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ANSWERS TO QUESTIONS

Q11.1 Because g is the same for all objects near the Earth’s surface.  The larger mass needs a larger force to
give it just the same acceleration.

Q11.2 To a good first approximation, your bathroom scale reading is unaffected because you, Earth, and the
scale are in free fall in the Sun’s gravitational field, in orbit around the Sun. To a precise second
approximation, you weigh slightly less at noon and at midnight than you do at sunrise or sunset. The
Sun’s gravitational field is a little weaker at the center of the Earth than at the surface subsolar point,
and a little weaker still on the far side of the planet. When the Sun is high in your sky, its gravity pulls
up on you a little more strongly than on the Earth as a whole. At midnight the Sun pulls down on you
a little less strongly than it does on the Earth below you. So you can have another doughnut with
lunch, and your bedsprings will still last a little longer.

Q11.3 Because both the Earth and Moon are moving in orbit about the Sun.  As described by

    
F magravitational centripetal= , the gravitational force of the Sun merely keeps the Moon (and Earth) in a
nearly circular orbit of radius 150 million kilometers.  Because of its velocity, the Moon is kept in its
orbit about the Earth by the gravitational force of the Earth.  There is no imbalance of these forces, at
new moon or full moon.

Q11.4 Since the escape speed from the Earth is 11.2 km/s and that from the Moon is 2.3 km/s, smaller by a
factor of 5, the energy required—and fuel—would go as     v

2, or 25 times more fuel required to leave the
Earth versus leaving the Moon.

Q11.5 In a circular orbit each increment of displacement is perpendicular to the force applied.  The work
done by the gravitational force on a planet in an elliptical orbit speeds up the planet at closest
approach, but negative work is done by gravity and the planet slows as it sweeps out to its farthest
distance from the Sun.  Therefore, net work in one complete orbit is zero.

Q11.6 Speed is maximum at closest approach.  Speed is minimum at farthest distance.

Q11.7 For a satellite in orbit, one focus of an elliptical orbit or the center of a circular orbit must be located at
the center of the Earth.  If the satellite is over the northern hemisphere for half of its orbit, it must be
over the southern hemisphere for the other half.

Q11.8 Air resistance causes a decrease in the energy of the satellite-Earth system. This reduces the diameter of
the orbit, bringing the satellite closer to the surface of the Earth. A satellite in a smaller orbit, however,
must travel faster. Thus, the effect of air resistance is to speed up the satellite!

Q11.9 Cavendish determined G.  Then from 
    
g

GM
R

= 2 , one may determine the mass of the Earth.

Q11.10 The gravitational force of the Earth on an extra particle at its center must be zero, not infinite as one
interpretation of Equation 11.1 would suggest.  All the bits of matter that make up the Earth will pull
in different directions on the extra particle.

Q11.11 The gravitational force is conservative.  An encounter with a stationary mass cannot permanently
speed up a spacecraft.  Jupiter is moving.  A spacecraft flying across its orbit just behind the planet will
gain kinetic energy as the planet’s gravity does net positive work on it.

Q11.12 The spacecraft did not have enough fuel to stop dead in its high-speed course for the Moon.

Q11.13 Kepler’s third law, which applies to all planets, tells us that the period of a planet is proportional to

    r
3 2/ . Because Saturn and Jupiter are farther from the Sun than Earth, they have longer periods. The

Sun’s gravitational field is much weaker at a distant Jovian planet. Thus, an outer planet experiences
much smaller centripetal acceleration than Earth and has a correspondingly longer period.
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Q11.14 From Equations 11.17, 11.18, and 11.19, we have

    
− = − = + − = +E
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K Ue e e
e

2 2 2

2 2

Then   K E=  and     U Ee = −2 .

Q11.15 One assumption is natural from the standpoint of classical physics:  The electron feels an electric force
of attraction to the nucleus, causing the centripetal acceleration to hold it in orbit.  The other
assumptions are in sharp contrast to the behavior of ordinary-size objects:  The electron’s angular
momentum must be one of a set of certain special allowed values.  During the time when it is in one of
these quantized orbits, the electron emits no electromagnetic radiation.  The atom radiates a photon
when the electron makes a quantum jump from one orbit to a lower one.

Q11.16 An atomic electron does not possess enough kinetic energy to escape from its electrical attraction to the
nucleus.  Positive ionization energy must be injected to pull the electron out to a very large separation
from the nucleus, a condition for which we define the energy of the atom to be zero.  The atom is a
bound system.  All this is summarized by saying that the total energy of an atom is negative.

Q11.17 If an electron moved like a hockey puck, it could have any arbitrary frequency of revolution around an
atomic nucleus.  If it behaved like a charge in a radio antenna, it would radiate light with frequency
equal to its own frequency of oscillation.  Thus, the electron in hydrogen atoms would emit a
continuous spectrum, electromagnetic waves of all frequencies smeared together.
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PROBLEM SOLUTIONS
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*11.2 (a) At the midpoint between the two objects, the forces exerted by the 200-kg and 500-kg objects are
oppositely directed,

and from 
  
Fg  = 
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r

1 2
2

we have ∑F = 
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.

.
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( ) −( )
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=
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(b) At a point between the two objects at a distance d from the 500-kg objects, the net force on the
50.0-kg object will be zero when
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*11.3 The force exerted on the 4.00-kg mass by the 2.00-kg mass is
directed upward and given by
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The force exerted on the 4.00-kg mass by the 6.00-kg mass is
directed to the left

      
F i64

4 6

64
2= −( )G

m m
r     

= − × ⋅





( )( )

( )
= − ×− −6 67 10

4 00 6 00

4 00
10 0 1011

2
11.

. .

.
. 

N m
kg

 kg  kg

 m
  N

2

2 i i

Therefore, the resultant force on the 4.00-kg mass is     F F F4 24 64= + =
    

− +( ) × −10 0 5 93 10 11. .i j N
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*11.4 (a) The Sun-Earth distance is 1.496 × 10  11 m, and the Earth-Moon distance is 3.84 × 10  8  m, so the
distance from the Sun to the Moon during a solar eclipse is

1.496 × 10  11 m – 3.84 × 10  8 m = 1.492 × 10  11 m

The mass of the Sun, Earth , and Moon are   MS = 1.99 × 10  30  kg

  ME  = 5.98 × 10  24  kg

 and   MM  = 7.36 × 10  22  kg

 We have

    

F
Gm m

rSM = =
×( ) ×( ) ×( )

×( )
=

−
1 2
2

11 30 22

11 2

6 67 10 1 99 10 7 36 10

1 492 10

. . .

.   
4 39 1020. × N

(b)
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× ⋅( ) ×( ) ×( )

×( )
=
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3 84 10

11 24 22

8 2

. / . .

.

 N m kg2 2
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(c)

    

FSE =
× ⋅( ) ×( ) ×( )

×( )
=

−6 67 10 1 99 10 5 98 10

1 496 10

11 30 24

11 2

. / . .

.

 N m kg2 2

  
3 55 1022. × N

Note that the force exerted by the Sun on the Moon is much stronger than the force of the Earth on
the Moon.  In a sense, the Moon orbits the Sun more than it orbits the Earth. The Moon’s path is
not precisely as shown in the text’s Figure 11.24; instead, it is everywhere concave toward the
Sun.  Only by subtracting out the solar orbital motion of the Earth-Moon system do we see the
Moon orbiting the center of mass of this system.
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11.6 Let θ  represent the angle each cable makes with the vertical,
L the cable length, x the distance each ball scrunches in, and
    d = 1 m  the original distance between them. Then     r d x= − 2
is the separation of the balls. We have

    
Σ =Fy 0:     T mgcosθ − = 0

    Σ =Fx 0:
    
T

Gmm
r

sinθ − =2 0

Then
    
tanθ = Gmm

r mg2
    

x

L x

Gm

g d x2 2 22−
=

−( )     
x d x

Gm
g

L x−( ) = −2 2 2 2

The factor     Gm g/  is numerically small. There are two possibilities: either x is small or else     d x− 2
is small.

Possibility one: We can ignore x in comparison to d and L, obtaining

    

x 1
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.
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The separation distance is
    
r = − ×( ) =−1 m 2 3.06 10  m8

  
1 000 61 3. . m  nm−

Possibility two: If     d x− 2  is small,     x ≅ 0 5.  m and the equation becomes

    
0.5 m
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For this answer to apply, the spheres would have to be compressed to a density like that of the
nucleus of atom.

11.7 (a) At the zero-total field point, 
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M
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(b) At this distance the acceleration due to the Earth’s gravity is

g  E = 
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r

E

E
2 = 
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11.8 (a) F =
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*11.9 g  1 = g  2  =
    

MG
r a2 2+

g
    1y  = –g

    2y g
  y

 = g
    1y  + g

    2y  = 0

g    1x  = g    2x  = g  2  cos θ cos θ = 

    

r

a r2 2 1 2
+( ) /

g = 2g    2x (–i)

or g = 

    

2
2 2 3 2

MGr

r a+( ) / toward the center of mass

11.10 W = –∆U = – 
    

− −





Gm m
r

1 2 0

    
W =

+ × ⋅( ) ×( ) ×( )
×

=
−6 67 10 7 36 10 1 00 10

1 74 10

11 22 3

6

. / . .

.

 N m kg  kg  kg

 m

2 2

  
2 82 109. × J



Chapter 11

267

11.11 (a) ρ =
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*11.12 (a) For the geosynchronous satellite,

  Σ =F mar r  becomes 
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=
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Thus, the radius of the satellite orbit is
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(b) The satellite is so far out that its distance from the north pole,

    
d = ×( ) + ×( ) =6 37 10 4 23 106 2 7 2

. . m  m   4 27 107. ×  m

is nearly the same as its orbital radius.  The travel time for the radio signal is

    
t
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11.13 Applying Newton's 2nd Law,   Σ =F ma yields 
  
F mag c=  for each star:
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We can write r in terms of the period, T, by considering the time and
distance of one complete cycle.  The distance traveled in one orbit is
the circumference of the stars’ common orbit, so     2πr vT= .  Therefore
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11.14 By conservation of angular momentum for the satellite,

  
r v r vp p a a=
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We do not need to know the period.

11.15
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(Kepler's third law with   m M<< )
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(Approximately 316 Earth masses)

11.16 By Kepler's Third Law, T  2  = ka  3      (a = semi-major axis)

For any object orbiting the Sun, with T in years and a in A.U.,
k = 1.00.  Therefore, for Comet Halley

(75.6)  2  = (1.00)
    

0 570
2

3. +





y

The farthest distance the comet gets from the Sun is

y = 2(75.6)  2 3/ – 0.570 = 
  

35 2.  A.U.   (out around the orbit of Pluto)
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*11.18 The speed of a planet in a circular orbit is given by

  Σ =F ma:
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With greater speed, Mercury will eventually move farther from the Sun than Pluto. With original
distances    rP   and    rM   perpendicular to their lines of motion, they will be equally far from Sun
after time t where
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*11.19 For the Earth,   Σ =F ma:
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*11.20
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The change in gravitational potential energy of the satellite-Earth system is
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11.21 To obtain the orbital velocity, we use ∑F = 
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*11.22 The gravitational force supplies the needed centripetal acceleration.

Thus,
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It is simplest to 
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For the Earth, (from Table 11.2)     vesc E, .= 11 2 km/s
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*11.24 For a satellite in an orbit of radius r around the Earth, the total energy of the satellite-Earth system

is 
    
E

GM
r

E= −
2

.  Thus, in changing from a circular orbit of radius r = 2R  E to one of radius r = 3R  E,

the required work is
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*11.25 (a) The major axis of the orbit is     2 50 5a = .  AU so     a = 25 25.  AU

Further, in Figure 11.7,     a c+ = 50 AU so     c = 24 75.  AU

Then     e c a= = =/ . / .24 75 25 25
  

0 980.

(b) In     T K as
2 3=  for objects in solar orbit, the Earth gives us
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Then
    
T2 31

1
25 25= ( )(

(
.

 yr)
 AU)

 AU
2

3   T =
  
127 yr

(c)

    

U
GMm

r
= − = −

× ⋅( ) ×( ) ×( )
×( ) =

−6.67 10  N m /kg  kg  kg

50 1.496 10  m

2 2

11

11 30 101 991 10 1 2 10. .

  
− ×2 13 1017. J

11.26 (a) The energy of the photon is found as
    
E E E

n ni f
i f

= − = − − −( )13 606 13 606
2 2

. . eV  eV

    

E
n nf i

= −








13 606

1 1
2 2.  eV

Thus, for     n = 3 to     n = 2 transition
    
E = −



 =13 606

1
9

.  eV
1
4   

1 89.  eV

(b)
  
E

hc=
λ

and

  

λ =
× ⋅ ×( )

×( ) =
−

−

6 626 10

1 89

34

19

.

.

 J s 2.998 10  m/s

 eV 1.602 10  J/eV

8

  
656 nm

(c)
  
f

c=
λ     

f = ×
×

=−
3 10

6 56 10

8

7
 m/s

 m.   
4 57 1014. ×  Hz
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*11.27 (a) Lyman series 
    

1
1

1
2λ

= −






R
ni

      ni = 2,  3,  4,K

    

1 1
94 96 10

1 097 10 1
1

9
7

2λ
=

×
= ×( ) −





−.

.
ni     

ni = 5

(b) Paschen series:
    

1 1
3

1
2 2λ

= −






R
ni

      ni = 4,  5,  6,K

The shortest wavelength for this series corresponds to   ni = ∞  for ionization

    

1
1 097 10

1
9

17
2λ

= × −






.
ni

For   ni = ∞ , this gives   λ = 820 nm

This is larger than 94.96 nm, so this wave length 
  

cannot be associated with the Paschen series

Balmer series:
    

1 1
2

1
2 2λ

= −






R
ni

      ni = 3,  4,  5,K

    

1
1 097 10

1
4

17
2λ

= × −






.
ni

  ni = ∞  for ionization   λmin = 365 nm

Once again this wavelength 
  

cannot be associated with the Balmer series

11.28 (a)
    
v1 =

kee
2

mer1

where     r1 = 1( )2 a0 = 0.00529 nm = 5.29 × 10−11 m

    

v1 =
8.99 × 109  N ⋅ m2 C2( ) 1.60 × 10−19  C( )2

9.11 × 10−31 kg( ) 5.29 × 10−11 m( ) =
  

2 19 106. × m/s

(b)
    
K1 = 1

2 mev1
2 = 1

2 9.11 × 10− 31 kg( ) 2.19 × 106  m s( )2
= 2.18 × 10−18  J = 

  
13 6.  eV

(c)
    
U1 = − kee

2

r1
= −

8.99 × 109  N ⋅ m2 C2( ) 1.60 × 10−19  C( )2

5.29 × 10−11 m
= − 4.35 × 10−18  J =

  
−27 2.  eV
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11.29 (a)
    
r 2

2 = 0.0529 nm( ) 2( )2 = 
  

0 212.  nm

(b)
    
mev2 = mekee

2

r 2
=

9.11 × 10− 31 kg( ) 8.99 × 109  N ⋅ m2 C 2( ) 1.60 × 10−19  C( )2

0.212 × 10− 9  m

    m ve 2 =  
  

9 95 10 25. × ⋅− kg m/s

(c)
    
L2 = mev2r 2 = 9.95 × 10− 25  kg ⋅ m s( ) 0.212 × 10− 9  m( )   = 

  
2 11 10 34. /× ⋅− kg m s2

(d)

    

K2 = 1
2 mev2

2 =
mev2( )2

2me
=

9.95 × 10− 25  kg ⋅ m s( )2

2 9.11 × 10− 31 kg( ) = 5.43 × 10−19  J =  
  

3 40.  eV

(e)
    
U2 = − kee

2

r 2
= −

8.99 × 109  N ⋅ m2 C 2( ) 1.60 × 10−19  C( )2

0.212 × 10− 9  m
= −1.09 × 10−18  J =  

  
−6 80.  eV

(f)     E2 = K2 + U2 = 3.40 eV − 6.80 eV =  
  

−3 40.  eV

11.30

    

∆E = (13.6 eV)
1

ni
2 − 1

n f
2











Where for     ∆E > 0 we have absorption and for     ∆E < 0 we have emission.

(i) for   ni = 2 and 
  
nf  = 5, ∆E = 2.86 eV (absorption)

(ii) for   ni = 5 and 
  
nf  = 3, ∆E = – 0.967 eV (emission)

(iii) for   ni = 7 and 
  
nf  = 4, ∆E = – 0.572 eV (emission)

(iv) for   ni = 4 and 
  
nf  = 7, ∆E = 0.572 eV (absorption)

(a)
  
E

hc=
λ

  so the shortest wavelength is emitted in transition 
  

ii .

(b) The atom gains most energy in transition 
  

i .

(c) The atom loses energy in transitions 
  

ii and iii .
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11.31 We use   
    
E

nn = −13 6
2

.  eV

To ionize the atom when the electron is in the n  th level,

it is necessary to add an amount of energy given by E = – 
    
E

nn = 13 6
2

.  eV

(a) Thus, in the ground state where n = 1, we have
    

E = 13 6.  eV

(b) In the n = 3 level,   
    
E = 13 6.  eV

9
 = 

  
1 51.  eV

11.32 Starting with  
    
1
2

2
2

2
m v

k e
re

e=

we have   
    
v

k e
m r
e

e

2
2

=

and using
      
rn = n2h2

mekee
2

gives  

      

vn
2 = kee

2

me
n2h2

mekee
2

or
      
vn = kee

2

nh

11.33 Each atom gives up its kinetic energy in emitting a photon,

so

    

1
2

6 626 10 3 00 10

1 216 10
1 63 102

34 8

7
18mv

hc= =
× ⋅( ) ×( )

×( ) = ×
−

−
−

λ

. .

.
.

 J s  m/s

 m
 J

v = 
  

4 42 104. × m/s
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*11.34 The original orbit radius is

    r a= = × + × ×6 37 10 500 106 3.  m  m = 6.87 10  m6

The original energy is

    

E
GMm

ai = − = −
× ⋅( ) ×( )( )

×( ) = − ×
−

2

6 67 10 5 98 10 10
2 90

11 24 4. .
.

 N m /kg  kg  kg

2 6.87 10  m
10  J

2 2

6
11

We assume that the perigee distance in the new orbit is   6 87 106. ×  m. Then the major axis is

    2 6 87 10 2 00 10 2 69 106 7 7a = × + × = ×. . . m  m  m

and the final energy is

    
E

GMm
af = − = −

× ⋅( ) ×( )( )
×

= − ×
−

2

6 67 10 5 98 10 10

2 69 10
1 48 10

11 24 4

7
11

. / .

.
.

 N m kg  kg  kg

 m
 J

2 2

The energy input required from the engine is

    
E Ef i− = − × − − ×( ) =1 48 10 2 90 1011 11. . J  J

  
1 42 1011. × J

*11.35 (a) Energy of the spacecraft-Mars system is conserved as the spacecraft moves between a very distant
point and the point of closest approach:

    
0 0 1

2
2+ = −mv

GM m
rr

Mars

    
v

GM
rr = 2 Mars

After the engine burn, for a circular orbit we have

  Σ =F ma:
    

GM m
r

mv
r

Mars
2

0
2

=

    
v

GM
r0 = Mars

The percentage reduction from the original speed is

    

v v
v

v v
v

r

r

− = − = − × =0 0 0

0

2
2

2 1
2

100%
  

29 3. %

(b) The answer to part (a) applies with 
  

no changes , as the solution to part (a) shows.
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*11.36 Let m represent the mass of the spacecraft, r  E the radius of the Earth’s orbit, and x the distance
from Earth to the spacecraft.

The Sun exerts on the spacecraft a radial inward force of 
    
F

GM m

r x
s

s

E

=
−( )2

while the Earth exerts on it a radial outward force of 
    
F

GM m
xE

E= 2

The net force on the spacecraft must produce the correct centripetal acceleration for it to have an
orbital period of 1.000 year.

Thus,
    
F F

GM m

r x

GM m
x

mv
r x

m
r x

r x
TS E

S

E

E

E E

E− =
−( )

− =
−( ) =

−( )
−( )







2 2

2 2
2π

 which reduces to
    

GM

r x

GM
x

r x

T
S

E

E E

−( )
− =

−( )
2 2

2

2
4π

(1)

Cleared of fractions, this equation would contain powers of x ranging from the fifth to the zeroth.
We do not solve it algebraically.  We may test the assertion that x is between 1.47 × 10  9 m and
1.48 × 10  9 m by substituting both of these as trial solutions, along with the following data:
M  S  = 1.991 × 10  30  kg, M  E = 5.983 × 10  24  kg, r  E = 1.496 × 10  11 m, and T = 1.000 yr = 3.156 × 10  7  s.

With x = 1.47 × 10  9 m substituted into equation (1), we obtain

6.052 × 10  −3 m/s  2  – 1.85 × 10  −3 m/s  2  ≅  5.871 × 10  −3 m/s  2

or 5.868 × 10  −3 m/s  2  ≅  5.871 × 10  −3 m/s  2

With x = 1.48 × 10  9 m substituted into the same equation, the result is

6.053 × 10  −3 m/s  2  – 1.82 × 10  −3 m/s  2  ≅  5.8708 × 10  −3 m/s  2

or 5.8709 × 10  −3 m/s  2  ≅  5.8708 × 10  −3 m/s  2

Since the first trial solution makes the left-hand side of equation (1) slightly less than the right
hand side, and the second trial solution does the opposite, the true solution is determined as
between the trial values.  To three-digit precision, it is 1.48 × 10  9 m.

As an equation of fifth degree, equation (1) has five roots.  The Sun-Earth system has five
Lagrange points, all revolving around the Sun synchronously with the Earth.  The SOHO and
ACE satellites are at one.  Another is beyond the far side of the Sun.  Another is beyond the night
side of the Earth.  Two more are on the Earth’s orbit, ahead of the planet and behind it by 60°.
Plans are under way to gain perspective on the Sun by placing a spacecraft at one of these two co-
orbital Lagrange points.  The Greek and Trojan asteroids are at the co-orbital Lagrange points of
the Jupiter-Sun system.
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*11.37 Let r represent the distance between the electron and the positron. The two move in a circle of
radius r/2 around their center of mass with opposite velocities. The total angular momentum of
the electron-positron system is quantized to according to

      
L

mvr mvr
nn = + =

2 2
h

where       n = 1,  2,  3,K

For each particle,   Σ =F ma expands to
    

k e
r

mv
r

e
2

2

2

2
=

/

We can eliminate 
    
v

n
mr

= h
 to find

      

k e
r

mn
m r

e
2 2

2 2
2= h

So the separation distances are
      
r

n
mk e

a n
e

= = =2
2

2 2

2 0
2h

    
1 06 10 10 2. ×( )−  m n

The orbital radii are     r a n/2 0
2= , the same as for the electron in hydrogen.

The energy can be calculated from
    
E K U mv mv

k e
r
e= + = + −1

2
2 1

2
2

2

Since 
    
mv

k e
r

e2
2

2
= ,

    
E

k e
r

k e
r

k e
r

k e
a n

e e e e= − = − = − =
2 2 2 2

0
22 2 4     

− 6 80
2

.  eV
n

*11.38 The acceleration of an object at the center of the Earth
due to the gravitational force of the Moon is given by

    
a G

M
d

= Moon
2

At the point A nearest the Moon, 
    
a G

M

d r
M

+ =
−( )2

At the point B farthest from the Moon, 
    
a G

M

d r
M

− =
+( )2

    
∆a a a GM

d r dM= − =
−( )

−












+
1 1

2 2

For d > > r,
    
∆a

GM r
d

M= = × −2
1 11 103

6.  m/s2

Across the planet,
    

∆ ∆g
g

a
g

= = × =
−2 2 22 10

9 80

6.
.

 m/s
 m/s

2

2   
2 26 10 7. × −
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*11.39 (a)
    
a

v
rc =
2

    
ac =

×( )
×

=
1 25 10

1 53 10

6 2

11

.

.

 m/s

 m   
10 2.  m/s2

(b)
    
diff  m/s2= − = =10 2 9 90 0 312 2. . .

GM
r

    
M =

( ) ×( )
× ⋅

=−

0 312 1 53 10

6 67 10

11 2

11

. .

.

 m/s  m

 N m /kg

2

2 2   
1 10 1032. × kg

*11.40 (a) The free-fall acceleration produced by the Earth is
    
g

GM
r

GM rE
E= = −

2
2 (directed downward)

Its rate of change is 
  

dg
dr

 = G  ME(–2)     r
−3 = –2G  ME     r

−3

The minus sign indicates that g decreases with increasing height.

At the Earth’s surface, 
    

dg
dr

GM
R

E

E
= − 2

3

 (b) For small differences,

  

∆
∆

∆g
r

g
h

= = 
    

2
3

GM
R

E

E
Thus, 

    

∆g
GM h
R

E

E
= 2

3

(c)   ∆g  = 

  

2 6 67 10 5 98 10 6 0011 24

3

. / . .× ⋅( ) ×( )( )
×( )

−  N m kg  kg  m

6.37 10  m

2 2

6
= 

  
1 85 10 5. × − m/s2

11.41 To approximate the height of the sulfur, set

    

mv
mg hIo

2

2
=  h = 70 000 m

    
g

GM
rIo = =2 1 79.  m/s2

v =     2g hIo     
v = ( )( )2 1 79 70. 000  ≅  500 m/s (over 1000 mi/h)

A more precise answer is given by

    

1
2

2

1 2
mv

GMm
r

GMm
r

− = −

    

1
2

2 11 22
6 66 67 10 8 90 10

1
1 82 10

1
1 89 10

v = ×( ) ×( ) ×
−

×






−. .
. .

v = 
  

492 m/s
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11.42 From the walk, 2πr = 25 000 m.  Thus, the radius of the planet is r = 
  

25000
2

 m
π

 = 3.98 × 10  3  m

From the drop:
    
∆y gt g= = ( ) =1

2
2 1

2
229 2 1 40. . s  m

so,
    
g

MG
r

= ( )
( )

= × =−2 1 40

29 2
3 28 102

3
2

.

.
.

 m

 s
 m/s2 ∴ M = 

  
7 79 1014. × kg

11.43

    

F
GMm

r
= = × ⋅





( ) ×( )

×( )
=−

−

−2
11

3

2 26 67 10
1 50 15 0 10

4 50 10
.

. .

.

N m
kg

 kg  kg

 m

2

2   
7 41 10 10. × − N

*11.44 For both circular orbits,

  Σ =F ma:
    

GM m
r

mv
r

E
2

2
=

  
v

GM
r

E=

(a) The original speed is

    

vi =
× ⋅( ) ×( )

× + ×( ) =
−6 67 10 5 98 10

6 37 10 2 10

11 24

6 5

. / .

.

 N m kg  kg

 m  m

2 2

  
7 79 103. ×  m/s

(b) The final speed is

    

vi =
× ⋅( ) ×( )

×( ) =
−6 67 10 5 98 10

6 47 10

11 24

6

. / .

.

 N m kg  kg

 m

2 2

  
7 85 103. ×  m/s

The energy of the satellite-Earth system is

    
K U mv

GM m
r

m
GM

r
GM

r
GM m

rg
E E E E+ = − = − = −1

2
1
2 2

2

(c) originally

    

Ei = −
× ⋅( ) ×( )( )

×( ) =
−6 67 10 5 98 10 100

2 6 57 10

11 24

6

. / .

.

 N m kg  kg  kg

 m

2 2

  
− ×3 04 109. J

(d) finally

    

Ef = −
× ⋅( ) ×( )( )

×( ) =
−6 67 10 5 98 10 100

2 6 47 10

11 24

6

. / .

.

 N m kg  kg  kg

 m

2 2

  
− ×3 08 109. J

(e) Thus the object speeds up as it spirals down to the planet. The loss of gravitational energy is so
large that the total energy decreases by

    
E Ei f− = − × − − ×( ) =3 04 10 3 08 109 9. . J  J

  
4 69 107. × J

(f) The only forces on the object are the backward force of air resistance R, comparatively very small
in magnitude, and the force of gravity. Because the spiral path of the satellite is not perpendicular

to the gravitational force, 
  

one component of the gravitational force  pulls forward on the satellite
to do positive work and make its speed increase.
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11.45 (a) At infinite separation U = 0 and at rest K = 0.  Since energy of the two-planet system is conserved
we have,

    
0 1

2 1 1
2 1

2 2 2
2 1 2= + −m v m v

Gm m
d

(1)

The initial momentum of the system is zero and momentum is conserved.

Therefore,     0 1 1 2 2= −m v m v (2)

Combine equations (1) and (2) :

    

v m
G

d m m1 2
1 2

2=
+( ) and    

    

v m
G

d m m2 1
1 2

2=
+( )

Relative velocity   vr  =     v1 – (–    v2 ) =  
    

2 1 2G m m
d

+( )

(b) Substitute given numerical values into the equation found for     v1 and     v2  in part (a) to find

    v1 = 1.03 × 10  4  m/s and     v2  = 2.58 × 10  3  m/s

Therefore,
    
K m v1

1
2 1 1

2= =
  
1 07 1032. × J and

    
K m v2

1
2 2 2

2= =
  

2 67 1031. × J

11.46 (a) The net torque exerted on the Earth is zero.  Therefore, the angular momentum of the Earth is
conserved;

  
mr v mr va a p p= and

    
v v

r

ra p
p

a
=







= ×( ) 
 =3 027 10

1 471
1 521

4.
.
.

 m/s
  

2 93 104. × m/s

(b)
    
K mvp p= = ×( ) ×( ) =1

2
2 1

2
24 4 2

5 98 10 3 027 10. .
  

2 74 1033. × J

    
U

GmM
rp
p

= − = −
×( ) ×( ) ×( )

×
=

−6 673 10 5 98 10 1 99 10

1 471 10

11 24 30

11

. . .

.   
− ×5 40 1033. J

(c) Using the same form as in part (b),   Ka =
  

2 57 1033. × J    and    Ua =
  

− ×5 22 1033. J

Compare to find that 
  
K Up p+ =

  
− ×2 66 1033. J      and      K Ua a+ =

  
− ×2 65 1033. J    They agree.

11.47 (a) T =
    

2π r
v

= 
  

2 30000 9 46 10

2 50 10

15

5

π × ×( )
×

.

.

 m

 m/s
= 7  × 10  15  s = 

  
2 108× yr

(b) M = 

    

4 4 30000 9 46 10

6 67 10 7 13 10

2 3

2

2 15 3

11 15 2
π πa
GT

=
× ×( )

× ⋅( ) ×( )
=

−

.

. / .

 m

 N m kg  s2 2
 2.66 × 10  41 kg

M = 1.34 × 10  11 solar masses 
  

~ 1011 solar masses

The number of stars is 
  

on the order of 1011
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*11.48 (a) From the data about perigee, the energy of the satellite-Earth system is

E =
    

1
2

2 1
2

3 2
11 24

61 60 8 23 10
6 67 10 5 98 10 1 60

7 02 10
mv

GM m
rp

E

p
− = ( ) ×( ) −

×( ) ×( )( )
×

−

. .
. . .

.

or E = 
  

− ×3 67 107. J

(b) L = mvr sin θ = m
  
v rp p sin 90.0°= (1.60 kg)(8.23 × 10  3  m/s)(7.02 × 10  6 m) = 

  
9 24 1010. /× ⋅kg m s2

(c) Since both the energy of the satellite-Earth system and the angular momentum of the Earth are
conserved,

at apogee we must have 
    

1
2

2mv
GMm

r
Ea

a
− =

and m  v ra a  sin 90.0° = L

Thus,
    

1
2

1 60
6 67 10 5 98 10 1 60

3 67 102
11 24

7.
. . .

.( ) −
×( ) ×( )( )

= − ×
−

v
ra
s

 J

and     1 60 9 24 1010. . kg  kg m /s2( ) = × ⋅v ra a

Solving simultaneously,
    

1
2

1 60
6 67 10 5 98 10 1 60 1 60

9 24 10
3 67 102

11 24

10
7.

. . . .

.
.( ) −

×( ) ×( )( )( )
×

= − ×
−

v
v

a
a

which reduces to     0 800 11046 3 6723 10 02 7. . v va a− + × =

so   va  =
  

11046 11046 4 0 800 3 6723 10

2 0 800

2 7± ( ) − ( ) ×( )
( )

. .

.

This gives   va  = 8230 m/s or 
  

5580 m/s .  The smaller answer refers to the velocity at the apogee
while the larger refers to perigee.

Thus, 

    

r
L

mva
a

= = × ⋅

( ) ×( ) =9 24 10

5 58 10

10

3
. /

.

 kg m s

1.60 kg  m/s

2

  
1 04 107. × m

(d) The major axis is 2a = 
  
r rp a+ ,   so the semi-major axis is

    
a = × + ×( ) =1

2
6 77 02 10 1 04 10. . m  m

  
8 69 106. × m

(e) T =

    

4 4 8 69 10

6 67 10 5 98 10

2 3 2 6 3

11 2
π πa

GME
=

×( )
× ⋅( ) ×( )−

.

. / .

 m

 N m kg  kg2 2 4

T = 8060 s = 
  
134 min
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11.49     v Rgi = 2
    
g

MG
R

= 2

Utilizing conservation of energy for the system of the Earth and the coasting rocket,

    

mv mGM
r

mv mGM
R

i
2 2

2 2
− = −

    

mv mv mGM
R

mGM
r

i
2 2

2 2
= − +

    
v v MG

R ri
2 2 2

1 1= − −



 v =

    
v MG

r Ri
2 2

1 1+ −





    
v Rg MG

r R
= + −



4 2

1 1

    
v

MG
R

MG
R

MG
r

= − +4 2 2

v = 
    

2
1 1

2
1 12MG

R r
R g

R r
+



 = +





*11.50 Let m represent the mass of the meteoroid and   vi  its
speed when far away. No torque acts on the meteoroid,
so its angular momentum is conserved as it moves
between the distant point and the point where it grazes
the Earth, moving perpendicular to the radius:

  
L Li f= :

    
m mi i f fr v r v× = ×

    
m R v mR vE i E f3( ) =

    
v vf i= 3

Now energy of the meteoroid-Earth system is also conserved:

  
K U K Ug i g f

+( ) = +( ) :
    

1
2

2 1
2

20mv mv
GM m

Ri f
E

E
+ = −

    

1
2

2 1
2

29v v
GM

Ri i
E

E
= ( ) −

    

GM
R

vE

E
i= 4 2:

    

v
GM

Ri
E

E
=

4
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11.51 If we choose the coordinate of the center of mass at the origin,
then

    
0 2 1=

−( )
+

Mr mr
M m

 and M    r2  = m    r1

(Note:  this is equivalent to saying that the net torque must be
zero and the two experience no angular acceleration.)  For
each mass F = ma    so

    
mr

MGm
d1 1

2
2ω = and

    
Mr

MGm
d2 2

2
2ω =

Combining these two equations and using d =     r1 +     r2  gives (    r1 +     r2 )
    
ω 2

2= +( )M m G
d

with   ω ω1 2=  = ω

and
    
T = 2π

ω

we find
    

T
d

G M m
2

2 34=
+( )

π

*11.52 From Kepler’s third law, minimum period means minimum orbit size. The “treetop satellite” in
Figure P11.21 has minimum period. The radius of the satellite’s circular orbit is essentially equal
to the radius R of the planet.

  Σ =F ma:
    

GMm
R

mv
R

m
R

R
T2

2 22= = 





π

    
G V

R R

RT
ρ

π
=

( )2 2 2

2

4

    
G R

R
T

ρ π π4
3

3
2 3

2
4( ) =

The radius divides out:     T G2 3ρ π=
    

T
G

= 3π
ρ



Chapter 11

285

11.53 Initial Conditions and Constants:

Mass of planet: 5.98 × 10  24  kg
Radius of planet: 6.37 × 10  6 m
Initial x: 0.0 planet radii
Initial y: 2.0 planet radii
Initial   vx : +5000 m/s
Initial 

  
vy : 0.0 m/s

Time interval: 10.9 s

t (s) x (m) y (m) r (m)   vx

  ( )m/s
  
vy

  ( )m/s
  ax

  ( )m/s2
  
ay

  ( )m/s2

0.0 0.0 12,740,000.0 12,740,000.0 5,000.0 0.0 0.0000 –2.4575
10.9 54,315.3 12,740,000.0 12,740,115.8 4,999.9 –26.7 –0.0100 –2.4574
21.7 108,629.4 12,739,710.0 12,740,173.1 4,999.7 –53.4 –0.0210 –2.4573
32.6 162,941.1 12,739,130.0 12,740,172.1 4,999.3 –80.1 –0.0310 –2.4572

…
5,431.6 112,843.8 –8,466,816.0 8,467,567.9 –7,523.0 –39.9 –0.0740 5.5625
5,442.4 31,121.4 –8,467,249.7 8,467,306.9 –7,523.2 20.5 –0.0200 5.5633
5,453.3 –50,603.4 –8,467,026.9 8,467,178.2 –7,522.8 80.9 0.0330 5.5634
5,464.1 –132,324.3 –8,466,147.7 8,467,181.7 –7,521.9 141.4 0.0870 5.5628

…
10,841.3 –108,629.0 12,739,134.4 12,739,597.5 4,999.9 53.3 0.0210 –2.4575
10,852.2 –54,314.9 12,739,713.4 12,739,829.2 5,000.0 26.6 0.0100 –2.4575
10,863.1 0.4 12,740,002.4 12,740,002.4 5,000.0 –0.1 0.0000 –2.4575

The 
  

object does not hit the Earth ; its minimum radius is 
    
1 33. RE .

Its period is 
  
1 09 104. × s .  A circular orbit would require a speed of 

  
5 60.  km/s .
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ANSWERS TO EVEN NUMBERED PROBLEMS

  2. (a)   2 50 10 5. × −  N toward the 500-kg mass
(b) between the masses and 0.245 m from the 500 kg mass

  4. (a)   4 39 1020. ×  N toward the Sun (b)   1 99 1020. ×  N away from the Sun.
(c)   3 55 1022. ×  N

  6. See the solution.  Either  1.000 m – 61.3 nm  or    2 47 10 4. × −  m

  8. (a)   1 31 1017. ×  N  toward the black hole (b)   2 62 1012. ×  N/kg

10.   2 82 109. ×  J

12. (a)   4 23 107. ×  m (b) 0.285 s

14. 1.27

16. 35.2 AU

18. After 393 yr  Mercury would be farther from the Sun than Pluto

20.   1 58 1010. ×  J

22. (a)
    
2

3

π
R h
GM
E

E

+( )
(b)

  

GM
R h

E

E +

(c)
    
GM m

R h
R R h

R m
E

E

E E

E+
+( )









 −

( )
2

2
2

86400

2 2

2
π

 s
The satellite should be launched
from a point on the equator, toward the east.

24.     GM m RE E/12

26. (a) 1.89 eV (b) 656 nm (c)   4 57 1014. ×  Hz

28. (a)   2 19 106. ×  m/s (b) 13.6 eV    (c) –27.2 eV

30. (a) ii (b) i (c) ii and iii
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32. See the solution

34.   1 42 1011. ×  J

36. See the solution

38.   2 26 10 7. × −

40. (a) and (b) see the solution (c)   1 85 10 5. × −  m/s2

42.   7 79 1014. ×  kg

44. (a) 7.79 km/s (b) 7.85 km/s (c) –3.04 GJ
(d) –3.08 GJ (e) loss = 46.9 MJ
(f) A component of the Earth’s gravity pulls forward on the satellite on its downward-banking

trajectory.

46. (a)   2 93 104. ×  m/s (b)     K U= × = − ×2 74 10 5 40 1033 33. . J,  J ,
(c)     K U= × = − ×2 57 10 5 22 1033 33. . J,   J .  Total energy is constant.

48. (a) –36.7 MJ (b)   9 24 1010. /× ⋅ kg m s2 (c) 10.4 Mm,  5.58 km/s
(d) 8.69 Mm (e) 134 min

50.     GM RE E/ /4 1 2( )

52. See the solution


