
Ug = 0  at the initial position of the object,

to find this speed:

  
K U U K U Uf gf sf i gi si+ + = + + :

    
1
2

2
0

1
2 0

2 0 0 0mv mg x kxmax + −( ) + = + +

    
v gx

kx
mmax . .

. .
.

= − = ( )( ) − ( )( ) =2 2 9 80 0 0294
40 0 0 0294

0 1200
0

2 2

  
0 537.  m/s

(b) When the object comes to rest, 
    
Kf = 0.

Therefore,
  
K U U K U Uf gf sf i gi si+ + = + +

becomes
    
0 0 0 01

2
2+ −( ) + = + +mg x kx

which becomes x = 
2mg

k    = 2    x0  = 
  

0 0588.  m

*7.19 From conservation of energy for the block-spring-Earth
system,

  
U Ugt si= ,

or (0.250 kg)(9.80 m/  s
2 )h = (1/2)(5000 N/m)(0.100 m)  2

This gives a maximum height  h =
  
10 2.  m

*7.20
    
∆E K K U Uf i gf gimech = −( ) + −( )
But 

    
∆ ∆E W f xmech app= − , where 

    
Wapp  is the work

the boy did pushing forward on the wheels.

Thus, 
    
W K K U U f xf i gf giapp = −( ) + −( ) + ∆ ,

or
    
W m v v mg h f xf iapp = −( ) + −( ) +1

2
2 2 ∆

    
Wapp = ( ) ( ) − ( )[ ] − ( )( )( ) + ( )( )1

2
2 247 0 6 20 1 40 47 0 9 80 2 60 41 0 12 4. . . . . . . .

    
Wapp =

  
168 J
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7.21
    
U K E U Ki i f f+ + = +∆ mech :

    
m gh fh m v m v2

1
2 1

2 1
2 2

2− = +

    f n m g= =µ µ 1

    
m gh m gh m m v2 1 1 2

21
2

− = +( )µ

    
v

m m hg
m m

2 2 1

1 2

2
=

−( )( )
+
µ

    
v =

( )( ) − ( )[ ]
=

2 9 80 1 50 5 00 0 400 3 00

8 00

. . . . .

.

 m/s  m  kg  kg

 kg

2

  
3 74.  m/s

7.22 Consider the whole motion: 
    
K U E K Ui i f f+ + = +∆ mech

(a)
    
0 01 1 2 2

1
2

2+ − − = +mgy f x f x mvi f∆ ∆

    
80 0 9 80 1000 50 0 800 3600 200 80 01

2
2. . . . kg  m/s  m  N  m  N  m  kg2( )( ) − ( )( ) − ( )( ) = ( )vf

    
784000 80 01

2
2 J - 40000 J - 720000 J  kg= ( ). vf

    
vf = ( ) =

2 24000
80 0

 J
 kg.   

24 5.  m/s

(b)
  

Yes  this is too fast for safety.

(c) Now in the same energy equation as in part (a),     ∆x2 is unknown, and     ∆ ∆x x1 21000= − m :

    
784000 50 0 1000 3600 80 0 5 002 2

1
2

2 J  N  m  N  kg  m/s− ( ) −( ) − ( ) = ( )( ). . .∆ ∆x x

    784000 50000 3550 10002 J  J  N  J− − ( ) =∆x

    
∆x2

733000
3550

= = J
 N   

206 m

(d) Really the air drag will depend on the skydiver's speed. It will be larger than her 784 N weight
only after the chute is opened. It will be nearly equal to 784 N before she opens the chute and
again before she touches down, whenever she moves near terminal speed.
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7.23 (a)
    
∆K m v v mvf i i= −( ) = − =1

2
1
2

2 2 2
  

−160 J

(b)     ∆U mg= ( ) ° =3 00 30 0. sin . m
  

73 5.  J

(c) The mechanical energy converted due to friction is 86.5 J

    
f = =86 5.  J

3.00 m   
28 8.  N

(d)     f n mgk k= = ° =µ µ cos . .30 0 28 8 N

    

µk =
( )( ) °

=28 8

9 80 30 0

.

. cos .

 N

5.00 kg  m/s2   
0 679.

7.24 (a)
    
K U E K Ui f+( ) + = +( )∆ mech :

    
0 01

2
2 1

2
2+ − = +kx f x mv∆

    
1
2

2 2 2 1
2

3 28 00 5 00 10 3 20 10 0 150 5 30 10. . . . . N/m  m  N  m  kg( ) ×( ) − ×( )( ) = ×( )− − − v

    
v =

×( )
×

=
−

−

2 5 20 10

5 30 10

2

3

.

.

 J

 kg   
1 40.  m/s

(b) When the spring force just equals the friction force, the ball will stop speeding up. Here   F kxs = ;
the spring is compressed by

  

3 20 10
8 00

0 400
2.

.
.

× =
−  N

 N/m
 cm

and the ball has moved

  5 00 0 400. . cm  cm− =
  

4 60.  cm from the start.

(c) Between start and maximum speed points,

    
1
2

2 1
2

2 1
2

2kx f x mv kxi f− = +∆

    
1
2

2 2 2 2 1
2

3 2 1
2

3 2
8 00 5 00 10 3 20 10 4 60 10 5 30 10 8 00 4 00 10. . . . . . .×( ) − ×( ) ×( ) = ×( ) + ×( )− − − − −v

  v =
  
1 79.  m/s
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7.25 (a) The object moved down distance     1 20.  m + x .  Choose     y = 0 at its lower point.

    
K U U E K U Ui gi si f gf sf+ + + = + +∆ mech

    0 0 0 0 0 1
2

2+ + + = + +mgy kxi

    
1 50 9 80 1 20 3201

2
2. . . kg  m/s  m  N/m2( )( ) +( ) = ( )x x

    0 160 14 7 17 62= ( ) − ( ) − N/m  N  Jx x. .

    
x =

± −( ) − ( ) − ⋅( )
( )

14 7 4 160 17 62. . N 14.7 N  N/m  N m
2 160 N/m

    
x = ±14 7

320
.  N 107 N

 N/m

The negative root tells how high the object will rebound if it is instantly glued to the spring. We
want

  x =
  

0 381.  m

(b) From the same equation,

    
1 50 1 63 1 20 3201

2
2. . . kg  m/s  m  N/m2( )( ) +( ) = ( )x x

    0 160 2 44 2 932= − −x x. .

The positive root is   x =
  

0 143.  m

(c) The equation expressing the energy version of the nonisolated system model has one more term:

    mgy f x kxi − =∆ 1
2

2

    
1 50 9 80 1 20 0 700 3201

2
2. . . . kg  m/s  m  N 1.20 m  N/m2( )( ) +( ) − +( ) = ( )x x x

    17 6 14 7 0 840 0 700 160 2. . . . J  N  J  N  N/m + − − =x x x

    160 14 0 16 8 02x x− − =. .

    
x =

± ( ) − ( ) −( )14 0 14 0 4 160 16 8
320

2. . .

  x =
  

0 371.  m
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*7.26 The total mechanical energy of the skysurfer-Earth system is

    
E K U mv mghgmech = + = +1

2
2 .

Since the skysurfer has constant speed,

    

dE
dt
mech = mv 

dv
dt   + mg 

dh
dt   = 0 + mg(–v) = –mgv

The rate the system is losing mechanical energy is then

    

dE
dt
mech = mgv = (75.0 kg)(9.80 m/  s

2 )(60.0 m/s) =
  

44 1.  kW

7.27 (a)
  
W F dxx= =∫  

    
2 4

2
2

4
1

5 00 2

1

5 00

x dx
x

x+( ) = +





∫
.

.
m

m

= 25.0 + 20.0 – 1.00 – 4.00 =
  

40 0.  J

(b) ∆K + ∆U = 0 ∆U = –∆K = –W = 
  

−40 0.  J

(c)
    
∆K K

mv
f= − 1

2

2     
K K

mv
f = + =∆ 1

2

2   
62 5.  J

*7.28 (a)
    
U Ax Bx dx

x
= − − +( ) =∫ 2

0     

Ax Bx2 2

2 3
−

 (b)
    
∆U Fdx

A B
= − =

( ) − ( )[ ]
−

( ) − ( )[ ]
=∫2 00

3 00
2 2 3 23 00 2 00

2

3 00 2 00

3.

. . . . .

 m

 m

    

5 00
2

19 0
3

. .
A B−

∆K = 
    

− +





5 00
2

19 0
3

. .
A B

7.29  U(r) = 
A
r     Fr  = – 

∂U
∂r    = – 

d
dr 



A

r    =
    

A
r2

*7.30   Fx  = – 
  

∂
∂
U
x

= –
    

∂

∂

3 73x y x

x

−( )
= –(9    x

2y – 7) = 7 – 9    x
2y

  
Fy  = – 

  

∂
∂
U
y

= 
    
−

−( )∂

∂

3 73x y x

y
= –(3    x

3 – 0) = –3    x
3

Thus, the force acting at the point (x, y) is F =  Fx  i +
  
Fy  j = 

      
7 9 32 3−( ) −x y xi j
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7.31 (a)
  
U

GM m
r

E= −
  
= −

× ⋅( ) ×( )( )
+( ) ×

=
−6 67 10 5 98 10 100

6 37 2 00 10

11 24

6

. / .

. .

 N m kg  kg  kg

 m

2 2

  
− ×4 77 109. J

(b) and (c)

Planet and satellite exert forces of equal magnitude on each other, directed downward on the
satellite and upward on the planet.

    
F

GM m
r

E= 2

  

=
× ⋅( ) ×( )( )

×( )
=

−6 67 10 5 98 10 100

8 37 10

11 24

6 2

. / .

.

 N m kg  kg  kg

 m

2 2

  
569 N

7.32 U = –G
  

Mm
r

and
    
g

GM
R

E

E
= 2

so that ∆U = –GMm 
    

1
3

1 2
3R R

mgR
E E

E−






=

∆U = 
  
2
3

61000 9 80 6 37 10 kg  m/s  m2( )( ) ×( ) =. .
  

4 17 1010. × J

7.33 The height attained is not small compared to the radius of the Earth, so   U mgy=  does not apply;

    U GM M r= − 1 2  does.  From launch to apogee at height h,

    
K U E K Ui i f f+ + = +∆ mech :

    

1
2

2 0 0M v
GM M

R

GM M

R hp i
E p

E

E p

E
− + = −

+

  

1
2

3 2 11
24

10 0 10 6 67 10
5 98 10
6 37

. . /
.
.

×( ) − × ⋅( ) ×
×







−m/s  N m kg

 kg
10  m

2 2
6

    
= − × ⋅( ) ×

× +






−6 67 10

5 98 10
6 37 10

11
24

6. /
.

.
 N m kg

 kg
 m

2 2

h

    
5 00 10 6 26 10

3 99 10
6 37 10

7 7
14

6. / .
.
.

×( ) − ×( ) = − ×
× +

 m s  m /s
 m /s
 m

2 2 2 2
3 2

h

    
6 37 10

3 99 10
1 26 10

3 16 106
14

7
7.

.
.

.× + = ×
×

= × m
 m /s
 m /s

 m
3 2

2 2h

    
h = ×2 52 107.  m
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7.34 (a)
    
U U U U U

Gm m
rTot = + + = = −





12 13 23 12

1 2

12
3 3

    
UTot

2 2 N m kg  kg

 m
= −

× ⋅( ) ×( )
=

− −3 6 67 10 5 00 10

0 300

11 3 2
. / .

.   
− × −1 67 10 14. J

(b)
  

At the center  of the equilateral triangle

7.35 (a)   Fx  is zero at points A, C and E;   Fx  is
positive at point B and negative at point D.

(b) A and E are unstable, and C is stable.

(c) See the picture to the right

*7.36 (a) There is an equilibrium point wherever the graph of potential energy is horizontal:

At r = 1.5 mm and 3.2 mm, the equilibrium is stable.
At r = 2.3 mm, the equilibrium is unstable.
A particle moving out toward r → ∞ approaches neutral equilibrium.

(b) The system energy E cannot be less than –5.6 J.   The particle is bound if 
    

− ≤ <5 6 1.  J  JE

(c) If the system energy is –3 J, its potential energy must be less than or equal to –3 J.  Thus, the

particle’s position is limited to 
    

0 6 3 6. . mm  mm≤ ≤r

(d) K + U = E.  Thus,     K E Umax min . .= − = − − −( ) =3 0 5 6 J  J
  

2 6.  J

(e) Kinetic energy is a maximum when the potential energy is a minimum, at  
    

r = 1 5.  mm

(f) –3 J + W = 1 J.  Hence, the binding energy is W = 
  

4 J
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*7.37 (a) When the mass moves distance x, the length of each

spring changes from L to     x L2 2+ , so each exerts force

    
k x L L2 2− −



  towards its fixed end. The y-components

cancel out and the x components add to:

    
F k x L L

x

x L
kx

kLx

x L
x = − − −



 −







= − +

+
2 2

22 2
2 2 2 2

Choose     U = 0 at     x = 0. Then at any point the potential energy of the system is

    
U x F dx kx

kLx

x L
dx k xdx kL

x

x L
dxx

x xx x( ) = − = − − +
+







= −

+
∫ ∫∫ ∫0 2 2 00 2 20

2
2

2 2

  U x( ) =
    

kx kL L x L2 2 22+ − +





(b)
    
U x x x( ) = + − +



40 0 96 0 1 20 1 442 2. . . .

For negative x, U(x) has the same value as for
positive x. The only equilibrium point

(i.e., where     Fx = 0) is 
    

x = 0

(c)
    
K U E K Ui i f f+ + = +∆ mech

    
0 0 400 0 1 18 01

2
2+ + = ( ) +. . J  kg vf

  
vf =

  
0 823.  m/s

*7.38 The escape speed v is described by

  
K U K Ui gi f gf+ = +

    
1
2

2 0 0mv
GM m

r
sun− = +

    

r
GM

v
sun= =

× ⋅( ) ×( )






=
−

2 2 6 67 10 1 99 10

3600

2

11 30

2

. / . N m kg  kg

125000000 m
 s

2 2

  
2 20 1011. × m   = 1 47.  AU

Voyager I did in fact have this speed beyond the orbit of Mars, and has escaped from the solar
system.
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*7.39 For her jump on earth, 
    
1
2 mv mgyi f

2 = (1)

    
v gyi f= = ( )( ) =2 2 9 8 0 5 3 13. . . m/s  m  m/s2

We assume that she has the same takeoff speed on the asteroid. Here

    

1
2 mv

GM m
Ri

A

A

2 0 0− = + (2)

The equality of densities between planet and asteroid,

    

ρ
π π

= =M

R

M

R
E

E

A

A
4
3

2 4
3

2
implies

    
M

R
R

MA
A

E
E=







3

(3)

Note also at Earth’s surface
    
g

GM
R

E

E
= 2 (4)

Combining the equations (2), (1), (3) and (4) by substitution gives

    

1
2

2v
GM

Ri
A

A
=

    

1
2

3

2gy
G

R
R
R

Mf
A

A

E
E( ) =







    

GM
R

y
GM R

R
E

E
f

E A

E
2

2

3=
    
R y RA f E

2 0 5= = ( ) ×( ).  m 6.37 10  m6

  RA =
  
1 78 103. × m

*7.40 (a) The daredevil falls through a height of 216 m. Let x represent the final extension of the rope
beyond its unstressed length:

  
K U U K U Ui gi si f gf sf+ + = + +

    
0 0 0 0 1

2
2+ + = + +mgy kxi f

    
70 216 49001

2
2 kg 9.8 m/s  m  N/m2( )( )( ) = ( )xf

    
xf = ( ) ⋅( ) =

2 148000
4900

7 78
 J

 N/m
N m/J  m.

The unstressed length of the rope is   216 m 7.78 m− =
  

208 m

(b)     F kxs = − = −( )( ) =4900 N/m 7.78 m downward
  

3 81 104. × N up

(c)
    
F mgg = = ( )( ) =70 686 kg 9.8 m/s  N2

The rope force is larger by 
  

3 81 10
686

4. × = N
 N   

55 5.  times

So large a force will tear apart his body. The plan is 
  

not good .
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7.41 At a pace I could keep up for a half-hour exercise period, I climb two stories up, traversing forty
steps each 18 cm high, in 20 s.  My output work becomes the final gravitational energy of the
system of the Earth and me,

mgy = (85 kg)(9.80 m/  s
2 )(40 × 0.18 m) = 6000 J

making my sustainable power

6000 J
20 s    = 

  
~ 102 W

7.42 (a)   UA  = mgR = (0.200 kg)(9.80 m/  s
2 )(0.300 m) = 

  
0 588.  J

(b)   K U K UA A B B+ = +

  K K U U mgRB A A B= + − = =
  

0 588.  J

(c)
    
v

K
mB

B= = ( ) =2 2 0 588.  J
0.200 kg   

2 42.  m/s

(d)
    
U mghC C= = ( )( )( ) =0 200 9 80 0 200. . . kg  m/s  m2

  
0 392.  J

  K K U U mg h hC A A C A C= + − = −( )

    
KC = ( )( ) −( ) =0 200 9 80 0 300 0 200. . . . kg  m/s  m2

  
0 196.  J

7.43 (a)     K mvB B= = ( )( ) =1
2

2 1
2 0 200 1 50. . kg  m/s 2

  
0 225.  J

(b)     ∆ ∆ ∆E K Umech = +   = − + −K K U UB A B A

=  K mg h hB B A+ −( )

  
= + ( )( ) −( )0 225 0 200 9 80 0 0 300. . . . J  kg  m/s  m2

  = − =0 225 0 558. . J  J
  

−0 363.  J

(c) It's possible to find an effective coefficient of friction, but not the actual value of µ since n and f
vary with position.
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*7.44
    
Σ = − ° =F n mgy cos .37 0 0

    ∴ = ° =n mgcos .37 0 400 N

    f n= = ( ) =µ 0 250 400 100.  N  N

    − =f x E∆ ∆ mech

    −( )( ) = + + +100 20 0. ∆ ∆ ∆ ∆U U K KA B A B

    
∆U m g h hA A f i= −( ) = ( )( ) °( ) = ×50 0 9 80 20 0 37 0 5 90 103. . . sin . .

    
∆U m g h hB B f i= −( ) = ( )( ) −( ) = − ×100 9 80 20 0 1 96 104. . .

    
∆K m v vA A f i= −( )1

2
2 2

    
∆ ∆ ∆K m v v

m
m

K KB B f i
B

A
A A= −( ) = =1

2
2 2 2

Adding and solving,   ∆KA =
  

3 92.  kJ

*7.45 m = mass of pumpkin

R = radius of silo top

    
ΣF ma n mg m

v
Rr r= ⇒ − = −cosθ

2

When the pumpkin first loses contact with the
surface, n = 0. Thus, at the point where it leaves the
surface:      v

2 =  Rg cos θ.

Choose 
    
Ug = 0  in the θ = 90.0° plane.  Then applying conservation of energy for the pumpkin-

Earth system between the starting point and the point where the pumpkin leaves the surface gives

  
K U K Uf gf i gi+ = +

    
1
2

2 0mv mgR mgR+ = +cosθ

Using the result from the force analysis, this becomes

    
1
2

mRg mgR mgRcos cosθ θ+ = , which reduces to

  
cosθ = 2

3
, and gives   θ = −cos 1 (2/3) =

  
48 2. °

as the angle at which the pumpkin will lose contact with the surface.
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7.46     k = ×2 50 104.  N/m,     m = 25 0.  kg ,

    xA = −0 100.  m , 
    
U Ug x s x= == =0 0 0

(a)
    
E K U UA gA sAmech = + +     E mgx kxA Amech = + +0 1

2
2

    
Emech

2 kg  m/s  m  N/m  m= ( )( ) −( ) + ×( ) −( )25 0 9 80 0 100 2 50 10 0 1001
2

4 2. . . . .

    Emech  J  J= − + =24 5 125.
  
100 J

(b) Since only conservative forces are involved, the total energy of the child-pogo-stick-Earth system
at point C is the same as that at point A.

  
K U U K U UC gC sC A gA sA+ + = + + :

    
0 25 0 9 80 0 0 24 5 125+ ( )( ) + = − +. . . kg  m/s  J  J2 xC

  xC =
  

0 410.  m

(c)
  
K U U K U UB gB sB A gA sA+ + = + + :

    
1
2

225 0 0 0 0 24 5 125. . kg  J  J( ) + + = + −( ) +vB

  vB =
  

2 84.  m/s

(d) K and v are at a maximum when     a F m= =Σ 0  (i.e., when the magnitude of the upward spring
force equals the magnitude of the downward gravitational force).

This occurs at     x < 0 where   k x mg=

or
    
x =

( )( )
×

= × −25 0 9 8

2 50 10
9 80 104

3
. .

.
.

 kg  m/s

 N/m
 m

2

Thus,     K K= max  at   x =
  

−9 80.  mm

(e)
    
K K U U U UA gA g x sA s xmax  mm  mm= + −( ) + −( )=− =−9 80 9 80. .

or 
    
1
2

225 0 25 0 9 80 0 100 0 0098. . . . . kg  kg  m/s  m  mmax
2( ) = ( )( ) −( ) − −( )[ ]v

  
+ ×( ) −( ) − −( )[ ]1

2
4 2 22 50 10 0 100 0 0098. . . N/m  m  m

yielding     vmax =
  

2 85.  m/s
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7.47     ∆ ∆E f xmech = −

  
E E f df i BC− = − ⋅

    
1
2

2kx mgh mgdBC− = −µ

    
µ =

−
=

mgh kx

mgdBC

1
2

2

  
0 328.

7.48 (a)
      
F i= − − + +( ) =d

dx
x x x3 22 3

      
3 4 32x x− −( )i

(b) F = 0

 when x = 
  
1 87 0 535. . and −

(c) The stable point is at

x = –0.535 point of minimum U(x)

The unstable point is at

x = 1.87 maximum in U(x)

7.49
  
K U K Ui f+( ) = +( )

0 + (30.0 kg)(9.80 m/  s
2 )(0.200 m) +

  
1
2

2250 0 200 N/m  m( )( ).

      
    
= ( ) + ( )( )( ) °1

2
250 0 20 0 9 80 0 200 40 0. . . . sin . kg  kg  m/s  m2v

58.8 J + 5.00 J = (25.0 kg)    v
2+ 25.2 J

    
v = 1 24.  m/s
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7.50 (a) Between the second and the third picture,     ∆ ∆ ∆E K Umech = +

    − = − +µmgd mv kdi
1
2

2 1
2

2

    
1
2

250 0 0 250 1 00 9 80. . . . N/m  kg  m/s2( ) + ( )( ) −d d
  
1
2 1 00 3 00 0. . kg  m/s2( )( ) =

    
d = − ±[ ] =2 45 21 25

50 0
. .

.
 N

 N/m   
0 378. m

(b) Between picture two and picture four,     ∆ ∆ ∆E K Umech = +

    − ( ) = − +f d mv mvi2 1
2

2 1
2

2

    
v = ( ) − ( ) ( )( )( ) =3 00

2
1 00

2 45 2 0 3782.
.

. . m/s
 kg

 N  m
  

2 30.  m/s

(c) For the motion from picture two to picture five,

    ∆ ∆ ∆E K Umech = +

    − +( ) = − ( )( )f D d2 1 00 3 001
2

2. . kg  m/s

    

D =
( )( )( ) − ( ) =9 00

1 00 9 80
2 0 378

.

. .
.

 J

2 0.250  kg  m/s
 m

2   
1 08.  m

7.51 (a) Initial compression of spring:     
1
2

2 1
2

2kx mv=

    
1
2

2 1
2

2450 0 500 12 0 N/m  kg  m/s( )( ) = ( )( )∆x . .

  ∴ =∆x
  

0 400.  m

(b) Speed of block at top of track:     ∆ ∆E f xmech = −

    
mgh mv mgh mv f RT T B B+( ) − +( ) = − ( )1

2
2 1

2
2 π

    
0 500 9 80 2 00 0 500 0 500 12 01

2
2 1

2
2. . . . . . kg  m/s  m  kg  kg  m/s2( )( )( ) + ( ) − ( )( )vT   = −( )( )( )7 00 1 00. . N  mπ

    0 250 4 212. .vT =   ∴ =vT   
4 10.  m/s

(c) Does block fall off at or before top of track? Block falls if   a gc <

    
a

v
Rc
T= = ( ) =

2 24 10
1 00

16 8
.
.

.  m/s2

Therefore   a gc >  and the 
  

block stays on the track .
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7.52 Let λ represent the mass of each one meter of the chain and T
represent the tension in the chain at the table edge. We imagine
the edge to act like a frictionless and massless pulley.

(a) For the five meters on the table with motion impending,

    
Σ =Fy 0:     + − =n g5 0λ     n g= 5λ

    f n g gs s≤ = ( ) =µ λ λ0 6 5 3.

    Σ =Fx 0:     + − =T fs 0   T fs=     T g≤ 3λ

The maximum value is barely enough to support the hanging segment according to

    
Σ =Fy 0:     + − =T g3 0λ     T g= 3λ

so it is at this point that the chain starts to slide.

(b) Let x represent the variable distance the chain has slipped since the start.

Then length (5 – x) remains on the table, with now

    
Σ =Fy 0:     + − −( ) =n x g5 0λ     n x g= −( )5 λ

    f n x g g x gk k= = −( ) = −µ λ λ λ0 4 5 2 0 4. .

Consider energies of the chain-Earth system at the initial moment when the chain starts to slip,
and a final moment when     x = 5, when the last link goes over the brink. Measure heights above the
final position of the leading end of the chain. At the moment the final link slips off, the center of
the chain is at 

    
yf = 4  meters.

Originally, 5 meters of chain is at height 8 m and the middle of the dangling segment is at height

  8 6 53
2− = .  m.

    
K U E K Ui i f f+ + = +∆ mech :

    
0 1 1 2 2

1
2

2+ +( ) − = +( )∫m gy m gy f dx mv mgy
i ki

f

f

    
5 8 3 6 5 2 0 4 8 8 4

0

5 1
2

2λ λ λ λ λ λg g g x g dx v g( ) + ( ) − −( ) = ( ) + ( )∫. .

    
40 0 19 5 2 00 0 400 4 00 32 0

0

5

0

5 2. . . . . .g g g dx g x dx v g+ − + = +∫ ∫

    
27 5 2 00 0 400

2
4 000

5
2

0

5
2. . . .g gx g

x
v− + =

    27 5 2 00 5 00 0 400 12 5 4 00 2. . . . . .g g g v− ( ) + ( ) =

    22 5 4 00 2. .g v=

    
v =

( )( )
=

22 5 9 80

4 00

. .

.

 m  m/s2

  
7 42.  m/s
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*7.53 Launch speed is found from

    
mg h mv4

5
1
2

2( ) = :
    
v g h= ( )2 4

5

  
vy  = v sin θ

The height y above the water (by conservation of energy for the child-Earth system) is found from

    
mgy mv mg

h
y= +1

2
2

5
(since 

    
1
2

2mvx  is constant in projectile motion)

y = 
1
2g  

    
vy

2 + 
h
5  = 

1
2g      v

2 2sin  θ + 
h
5 

y = 
1
2g 





2g 



4

5 h     sin2 θ + 
h
5  = 

    

4
5

2

5
h

h
sin θ +

*7.54 (a) The potential energy associated with the wind force is +Fx, where x is the horizontal distance
traveled, with x positive when swinging into the wind and negative when swinging in the
direction the wind is blowing.  The initial energy of the Jane-wind-Earth system is, (using the
pivot point of the swing as the point of zero gravitational energy),

where m is her mass,   Ei  = (K + 
  
Ug  +    Uwind)  i  = 

    
1
2

2mvi – mgL cos θ – FL sin θ

At the end of her swing, the energy is 
  
Ef  = (K + 

  
Ug  +     Uwind)

  f
 = 0 – mgL cos φ + FL sin φ

so conservation of energy (
  
E Ei f= ) gives

    
1
2

2mvi – mgL cos θ – FL sin θ = –mgL cos φ + FL sin φ

This leads to 
    
v gL

FL
mi = −( ) + +( )2 2cos cos sin sinθ φ θ φ

But D = L sin φ + L sin θ, so that 
    
sin sin

.

.
sin .φ θ= − = − °D

L
50 0
40 0

50 0  = 0.484

which gives φ = 28.9°

Using this, we have
    

vi = 6 15.  m/s

(b) Here (again using conservation of energy for the Jane-Tarzan-wind-Earth system) we have,

–MgL cos φ + FL sin φ + 
    
1
2

2Mv = –MgL cos θ – FL sin θ

where M is the combined mass of Jane and Tarzan.

Therefore, 
    
v gL

FL
M

= −( ) − +( )2 2cos cos sin sinφ θ φ θ

which gives the minimum speed needed:
    

v = 9 87.  m/s
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*7.55 Case I:  Surface is frictionless
    
1
2

2 1
2

2mv kx=

    
k

mv
x

= = ( )( )
= ×−

2

2

2

2
25 00 1 20

10
7 20 10

. .
.

 kg  m/s

 m
 N/m2

Case II:  Surface is rough,     µk = 0 300.

    
1
2

2 1
2

2mv kx mgxk= − µ

  

5 00.  kg
2     v

2 = 
  

1
2

7 20 10 10 0 300 5 00 9 80 102 1 2 1. . . .×( )( ) − ( )( )( )( )− − N/m  m  kg  m/s  m2

    
v = 0 923.  m/s

*7.56 If the spring is just barely able to lift the lower block from the table, the spring lifts it through no
noticeable distance, but exerts on the block a force equal to its weight Mg. The extension of the
spring, from   F kxs = , must be Mg/k. Between an initial point at release and a final point when the
moving block first comes to rest, we have

  
K U U K U Ui gi si f gf sf+ + = + + :

    
0

4 4
01

2

2
1
2

2

+ −



 + 



 = + 



 + 



mg

mg
k

k
mg
k

mg
Mg
k

k
Mg
k

    
− + = +4 8

2

2 2 2 2 2 2 2m g
k

m g
k

mMg
k

M g
k

    
4

2
2

2
m mM

M= +

    

M
mM m

2
2

2
4 0+ − =

    
M

m m m
m m=

− ± − ( ) −( )
( ) = − ±

2 2
2

4 1 2 4

2 1 2
9

/

/

Only a positive mass is physical, so we take

    M m= −( ) =3 1
    

2m
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*7.57 (a) At the top of the loop the car and riders are in free
fall:

  
Σ =F may y :

    
mg

mv
R

 down  down=
2

  v Rg=

Energy of the car-riders-Earth system is conserved
between release and top of loop:

  
K U K Ui gi f gf+ = + :

    
0 21

2
2+ = + ( )mgh mv mg R

    
gh Rg g R= + ( )1

2
2

    
h = 2 50.  R

(b) Let h  now represent the height     ≥ 2 5. R  of the
release point. At the bottom of the loop we have

    
mgh mvb= 1

2
2 or     v ghb

2 2=

  
Σ =F may y :

    
n mg

mv
Rb

b− = ( )
2

up

    
n mg

m gh
Rb = + ( )2

At the top of the loop, 
    
mgh mv mg Rt= + ( )1

2
22

    v gh gRt
2 2 4= −

  
Σ =F may y :

    
− − = −n mg

mv
Rt

t
2

    
n mg

m
R

gh gRt = − + −( )2 4

    
n

m gh
R

mgt = ( ) −
2

5

Then the normal force at the bottom is larger by

    
n n mg

m gh
R

m gh
R

mgb t− = + ( ) − ( ) + =
2 2

5
    

6mg
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*7.58 (a) Conservation of energy for the sled-rider-Earth system,
between A and C:

  
K U K Ui gi f gf+ = +

    
1
2

2 1
2

22 5 9 80 9 76 0m m mvC. . . m/s  m/s  m2( ) + ( )( ) = +

    
vC = ( ) + ( )( ) =2 5 2 9 80 9 762. . . m/s  m/s  m2

  
14 1.  m/s

 (b) Incorporating the loss of mechanical energy during the portion of the motion in the water, we
have, for the entire motion between A and D (the rider’s stopping point),

  
K U f x K Ui gi k f gf+ − = +∆ :

    
1
2

2 280 2 5 80 9 80 9 76 0 0 kg  m/s  kg  m/s  m( )( ) + ( )( )( ) − = +. . . f xk ∆

  − =f xk∆
  

− ×7 90 103. J

(c) The water exerts a frictional force
    
f

xk = × = × ⋅ =7 90 10 7 90 10
158

3 3. . J  N m
50 m

 N
∆

and also a normal force of
    
n mg= = ( )( ) =80 784 kg 9.80 m/s  N2

The magnitude of the water force is   158 7842 2 N  N( ) + ( ) =
  

800 N

(d) The angle of the slide is

  
θ = = °−sin

.
.1 9 76

10 4
 m

54.3 m

For forces perpendicular to the track at B,

  
Σ =F may y :     n mgB − =cosθ 0

    
nB = ( )( ) ° =80.0 kg  m/s29 80 10 4. cos .

  
771 N

(e)
  
Σ =F may y :

    
+ − =n mg

mv
rC
C

2

    
nC = ( )( ) + ( )( )

80 0 9 80
80 0 14 1

20

2

. .
. .

 kg  m/s
 kg  m/s

 m
2

  nC =
  
1 57 103. ×  N up

The rider pays for the thrills of a giddy height at A, and a high speed and tremendous splash at C.
As a bonus, he gets the quick change in direction and magnitude among the forces we found in
parts (d), (e), and (c).
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ANSWERS TO EVEN NUMBERED PROBLEMS

  2. (a) 800 J (b) 107 J (c) 0

  4. (a) 19.8 m/s (b) 294 J (c) (30.0i – 39.6j) m/s

  6. 1.84 m

  8. (a) See the solution. (b) 60.0°

10. 5.49 m/s

12. (a) See the solution. (b) 35.0 J

14. 26.5 m/s

16. (a) 1.47 m/s (b) 1.35 m/s

18. (a) 0.537 m/s (b) 0.058 8 m

20. 168 J

22. (a) 24.5 m/s (b) Yes
(c) 206 m (d) Unrealistic; see the solution

24. (a) 1.40 m/s (b) 4.60 cm  after release (c) 1.79 m/s

26. 44.1 kW

28. (a)     Ax Bx2 32 3/ /− (b) ∆U = 5A/2 – 19B/3;  ∆K = –5A/2 + 19B/3

30.  
      
7 9 32 3−( ) −x y xi j

32.   4 17 1010. ×  J

34. (a)   − × −1 67 10 14.  J (c) at the center
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36. (a) r = 1.5 mm  stable; 2.3 mm unstable; 3.2 mm  stable; r→∞ neutral (b) 1 J > E > –5.6 J
(c) 0.6 mm < r < 3.6 mm (d) 2.6 J
(e) 1.5 mm (f) 4 J

38.   2 20 1011. ×  m   (1.47 AU)

40. (a) 208 m (b)   3 81 104. ×  N up (c) 55.5 mg;  no

42. (a) 0.588 J (b) 0.588 J
(c) 2.42 m/s (d)     U KC C= =0 392 0 196.  . J,  J

44. 3.92 kJ

46. (a) 100 J (b) 0.410 m (c) 2.84 m/s
(d) –9.80 mm (e) 2.85 m/s

48. (a)
      
3 4 32x x− −( )i (b) x = 1.87 and –0.535

(c) See the solution. x = –0.535 (stable), and x = 1.87 (unstable)

50. (a) 0.378 m (b) 2.30 m/s (c) 1.08 m

52. (a) See the solution. (b) 7.42 m/s

54. (a) 6.15 m/s (b) 9.87 m/s

56. 2m

58. (a) 14.1 m/s (b) –7.90 kJ (c) 800 N
(d) 771 N (e) 1.57 kN  up


