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CHAPTER 12
ANSWERS TO QUESTIONS

No; Yes. The pendulum can hang at rest with respect to the car, accelerating along with the car at
gsin®, if its string makes angle 6 behind the vertical. The tension in the card is mgcos6#. An observer

in the car can displace the pendulum slightly from this position to see it oscillate with period

271'\/ L/(gcos®), somewhat larger than the period on the level.

When the spring with two masses is set into oscillation in space, the coil in the exact center of the
spring does not move. Thus, we can imagine clamping the center coil in place without affecting the
motion. If we do this, we have two separate oscillating systems, one on each side of the clamp. The
half-spring on each side of the clamp has twice the spring constant of the full spring, as shown by the
following argument. The force exerted by a spring is proportional to the separation of the coils as the
spring is extended. Imagine that we extend a spring by a given distance and measure the distance
between coils. We then cut the spring in half. If one of the half-springs is now extended by the same
distance, the coils will be twice as far apart as they were for the complete spring. Thus, it takes twice as
much force to stretch the half-string, from which we conclude the half-spring has a spring constant that
is twice that of the complete spring. Our clamped system of masses on two half-springs, therefore, will

vibrate with a frequency that is higher than fby a factor of 2.

Higher frequency. When it supports your weight, the center of the diving board flexes down less than
the end does when it supports your weight. Thus the stiffness constant describing the center of the

board is greater than the stiffness constant describing the end. And then f=(1/2r)\k/m is greater for
you bouncing on the center of the board.

You can take ¢ =7, or equally well, ¢ =—x. At t =0, the particle is at its turning point on the negative
side of equilibrium, at x =-A.

The two will be equal if and only if the origin of coordinates is the position of the particle at time zero.

(a) In simple harmonic motion, one-half of the time, the velocity is in the same direction as the
displacement away from equilibrium.

(b) Velocity and acceleration are in the same direction half the time.

(c) Acceleration is always opposite to displacement, never in the same direction.

No. Itis necessary to know both the position and velocity at time zero.
Kinetic energy is mv? /2, and potential energy is kx? /2, both always positive.

No; Kinetic, Yes; Potential, No. For constant amplitude, the energy %kA2 stays constant. The kinetic

2

energy %mv would increase for larger mass if the speed were constant, but here the greater mass

causes a decrease in frequency and in the average and maximum speed, so that the kinetic and
potential energies at every point are unchanged.

We have T; = |L;/ g and Ty = \;’Lf/g = /2L;/ g =~2T;. The period gets larger by ~/2 times. Changing
the mass has no effect on the period of a simple pendulum.
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The motion will be periodic—that is, it will repeat. The period is nearly constant as the angular
amplitude increases through small values; then the period becomes noticeably larger as 6 increases
farther.

No. If the resistive force is greater than the restoring force of the spring (in particular, if b* > 4mk), the
system will be overdamped and will not oscillate.

Yes. An oscillator with damping can vibrate at resonance with amplitude that remains constant in
time. Without damping, the amplitude would increase without limit at resonance.

Shorten the pendulum to decrease the period between ticks.
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PROBLEM SOLUTIONS
|F|=kx,  so k=u=m= 575 N/m
x 04m

U, = Jo? = (575 N/m)(0.4 m) = 4607

Since the collision is perfectly elastic, the ball will rebound to the height of 4.00 m and then repeat

the motion over and over again. Thus, the motion is periodic

To determine the period, we use: x = % gt

The time for the ball to hit the ground is t= |~ 5 =0.909 s
9.80m/s

2x _ J 2(4.00 m)
g

This equals one-half the period, so T =2(0.909 s)=| 1.82's

No | The net force acting on the ball is a constant given by F =-mg (except when it is in contact
with the ground), which is not in the form of Hooke's law.

x =(4.00 m)cos(3.007 ¢ + ) Compare this with x = Acos(wt +¢) to find

w=2rf=3.007
or f=1.50 Hz Tzlz 0.667 s
f
A= 400 m
¢=| mrad

x(t=0.250 s) = (4.00 m)cos(1.757) = 2.83 m

20.0 cm

Umax = WA =27 fA= 942 cm/s

This occurs as the particle passes through equilibrium.

ey = 0?A=(27f) A= 17.8 m/s?

max

This occurs at maximum excursion from equilibrium.
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12.5 (@ x=(5.00 cm)cos(Zt + EJ At t=0, x =(5.00 cm) cos(Z) = 4.33 cm
dx . T
(b) vzﬁz—(w.o cm/s)sin| 2t+g At t=0, v=| =5.00 cm/s
(c) a= dv = —(20.0 cm/sz)cos(Zt + ”) At t=0, a= —-17.3 cm/s>
dt 6
(d) A=| 5.00cm and T= 2n = 2?” =/ 3145
1)

[F| 100x107 kg(9.80 m/s?) |
*12.6 k== 5 =251N/m and T=2rx|
x 390%x10™° m \

250x107° kg

0.627 s
YV 251N/m

oo
k

12.7 (@) At t=0, x=0 and v is positive (to the right). Therefore, this situation corresponds to x = Asinwt

and v="0;cosmt
Since f=1.50 Hz, w=2rf=3.00r
Also, A=2.00 cm, so that ‘ x =(2.00 cm)sin3.007 ¢ ‘

(b)  Umax =7; = Aw =2.00(3.007) = 6.00mcm/s

The particle has this speed at t =0 and next at t= T |1y
2 3
© . = A®? =2.00(3.007)* = 18.07% cm/s?
This positive value of acceleration first occurs at t= %T = 0.500 s

(d) Since T = % s and A =2.00 cm, the particle will travel 8.00 cm in this time.

Hence, in 1.00 s(= %T), the particle will travel 8.00cm+4.00cm = 12.0 cm

*128 (@) T 240s

(b) f=—=——= 0417 Hz

() w=2rnf=2r(0.417)= 2.62rad/s
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I L S i

2 2w \m f \k

2m _ 4Am*(7.00 k
Solving for k, k= 47t2m il ( zg) = 409 N/m
T (2.60 s)
The proposed solution x(t) =x;coswt + (U’) sinwt
®
. . . dx .
implies velocity v= T —x;0sinwt +v; coswt
. dv 2 . 2 Ui .. 2
and acceleration a=—= —x;0° coswt —v;wsinwt=-0"| x;coswt+| —+ [sinwt |=-w"x
®

The acceleration being a negative constant times position means we do have SHM, and its angular
frequency is . At t=0 the equations reduce to x=x; and v=v; so they satisfy all the
requirements.

. 2 . v; .
v? —ax = (—xia) sinwt+ v; cos® t) - (—xiw2 cos@t—v;sinw t)(xi cosmt+ (1) sin@ t)
o

2

0% —ax = x>

sin®ot - 2xv,0sinwtcoswt +v;> cos>wt

2

+xi2a) cos’ ot + X;v;wcoswtsinwt + x;v;,wsinwtcoswt + v,»2 sin’ ot = xi2w2 + v,-z

So this expression is constant in time. On one hand, it must keep its original value v;*> —g;x;. On

the other hand, if we evaluate it at a turning point where v=0 and x = A4, itis A’0*+0? = A%0.
Thus it is proved.

o= k _ [800N/m _ 4005 so position is given by x =10.0sin(4.00¢) cm
Vm | 0500 kg
From this we find that v =40.0cos(4.00t) cm /s Vpmax = 40.0 cm/s

a=-160sin(4.00t) cm/s* . = 160 cm/s?

t= (1)sinl(x) and when  x=6.00 cm, t=0.161s
4.00 10.0

We find v =40.0c0s[4.00(0.161)] = 32.0 cm/s

Using t = (1)sin_1(x)
4.00 10.0

when x=0,t=0 andwhen x=8.00cm, t=0.232s

a=-160sin[4.00(0.161)] =| -96.0 cm /s’

Therefore, At=| 0232 s
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12.12 x=Acoswt A=0.05m v=—Awsinwt a=-Aw?cosmt

If f=3600 rev/min =60 Hz, then ®=1207s™"

Umax = 0.05(1207) m/s = 18.8 m/s Aax = 0.05(1207r)2 m/s? = 7.11km/s?
12..13 w= k = 2—”
Ym T
2
@ k=aim= T
k(T’)? (T’)z
b /= = _—
(b) m e m
12.14 m=1.00 kg, k=250 N/m, and A=3.00cm. At t=0, x=-3.00 cm
'k 1250
o= —=/——=5.00rad
@ \m  \1.00 rad/s
so that, Tzz—nzz—n: 1.26 s
o 5.00

(b)  Vpax = A® =3.00x1072 m(5.00 rad/s) = 0.150 m/s

max

e = A®? = 3.00x 1072 m(5.00 rad /s)* = 0.750 m/s?

max

(c) Because x =-3.00 cm and v =0 at =0, the required solution is x=-Acoswt

or x=-3.00 cos(5.00 t) cm

v= % =/ 15.0sin(5.00t) cm/s
a= % = 75.0c08(5.00t) cm /s
12.15 Choose the car with its shock-absorbing bumper as the system; by conservation of energy,
15 1,0 Lk 2\ [5.00x10°
Jmo* =k v_x\%_(?,.mxm m)\‘T_ 2.23m/s
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Energy is conserved for the block-spring system between the maximum-displacement and the
half-maximum points:

(K+U), = (K+U), 0+ kA% = Zmo? +  kx?

1

5(650 N/m)(0.100 m)? = 2m(0.300 m/s)” + 2(6.50 N/m)(5.00x 10~ m)2

N

1 2 2(24.4 mJ)
325 mJ =-m(0.300 m/s)” +8.12m m= = 0542 k
J=gml ) I 9.00x107% m? /s> 8
o= Ko OON/M 46 ad)s Lr=2ro_2rrad | g
\m \ 0542kg o 346rad/s
oy = Aw® =0.100 m(3.46 rad /s)* = 1.20 m/s?
2r 2
m=200g, T=0250s, E=2.00]; ®=——=———=25.1rad/s
T 0250
k = mo? =0.200 kg(25.1rad/s)* = 126 N/m
2 e |
poKAT 4 2B (2200) _[oime
2 Ve Vo126
PURY:
kA2 250 N/m(3.50x107 m)
2 2
'k | 250 _
Vmax = A0 where 0= = \m =245
Umax = 0.784 m/s

2
A =Aw?=350x10"2 m(22.4 s_l) = 175m/s>

max

_ 1,421 2V _
E=_kA®=(35.0 N/m)(4.00><10 m) = 28.0 mJ

350 |

_;‘2_2:“5‘;“2_2 = (22
ol =@vA® o = TAT o=

(4.00><10*2)2 —(1.00><10*2)2 - 1.02m/s

1.2 1,,0 1,2 1 22 2\ | _
Jmo? = kA% = Jkx _5(35.0)[(4.00><10 ) ~(3.00x10 )]_ 12.2 mJ

%kx2 =E —%mv2 =/ 15.8 m]
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kzuz 200N 00 N/m |
x 020m o |
'k
a)=\‘;%=¢50.0 rad/s S0 f=
Upmax = @A =/50.0(0.200)= 1.41m/s atx=0
Ay = ©2A =50.0(0.200) = 10.0 m/s*  at x==%A
_1pa2_1 2 _
E=_kA? = 2(100)(0.200)" = 2.00]
o= A%~ =500, /3(0.200)° = 133 m/s

3.33m/s?

la|=wx = 50.0(0'2300) _

Model the oscillator as a block-spring system.

From energy considerations,

wA

Umax = WA and V="

From this we find x2 = %Az

The period in Tokyo is

and the period in Cambridge is

We know

For which, we see

or

0+ 0’x* = w?A?

wAY
SO (2) + w2x2 = szz

and ngAz +2.60 cm
T, —2r 1o

\ 8
TC :271'\/11C

8c

TT =TC =200 S
Ly _Lc
8&r &c

8c _Lc _0.9942

- = 1.0015
gr Ly 09927

=| 1.13 Hz

where A =3.00cm
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Chapter 12

mgh = %mvz and h=L(1-cos6)
. Umax =+ 28L(1-cos8) = 0.817 m/s
Iot =mgLsin®

mgLsin®@ . L ]
Frnax = mgsin, =0.250(9.80)(sin15.09 = 0.634 N
0=, 1=F_2 _ 145

T o 443
o=8:  1=5-2%__0499m
VL 0*  (4.43)

Referring to the sketch we have

F =-mgsin® and tan0=%
For small displacements, tan6 = sin@ / mgsin 6
and r=-118 v _jy mgcosf ¥

R mg

Since the restoring force is proportional to the displacement
from equilibrium, the motion is simple harmonic motion.

Comparing to F = —ma’x shows = = k/m=,/g/R

The parallel-axis theorem:

2 1 2 2 1 2 2 13 2

T=2z /—_ n\/M(Bmz)zzn | 18m = 2095
\ Mgd 12Mg(1.00 m) \312(9.80 m/sz)

For the simple pendulum

1.00m 201s difference = 2.09s-2.01s _

= ”/72— .
V9.80 m/s 2.01s

4.08%
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*12.27 f=0450Hz, d=0.350 m, and m=2.20kg
T= 1;
f
J 2
T=2r1 L, T2 = an’l
\ mgd mgd

2 —
112 mg;l _ [ 1 J mg;l _ 2.20(9.80)(0.35(;) =‘ 0.944 kg m?
s \f) 47 ap?(0.450 571)

. _1 2 1,2
12..28 The total energy is E=Z3mo®+Skx
2
Taking the time-derivative, a4k _ mvd—; + kxv
dt dt
md?x
Use Equation 12.28: P —kx —bv
Z—lj = v(—kx — bv) + kox
Thus, 6;—]5 =—bv?<0
12.29 0, =15.0° 6(t =1000) = 5.50°

X1000 _ Ae7/2m =950 _ -b(1000)/2m
X; A 15.0

1

x =Ae—bt/2m

In(5.50/15.0) = =1.00 = —b(1000) / 2m

b 100x107 s
2m

300



Chapter 12

12.30 Show that x=Ae"2M cos(wt + ¢)
2
is a solution of —kx — bd—x = md—g 1)
dt dt
P
where 0= k_ (b) . 2)
\m \2m
x = Aett/2m cos(wt+¢) 3)
dx _ Ae—bf/Z'ﬂ(_b)cos(wt +¢)- Aet/2mg sin(wt +¢) (4)
dt 2m
2
ZTJZC = —;[Ae_bt/zm(—zl;) cos(wt+¢) - Ae7t/2mg sin(wt + ¢):|
—[Ae‘bt/ 2m (—;)w sin(wt+¢)+ Ae0t/2mgy2 cos(wt + ¢)} %)
m

Substitute (3), (4) into the left side of (1) and (5) into the right side of (1);

2
—kAe bt/ 2m cos(wt +¢) + S—Ae_bt/ M cos(@t + @) + bwAe /2 sin(wt+¢)
m

b _ b _ .
= —Z[Ae bt/zm(—zm)cos(a)t +¢)— Ae bt/zmwsm(a)t + ¢):|

+gAe‘ht/2’"a) sin(wt +¢) - maw? A~/ 2m cos(wt +¢)

Compare the coefficients of Ae~"!/2" cos(wt+¢) and Aett/2m sin(wt +¢):

2 2 2 2
cosine-term: —k +b— = —b(—b) - me = L - m(k_ b] =—k+ L

om 2\ 2m 4dm m 4m 2m
. b b
sine-term:  bw = +E(a)) + E(a)) =bw

Since the coefficients are equal, x = A7t/ 2m

cos(wt +¢) is a solution of the equation.
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(a)

(a)

Chapter 12
For resonance, her frequency must match
= “‘ 3 JE,
f=Q_ L k1 430x10° N/m | g5y,
2r 2 \m 2m\ 12.5 kg L

From x=Acoswt, v=dx/dt=—-Awsinwt

, and a=dv/dt=—-Aw*coswt, the maximum

acceleration is Aw”. When this becomes equal to the acceleration due to gravity, the normal force
exerted on her by the mattress will drop to zero at one point in the cycle:

4280 m/s*(12.5 kg)

AwZ:g or A=%= g _ &M 3 = 2.85cm
w- k/m k 4.30x10° N/m
F=3.00cos(27t) N and k=20.0N/m
2w
w=?=2n’rad/s SO T:‘ 1.008‘
k 1200
In thi ’ = /7= | —— =3.16 rad
n this case o Vi =200 rad/s

Taking b =0 in Equation 12.33 gives A= (

Fo)(wz ~af) " =342 - 36|

m
Thus A=0.0509 m =‘ 5.09 cm ‘
2 f
Focoswt—kx=mj—t§ a)oz\“c‘% (1)

b =Acos(a)t+¢)

dx .
e —Awsin(wt +9)
2
%&J; =-Aw’ cos(wt +¢)

(4)

Substitute (2) and (4) into (1): Fycoswt—-kA cos(a)t + ¢) = m(—Aa)z)cos(wt + ¢)

Solve for the amplitude: (kA - mA®?

)cos(a)t+¢) =Fycoswt

These will be equal, provided only that ¢ must be zero and kA - mA®? = F,

Fo/m
2

Thus, A=———
(k/m)-w
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A= Fext/m
/ 2
\/( 2—w02) +(bo / m)
With b=0 =— Fe’“/m = F‘?Xf/m =+ Fext/m
J(@* - a?)? Ho’ +0?) o’ -0’
Thus w2=w02iw=£+h_6-301\1/m+ 1.70 N

A m mA 0150 kg ~ (0.150 kg)(0.440 m)

This yields @ =8.23 rad/s or w=4.03 rad/s

Then, f:zﬁ giveseither f= 131Hz  or f= 0.641Hz
T

The beeper must resonate at the frequency of a simple pendulum of length 8.21 cm:

f 2
po Ll L 980m/st oy,
2z\VL 27\ 0.0821 m

For the resonance vibration with the occupants in the car, we have for the spring constant of the
suspension

| 2
f= i\% : k=47f?m=47(1.8 s7') (1130 kg + 4(72.4 kg)) =182 x10° kg/s>
4(72.4 kg)(9.8 m/s”
Now as the occupants exit X = F_ ( g)(5 3 ) = 1.56x1072 m
k 1.82x10° kg/s

Suppose a 100-kg biker compresses the suspension 2.00 cm.

Then, k:szﬂ:womo‘* N/m
x 200x107° m

If total mass of motorcycle and biker is 500 kg, the frequency of free vibration is

=158 Hz

foL /k 1\/4.90><104N/m

“on\m 2n 500 kg

If he encounters washboard bumps at the same frequency, resonance will make the motorcycle
bounce a lot. Assuming a speed of 20.0 m/s, we find these ridges are separated by

20.0 m/s

T " 127m ~10' m
. S

In addition to this vibration mode of bouncing up and down as one unit, the motorcycle can also
vibrate at higher frequencies by rocking back and forth between front and rear wheels, by having
just the front wheel bounce inside its fork, or by doing other things. Other spacings of bumps will
excite all of these other resonances.
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*12.38 (a) Total energy = %kA2 = %(100 N/m)(0.200 m)* =2.00 ]

At equilibrium, the total energy is: %(ml +my 0% = %(16.0 kg)v® = (8.00 kg)v*

Therefore, (8.00 kg)v2 =2.00],and v= 0.500 m/s

This is the speed of m; and m, at the equilibrium point. Beyond this point, the mass m, moves
with the constant speed of 0.500 m/s while mass m; starts to slow down due to the restoring force
of the spring.

(b) Ille ellelgy Of t}le ”l] _Sprlllg SySteIIl at equlllbIlLIIIl 1S:
1 g

This is also equal to %k(A’)z, where A’ is the amplitude of the m;—spring system.

Therefore, %(100)(14’)2 =1.125 or A’=0.150 m
The period of the m;—spring system is: T= 27t\/ % =1.885s

and it takes %T =0.471 safter it passes the equilibrium point for the spring to become fully
stretched the first time. The distance separating m; and m, at this time is:

D= U(Z) —A’=0.500 m/s(0.471 s)—0.150 m = 0.0856 = 8.56 cm

2
12.39 (d’z‘] = Aw?
dt
max

Jmax = Hh = Ugmg = mAw?
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(a)

In x=Acos(wt+9¢),
we have at t=0
This requires ¢ =90°, SO

And this is equivalent to

Chapter 12

v =-wAsin(ot+¢)
v =—-0ASING =0,
x = Acos(wt+90°)

x=—-Asinwt.

'k /50 N/m _

= == 22 057!
©T\m T\ 05kg

Numerically we have

and v, =0A 20 m/s:(10 s_l)A A=2m
So x=(-2m) sin[(lO s_l)t]
1 2,1, 2 1 2 1, .2 _ 41 2
(b) In 5 Mo +§kx _EkA , Ekx _3(5"10)
implies %%kx2+%kx2=%kA2 %x = A?
x=% JA=30866A= +173m
2
(@ o=,g/L L:g/a)zzwz‘ 0.0980 m_
(1057
(d) In x:(—2m)sin[(105_l)t] 1T7T7T7Tsfi{‘ﬂ S
ol N
the particleisat x=0at t=0,at 10f=7ms, and so on. 0.5kttt ft-r bttt
o [ ol
The particle is at x=1m 3 ‘ 1
1 1 f
when —E:sm[(ws )t] 17

with solutions (10 s_l)t =-n/6,
(10 s_l)t =x+rn/6,and so on.

The minimum time for the motion is At in 10At = (7 /6) s

At=(m/60)s= 0.0524 s
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12.41 We draw a free-body diagram of the pendulum.
The force H exerted by the hinge causes no
torque about the axis of rotation.

2
T=lIa and d—g =-o
dt
. d*0
T =MgLsin6 + kxhcos8 = _IW
For small amplitude vibrations, use the A
approximations: sinf=6, cos6=1 , and et
x=s=h6
2 2 | 2
Therefore, d—g _ | ML +kh” 6=-w0 0= M =2rf
dt I VoML
PaES | MgL -+ ki’
2\ M
*12.42 Deuterium is the isotope of the element hydrogen with atoms having nuclei consisting of one

proton and one neutron. For brevity we refer to the molecule formed by two deuterium atoms as
D and to the diatomic molecule of hydrogen-1 as H.

MD = ZMH

Op _~K/IMp My _ 1 fo =4 = 0919x101 Hz
COH \/k/MH \JMD V2 \/2

1243 (a) Atequilibrium, we have
L
X1=0= —mg(z) + kxoL

where x, is the equilibrium compression.
After displacement by a small angle,

Ir= —mg(g) +kxL = —mg(;“) +k(xo — LO)L = —k6L?

2 2
But, 21=1a:1mL2Lf. So di‘j:_ik
3 dt dt m

The angular acceleration is opposite in direction and proportional to the displacement, so we have

simple harmonic motion with w? = % .
(b) f:ﬂzi\/% _ 1 /M — 123 Hz
2 2z \m 2r\ 5.00 kg
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(a)

Chapter 12

As it passes through equilibrium, the 4-kg object has speed

k \/1001\1/m2 m=10.0m/s

vmax . \/m | 4 kg

In the completely inelastic collision momentum of the two-object system is conserved. So the new
10-kg object starts its oscillation with speed given by

4 kg(10 m/s)+(6 kg)0 = (10 kg) vy

Upmax =4.00 m/s
The new amplitude is given by %mvmaxz = %kA2

10 kg(4 m/s)* = (100 N /m) A

A=126m

Thus the amplitude has| decreased by | 2.00 m-1.26 m = 0.735 m

The old period was T=2r ﬂ =2r & =126s
\k V100 N/m
. 10 ,
The new period is T=2r|—s" =199s
\'100
The period has| increased by 1.99m-126 m= 0.730 s

MO =2 (4kg)(10 m/s)* =200 ]

The old energy was 5

. . 1 2
The new mechanical energy is 5(10 kg)(4 m/s)"=80]

The energy has| decreased by 120 J

The missing mechanical energy has turned into internal energy in the completely inelastic
collision.
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(a)

(c)

(a)

(c)

Chapter 12

One can write the following equations of motion: k
T —>| ‘<—R

T-kx=0 (describes the spring) M

d2x . . I
mg—T =ma= mﬁ (for the hanging object)

m -
40 _ 1 d*x
R(T"-T)=1—=——5 (for the pulley)
T=N=1 2 = Rar prey

with = %MR2

Combining these equations gives the equation of motion

(m+;M);lzt;C+kx =mg

The solution is x(t) = Asinwt+ % (where mg/k arises because of the extension of the spring due
to the weight of the hanging object), with frequency

foe 1 _k _ 1 100N/m
2 2T\ m+ M 270200 kg + 1 M

For M =0 f= 3.56Hz

For M =0.250 kg f= 279Hz

For M =0.750 kg f= 210 Hz

Wy = \/:1 =‘ 15.8 rad/s ‘

Fs—mg=ma=m(%g) Fszgmg:%.lN

When the acceleration of the car is zero, the new equilibrium position can be found as follows:

F/=mg=19.6 N =kx, x;=3.92 cm

’
S

Thus, A=|x.—x.|= 1.31cm

q

The phase constant is ‘ rwrad ‘
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12.48
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(a)

(b)

(a)

(b)

(c)

(a)

(b)

Chapter 12

For each segment of the spring

dx v
dK = (dm)o,? “—xﬂ [«
1 M
( A0
Also, v, =20 and  dm="tdx BE—— [ I
0 )
Therefore, the total kinetic energy of the block-spring system is
K=ot [0 g 1) 2
—Evzjogz 7972 3
9 1 2_1 miy 2
0= and -mpv =—|M+—1v
\ ey 27ff 2( 3 )
Therefore, T = 2z =
®
Tzzn:27t\/L: 3.00s
o 8
121 2 _
E=mv* =1 (674)2.06) = 14.3]
1 v?
At maximum angular displacement mgh = Emv2 h= Cri 0.217 m
4
h=L-Lcos®=L(1-cosb) Cosezl—% 0 =25.5°

XF = 2T sin6j where 6 = tan‘l(Z)

Therefore, for a small displacement

2Ty .

sinf = tanf = % and 2F

The total force exerted on the ball is opposite in direction and proportional to its displacement
from equilibrium, so the ball moves with simple harmonic motion. For a spring system,

>F = —kx becomes here SF = _%y
: . : k _ 2T
Therefore, the effective spring constant is 2T /L and W= \/ —= \3 T
m |
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1250 (a) Assuminga Hooke's Law type spring, Static stretching of a spring
= = =1.7386x - 0.1128
F=Mg=kx _,Z_,\ Sﬂy TROX S
and empirically gb 0.6 | iii:
2 . Fod ot
Mg =1.74x-0.113 T 04 i RN
£ AT
so k= 174N/m=*6% B 02p -+ttt
& [ R
| S S
0.0200 0.17 0.196 Extension, m
0.0400 0.293 0.392
0.0500 0.353 0.49 Squared period as a function
88?88 83;% 8222 of the mass of an object
0.0800 0.493 0.784 %, ~ bouncingonaspring
FB\ 2 L e A R N |
(b) We may write the equation as 5 R Bk ST =
theoretically g et
2 o At
2 2 = e S R
T2 =4 A, 2 0 002 0.04 0.060.08
k 3k Mass, kg

and empirically

T? =21.7M +0.0589

2
SO :4Lg 1.82 N/m *3%
21.7
Time, s T, s M, kg TZ, 2
7.03 0.703 0.0200 0.494
9.62 0.962 0.0400 0.925
10.67 1.067 0.0500 1.138
11.67 1.167 0.0600 1.362
12.52 1.252 0.0700 1.568
13.41 1.341 0.0800 1.798

The k values 1.74 N/m * 6%

and 1.82 N/m 3% differ by 4%
SO they agree.

0.0589
21.7

(c) Utilizing the axis-crossing point, m, = 3( ) kg E‘ 8 grams +12%

in agreement | with 7.4 grams.
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1251 (a) Newton’'s law of universal gravitation is F=- G]\/ZIm = G—;ﬂ( 37 3)p
r T
Thus F= —(éﬂme)r
¢ 3
Which is of Hooke’s law form with k= %7‘[ pGm
(b) The sack of mail moves without friction according to —(%)7: pGmr =ma

a= —(g)ﬂ pGr = —0°r

Since acceleration is a negative constant times excursion from equilibrium, it executes SHM with

_ [47pG and period T= 2z _ |3z
V3 o \pG
. . . T | 3n
The time for a one-way trip through the earth is
2 \ 4pG
GM, G4mnRj>p 4
We have also g=—>F= - —=_npGR
R 3R> 3 ‘
6m
o 2PG__8 and ——n' /637X10 =253x10° s=| 422 min_
3 (nR,) g | 9.8m/s? L
1252 (a) We require Aebt/2m =§ etbt/2m — o
or bt _ In2  or Mt =0.693 s t= 520s
2m 2(0.375 kg)

The spring constant is irrelevant.

(b) We can evaluate the energy at successive turning points, where

cos(wt+¢)=+1  and the energy is %kx2 = %kAzefbt/m We require %kAze_bt/m = %(%kAz)

pHbtm _ o . _min2 0375 kg(0.693)

= = 260s
b 0.100 kg/s

or

(¢) From E= %kAz,the fractional rate of change of energy over time is

d dA
dE/dt _ dt dt _,dA/dt

E a2 a2 0 4
kA kA

(3k42) SkA)

two times faster than the fractional rate of change in amplitude.
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12.53 (a) When the mass is displaced a distance x K ko
from equilibrium, spring 1 is stretched a
distance x; and spring 2 is stretched a MW m
distance x,. ( | J (
(@

By Newton's third law, we expect

k1X1 = kzxz.

RRRRRSS [~ 4

When this is combined with the

requirement that (b)
X=X + Xy,
we find X = |: k2 :|x
ki +ky
. S kiky
The force on either spring is given by F = x = ma
ki +k;

where 4 is the acceleration of the mass m.

This is in the form F=kygx =ma
| m(ky +k
and T=2r ‘c£= 271_\/7;1(14-2)
\ Kegr kiky

(b) In this case each spring is distorted by the distance x which the mass is displaced. Therefore, the
restoring force is

F=—(k;+ky)x and ke = ky +ka

so that T= 2rx n
\ (kg +k2)
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For 6

max

Chapter 12

=5.00°, the motion calculated by the Euler

method agrees quite precisely with the prediction of

Motion of a Simple Pendulum

Omax cos®t. The period is T =2.20s. Angle (%)
Ang. .
Time, Angle, 6 SApIelega Accel.  Omax coswt L4
t ° o o I ~ 1 ~ 1
(s) ) (/s) ( /SZ) i 1717:}
0.000 5.0000  0.0000 —40.7815 5.0000 L
0.004 49993  —0.1631 —40.7762 4.9997 A
0.008 49980  —0.3262 —40.7656 4.9987 2.8
+ -+ -3 4
0.544 0.0560  —-14.2823 -0.4576 0.0810 Fob i
0.548 ~0.0011 —14.2842 0.0090  0.0239 oA
0.552 ~0.0582 -14.2841 04756  —0.0333 - ]
1092 -49994 —03199 407765 -—4.9989 Small amplitude
1.096 _5.0000 -0.1568 40.7816 —4.9998
1.100 -5.0000 0.0063  40.7814 —5.0000 Angle (%)
1.104 49993 01694  40.7759 —4.9996
100
1.644 ~0.0638 142824 04397  -0.0716 \
1.648 0.0033  14.2842 —0.0270 -0.0145 60 |
1.652 0.0604  14.2841 -0.4936 0.0427 ol
2192 49994 03137  —40.7768 4.9991 0 —=—
2.196 5.0000 0.1506  —40.7817 4.9999 =20 -
2.200 5.0000 -0.0126 —40.7813 5.0000 0
2.204 49993  —0.1757 —40.7756 4.9994 -
~100
Large amplitude
For 6,,,, =100°, the simple harmonic motion approximation 6

max

max

Euler calculation. The period is T =2.71 s, larger than the small-angle period by 23%.

Time, Angle, Ang. speed Ang. Accel.

10 28) C/s) (o/s?)  Cmaxcoset
0.000 100.0000  0.0000 4606066 100.0000
0.004 99.9926 ~1.8432 4608173 99.9935
0.008 99.9776 _3.6865 _460.8382  99.9739
1.096 847449  -120.1910 4659488  -99.9954
1.100 852182 -1183272 4662869  —99.9998
1.104 856840  -1164620 4665886  -99.9911
1.348 299.9960  -3.0533 4608125  —75.7979
1.352 1000008  -1.2100 4608057  —75.0474
1.356 999983  0.6332 460.8093  —74.2870
219 40.1509 248677  -301.7132  99.9971
2.200 41.0455 2236609  -307.2607  99.9993
2.204 41.9353 2224318 -312.7035  99.9885
2704 99.9985 2.4200 _460.8090  12.6422
2.708 1000008 05768 _460.8057  11.5075
2712 99.9957 —1.2664 4608129 103712

coswt diverges greatly from the
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(a)
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The block moves with the board in what we take as the positive x direction, stretching the spring
until the spring force —kx is equal in magnitude to the maximum force of static friction
usn = pgmg. This occurs at x = u;mg / k.

Since v is small, the block is nearly at the rest at this break point. It starts almost immediately to
move back to the left, the forces on it being —kx and +ymg. While it is sliding the net force
exerted on it can be written as

—kx + pymg = —kx + kﬂk% = —k(x - 'ukkmg) =—kx,,

where x,,; is the excursion of the block away from the point pmg/ k.

Conclusion: the block goes into simple harmonic motion centered about the equilibrium position
where the spring is stretched by pmg/k.

The amplitude of its motion is its original displacement, A = pgmg/k— umg/ k. It first comes to
rest at spring extension wmg /k— A= (2u — s )mg / k. Almost immediately at this point it latches

onto the slowly-moving board to move with the board. The board exerts a force of static friction
on the block, and the cycle continues.

The graph of the
motion looks like
this:

~3
Y 1

. . <
<«——Dblock moves —» -

with board

block in SHM
as it springs back

The time during each cycle when the block is moving with the board is 2A /v =2(u, — u )mg / kv.
The time for which the block is springing back is one half a cycle of simple harmonic motion,
%(27&/ m/ k) =mm/ k. We ignore the times at the end points of the motion when the speed of the

block changes from v to 0 and from 0 to v. Since v is small compared to 2A / 7r\ m/ k, these times
are negligible. Then the period is

7o 2k —mmg Im
kv Vk
2(0.4-0.25)(0.3 kg)(9.8 m /s>
2 03 ke )+n/ 03K8 _3065+04975=3565
0.024 m/s(12 N/m) V12 N/m
Then f= % =| 0.281 Hz
2(u, - m
T= w +7, ™ increases as m increases, so the frequency‘ decreases ‘

kv \Vk

As k increase, T decreases and f| increases .

As vincreases, T decreases and f| increases |

As (p; — py.) increases, T increases and f| decreases |.
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12.

14.

16.

18.
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22,

24.

26.

28.

30.

Chapter 12

ANSWERS TO EVEN NUMBERED PROBLEMS

20.0 cm (b) 94.2 cm/s as the particle passes through equilibrium

(a) See the solution (b) 1.82s

(c) No, the force is not in the form of Hooke’s law

(a)

() 17.8 m/s? at maximum excursion from equilibrium
0.627 s

(a) 240s (b) 0.417Hz

See the solution

18.8m/s, 7.11 km/s>

(c)

(c)

(c)

2.62rad/s

1.20 m/s?

17.5 m/s>

1.13 Hz

2.00]
333 m/s>

(a) 1.26s (b) 0.150 m/s, 0.750 m/s>
() x=—(3.00 cm) cos(5.008), v = (15.0 cm/s) sin(5.00¢) , a = (75.0 cm/s>) cos(5.00¢)
(a) 0.542kg (b) 1.81s
(a) 0.153] (b) 0.784m/s
(a) 100 N/m
(c) 1.41 m/s as the block passes through equilibrium
(d) 10.0 m/ s? at maximum excursion from equilibrium
(f) 1.33m/s
8Cambridge ~1.0015
gTokyo

1.42's,0.499 m

(a)

2.09 s (b) 4.08%

See the solution

See the solution
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32. (a) 1.00s (b) 5.09 cm

34. Either 1.31 Hz or 0.641 Hz

36. 1.56 cm

38. (a) 0.500m/s (b) 8.56 cm

40. (a) x=-2m)sin(10¢) (b) at x=%1.73m
(¢) 98.0 mm (d) 524 ms

42. 9.19x10" Hz

44. (a) The amplitude is reduced by 0.735 m

(b) The period increases by 0.730 s
(c) The energy decreases by 120 ]
(d) See the solution

46. (a) 15.8rad/s (b) 5.23cm (c) 1.31cm, wrad
48. (a) 3.00s (b) 1437 (c) 25.5°
50. See the solution. (a) k=174N/m=*6%

(b) k=1.82N/m+3% showing agreement
(c) 8grams*12% showing agreement

52. (a) 5.20s (b) 2.60s (c) See the solution

54, See the solution. For 6,

max
differences, and the period is 23% greater than small-angle period.

=5.00° there is precise agreement. For 6,

=100° there are large
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