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ANSWERS TO QUESTIONS

Q13.1 Wind can change a Doppler shift but cannot cause one. Both   vo  and   vs  in our equations must be
interpreted as speeds of observer and source relative to the air. If source and observer are moving
relative to each other, the observer will hear one shifted frequency in still air and a different shifted
frequency if wind is blowing. If the distance between source and observer is constant, there will never
be a Doppler shift.

Q13.2 To use a slinky to create a longitudinal wave, pull a few coils back and release.  For a transverse wave,
jostle the end coil side to side.

Q13.3     v T= /µ .  Therefore, increase tension by a factor of 4.

Q13.4 It depends on what the wave reflects from.  If reflecting from a less dense string, the reflected part of
the wave will be right-side-up.

Q13.5 No. A wave is not a solid object, but a chain of disturbance. As described by the principle of
superposition, the waves move through each other.

Q13.6 Yes.      v A fA f vmax wave  where  = = =ω π λ2 / .

Q13.7 Amplitude is increased by a factor of   2 .  No, the wave speed does not depend on the amplitude.

Q13.8 The section of rope moves up and down in SHM.  The wave continues on, setting in motion, up and
down, further sections of the rope.

Q13.9 Each element of the rope must support the weight of the rope below it. The tension increases with
height. (It increases linearly, if the rope does not stretch.) Then the wave speed     v T= /µ  increases
with height.

Q13.10 As the source frequency is doubled, the speed of waves on the string stays constant and the
wavelength is reduced by one half.

Q13.11 As the source frequency is doubled, the speed of waves on the string stays constant.

Q13.12 Slower.  Wave speed is inversely proportional to the square root of linear density.

Q13.13 Higher tension makes wave speed higher.  Greater linear density makes the wave move more slowly.

Q13.14 The wave speed is independent of the maximum particle speed.  The source determines the maximum
particle speed, through its frequency and amplitude.  The wave speed depends instead on properties
of the medium.

Q13.15 A fluid cannot support shear forces.

Q13.16 Let 
  
∆t t ts p= −  represent the difference in arrival times of the two waves at a station at distance

  
d v t v ts s p p= =  from the epicenter.  Then 

    
d t v vs p= − −∆ ( / / )1 1 1.  Knowing the distance from the first

station places the epicenter on a sphere around it.  A measurement from a second station limits it to
another sphere, which intersects with the first in a circle.  Data from a third station will generally limit
the possibilities to a point.
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PROBLEM SOLUTIONS

13.1 Replace x by x – vt = x – 4.5t

to get

    

y
x t

=
−( ) +[ ]

6

4 5 32.

13.2

13.3
    
f = =40 0

30 0
4
3

.
.

 vibrations 
 s

 Hz
    
v = =425

42 5
 cm

10.0 s
 cm/s.

λ =

    

v
f

= = =42 5
31 94

3

.
.

 cm/s

 Hz
 cm  

  
0 319.  m

*13.4 Using data from the observations, we have λ = 1.20 m

and 
    
f = 8 00.

12.0 s

 Therefore, v = λf = (1.20 m)
  

8 00
12 0

.
.  s





 = 

  
0 800.  m/s
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13.5 (a) Let 
    
u t x= − +10 3

4
π π π

    

du
dt

dx
dt

= − =10 3 0π π  at a point of constant phase

    

dx
dt

= =10
3   

3 33.  m/s

The velocity is in the 
    

positive -direction.x

(b)
    
y 0 100 0 350 0 300

4
0 0548. , . sin . . 0  m  m( ) = ( ) − +



 = − =π π

  
−5 48.  cm

(c)
    
k = =2

3
π
λ

π :    λ =
  

0 667.  m     ω π π= =2 10f :      f =
  

5 00.  Hz

(d)
    
v

y
t

t xy = = ( )( ) − +





∂
∂

π π π π
0 350 10 10 3

4
. cos

    
vy , .max = ( )( ) =10 0 350π

  
11 0.  m/s

13.6 y = (0.0200 m) sin (2.11x – 3.62t) in SI units A = 
  

2 00.  cm

k = 2.11 rad/m
    
λ π= =2

k   
2 98.  m

ω = 3.62 rad/s
    
f = =ω

π2   
0 576.  Hz

    
v f

k k
= = = = =λ ω

π
π ω

2
2 3 62

2 11
.
.   

1 72.  m/s

*13.7 (a)
    
ω π π= = ( ) =−2 2 5 1f  s

  
31 4.  rad/s

(b)
    
λ = = =−

v
f

20
4 001

 m/s
5 s

 m.
    
k = = =2 2

4
π
λ

π
 m   

1 57.  rad/m

(c) In     y A kx t= − +( )sin ω φ we take     A = 12 cm

At     x = 0 and     t = 0 we have     y = ( )12 cm sinφ

So that     y = 0 we take   φ = 0

Then
    

y x t= ( ) ( ) − ( )( )12 0 1 57 31 4. sin . . cm  rad/m  rad/s

(d) The transverse velocity is 
    

∂
∂

ω ωy
t

A kx t= − −( )cos

Its maximum magnitude is     Aω = ( ) =12 cm 31.4 rad/s
  

3 77.  m/s

(e)
    
a

v

t t
A kx t A kx ty

y= = − −( )( ) = − −( )∂
∂

∂
∂

ω ω ω ωcos sin2

The maximum value is
    
Aω 2 1 2

0 12 31 4= ( )( ) =−. . m  s
  
118 m/s2
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13.8 y = (0.120 m) sin 
    

π π
8

4x t+





(a)
  
v

dy
dt

= :
    
v x t= ( )( ) +



0 120 4

8
4. cosπ π π

v(0.200 s, 1.60 m) = 
  

−1 51.  m/s

  
a

dv
dt

= :
    
a x t= −( )( ) +



0 120 4

8
42. sin m π π π

a(0.200 s, 1.60 m) = 
  

0

(b)
    
k = =π π

λ8
2

: λ = 
  
16 0.  m

    
ω π π= =4

2
T

: T = 
  

0 500.  s

    
v

T
= = =λ 16 0.  m

0.500 s
 
  

32 0.  m/s

13.9  (a) A =     ymax  = 8.00 cm = 0.0800 m
    
k = = = −2 2

0 800
7 85 1π

λ
π

( .
.

 m )
 m

    ω π π π= = =2 2 3 00 6 00f ( . ) .  rad/s

Therefore, y = A sin (kx + ω t)

Or  (where y(0, t) = 0    at        t = 0)
    

y x t= ( ) +( )0 0800 7 85 6. sin . π  m

(b) In general,     y x t= + +0 0800 7 85 6. sin( . )π φ

Assuming y(x, 0) = 0     at      x = 0.100 m

then we require that 0 = 0.0800 sin (0.785 + φ)

or φ = – 0.785

Therefore,
    

y x t= + −( )0 0800 7 85 6 0 785. sin . .π  m
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13.10 (a) Let us write the wave function as y(x, t) = A sin (kx + ω t + φ)

y(0, 0) = A sin φ = 0.0200 m

    

dy
dt 0 0,

= Aω cos φ = –2.00 m/s

Also, 
    
ω π π π= = =2 2

0 0250
80 0

T .
.

 s
 /s

A  2  =     xi
2  + (  vi /ω)  2  = (0.0200 m)  2  +

  

2 00
80 0

2.
.

 m/s
 /sπ







A = 
  

0 0215.  m

(b)
    

A
A

sin
cos

.
/ .

. tan
φ
φ π

φ=
−

= − =0 0200
2 80 0

2 51

Your calculator's answer tan  −1 (–2.51) = –1.19 rad has a negative sine and positive cosine, just the
reverse of what is required.  You must look beyond your calculator to find

  φ π= − =1 19.  rad
  
1 95.  rad

(c)
    
vy ,max  = Aω = 0.0215 m (80.0π /s) = 

  
5 41.  m/s

(d) λ =   vx T = (30.0 m/s)(0.0250 s) = 0.750 m

    
k = = =2 2

0 750
8 38

π
λ

π
.

.
 m

 /m   ω π= 80 0.  /s

    
y x t x t, . sin . . .( ) = ( ) + +( )0 0215 8 38 80 0 1 95 m  rad/m  rad/s  radπ

*13.11 Equation 13.19 is
    

∂
∂

∂
∂

2

2 2

2

2
1y

x v
y

t
=

If   y eb x vt= −( )

then 
  

dy
dt

bveb x vt= − −( ) and 
  

dy
dx

beb x vt= −( )

    

d y
dt

b v eb x vt
2

2
2 2= −( )  and 

    

d y
dx

b eb x vt
2

2
2= −( )

Therefore,  
    

∂
∂

∂
∂

2

2
2

2

2
y

t
v

y
x

= , demonstrating that   e
b x vt−( )   is a solution
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13.12 The down and back distance is 4.00 m + 4.00 m = 8.00 m

The speed is then
    
v

d
t

Ttotal= = ( ) = =4 8 00
0 800

40 0
.

.
. /

 m
 s

 m/s µ

Now, 
  
µ = = × −0 200

4 00
5 00 10 2.

.
.

 kg
 m

 kg/m

So T = µv  2  = (5.00 × 10  −2  kg/m)(40.0 m/s)  2  = 
  

80 0.  N

13.13
  
v

T=
µ

=
  

1350
5 00 10 3

 kg m/s
 kg/m

2⋅
×

=−.
 
  

520 m/s

13.14 T = Mg is the tension;
    
v

T Mg
m L

MgL
m

L
t

= = ( ) = =
µ /

 is the wave speed.

Then, 
    

MgL
m

L
t

=
2

2

and g = 

    

Lm
Mt2 2

1 60

3 00
=

×( )
×( )

=
−

−

.

.

 m 4.00 10  kg

 kg 3.61 10  s

3

3   
1 64.  m/s2

13.15 The total time is the sum of the two times.

In each wire  
  
t

L
v

L
T

= = µ

Let A represent the cross-sectional area of one wire.  The mass of one wire can be written both as
  m V AL= =ρ ρ  and also as   m L= µ .

Then we have µ = ρA = 
    

π ρ d2

4

Thus, t =
    
L

d
T

π ρ 2 1 2

4








/

For copper, t = (20.0) 

  

π( )( ) ×( )
( )( )

















−8920 1 00 10

4 150

3 2 1 2
.

/

= 0.137 s

For steel, t = (30.0) 

  

π( )( ) ×( )
( )( )

















−7860 1 00 10

4 150

3 2 1 2
.

/

 = 0.192 s

The total time is  0.137 + 0.192 = 
  

0 329.  s
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13.16 From the free-body diagram mg = 2T sin θ

    
T

mg=
2sinθ

The angle θ is found from
    
cos

/
/

θ = =3 8
2

3
4

L
L

∴ θ = 41.4°

(a)
  
v

T=
µ     

v
mg=

°
=

2 41 4µ sin .
 

    

9 80

2 8 00 10 41 43
.

. sin .

 m/s

 kg/m

2

×( ) °











− m

or v = 
    

30 4.
m/s

kg







m

(b)     v m= =60 0 30 4. .  and     
    

m = 3 89.  kg

*13.17 (a) If the end is fixed, there is inversion of the pulse upon reflection.  Thus, when they meet, they

cancel and the amplitude is 
  

zero .

(b) If the end is free, there is no inversion on reflection.  When they meet, the amplitude is

2A = 2(0.150 m) = 
  

0 300.  m .

13.18
    
f

v= = =
λ

30 0
0 500

60 0
.

.
.  Hz     ω π π= =2 120f  rad/s

      
P = = 



( ) ( ) ( ) =1

2
2 2 1

2
2 20 180

3 60
120 0 100 30 0µω πA v

.
.

. .
  
1 07.  kW

13.19 A = 5.00 × 10  −2  m µ = 4.00 × 10  −2  kg/m   P  = 300 W T = 100 N

Therefore, 
  
v

T=
µ

 = 50.0 m/s

  P     
= 1

2
2 2µω A v :   ω 2 = 

      

2
2

P

µ A v
= 

  

2 300

4 00 10 5 00 10 50 02 2 2
( )

×( ) ×( ) ( )− −. . .

ω = 346 rad/s

    
f = =ω

π2
 
  

55 1.  Hz
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*13.20 T = constant; 
  
v

T=
µ

;   P     
= 1

2
2 2µω A v

(a) If L is doubled, v remains constant and 
    
P is constant .

(b) If A is doubled and ω is halved,   P      ∝ ω 2 2A  
  

remains constant .

(c) If λ and A are doubled, the product     ω λ2 2 2 2A A∝ /  remains constant, so 
    
P remains constant  .

(d) If L and λ are halved, then   ω λ2 21∝ /  is quadrupled, so 
    
P is quadrupled .

(Changing L doesn't affect   P).

13.21   µ = = × −30 0 30 0 10 3. . g/m  kg/m

λ = 1.50 m

f = 50.0 Hz:     ω π= = −2 314 1f  s

2A = 0.150 m: A = 7.50 × 10  −2  m

(a)
    
y A x t= −



sin

2π
λ

ω
    

y x t= ×( ) −( )−7 50 10 4 19 3142. sin .

(b)
      
P = = ×( )( ) ×( ) 





− −1
2

2 2 1
2

2 2 2
30 0 314 7 50 10

314
4 19

µω A v . .
.

10  W3
    
P = 625 W

*13.22
    
λ = =

×
=−

v
f

340
60 0 103 1

 m/s
 s.

 
  

5 67.  mm

*13.23 Since  
    
v vlight sound>> :     d ≅ =( )( . )343 16 2 m/s  s

  
5 56.  km

13.24 Sound takes this time to reach the man:
  

20 0 1 75
343

5 32 10 2. .
.

 m  m
 m/s

 s
−( ) = × −

so the warning should be shouted no later than 0.300 s + 5.32 × 10  −2 s = 0.353 s

before the pot strikes.

Since the whole time of fall is given by  
    
y gt= 1

2
2 :

    
18 25 9 801

2
2. . m  m/s2= ( )t

t = 1.93 s

the warning needs to come 1.93 s – 0.353 s = 1.58 s

into the fall, when the pot has fallen
  
1
2

29 80 1 58 12 2. . . m/s  s  m2( )( ) =

to be above the ground by   20.0 m – 12.2 m = 
  

7 82.  m
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*13.25 (a) A = 
  

2 00. µm

  
λ π= = =2

15 7
0 400

.
.  m  

  
40 0.  cm

    
v

k
= = =ω 858

157
 
  

54 6.  m/s

(b) s = 2.00 cos [(15.7)(0.0500) – (858)(3.00 × 10  −3)] = 
  

−0 433. µm

(c)     vmax = Aω = (2.00 µm)(858 s  −1) = 
  
1 72.  mm/s

13.26     ∆Pmax = ρωv    smax  = (1.20 kg/m  3 )[2π(2000 s  −1)](343 m/s)(2.00 × 10  −8 m)

    ∆Pmax= 
  

0 103.  Pa

13.27
    
∆P v s v

v
smax = = 



ρ ω ρ π

λmax max
2

λ = 
    

2 2π ρ v s
P

max

max∆
 = 

  

2 1 20 343 5 50 10

0 840

2 6π . .

.

( )( ) ×( )
=

−

  
5 81.  m

13.28 (a) ∆P =     ∆Pmax sin [kx – ωt + φ] with     ∆Pmax = 4.00 Pa

∆P(0, 0) =     ∆Pmax sin φ = 0 so φ = 0

ω = 2πf = 2π(5000 s  −1) = π × 10  4  s  −1

Therefore, ∆P = (4.00 Pa) sin (kx – π × 10  4  t/s)

At   x = 0,  t = 2.00 × 10  −4  s

∆P = (4.00 Pa) sin (0 – 2.00π) = 
  

0

(b)
    
k

v
= = = × =

−
−2 10

343
91 5

4 1
1π

λ
ω π  s

 m/s
 m.

At    x = 0.0200 m t = 0 ∆P = (4.00 Pa) sin [(91.5 m  −1)(0.0200 m) – 0]

∆P = 
  

3 87.  Pa
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*13.29
    
k = = ( ) = −2 2

0 100
62 8 1π

λ
π

.
.

 m
 m

    
ω π

λ
π

= = ( )
( ) = × −2 2 343
0 100

2 16 104 1v  m/s
 m

 s
.

.

Therefore,
    

∆P x t= ( ) − ×[ ]0 200 62 8 2 16 104. sin . / . Pa  m  /s

13.30 (a)
  

′ =
−

f f
v

v vS
Approach:

    
′ =

− +






=f 320
343

343 40 0
362 2

( . )
.  Hz

Receding: 
    

′ =
− −







=f 320
343

343 40 0
286 5

( . )
.  Hz

The change in frequency observed is a drop of   362 287− =
  

75 7.  Hz

(b)
    
λ =

′
= =v

f
343
362

 m/s
 Hz   

0 948.  m

13.31 Approaching ambulance:

    

′ =
−





f
f
v
v
S1

Departing ambulance:
    

′′ =
− −( )( )f

f
v vS1

Since      ′ =f 560 Hz   and     f"= 480 Hz
    
560 1 480 1−



 = +





v
v

v
v

S S

    
1040 80 0

v
v
S = .

    
vS = ( ) =80 0 343

1040
.

 m/s
  

26 4.  m/s

13.32 (a)
  

′ =
+( )
−( )f

f v v
v v

o

s

    
′ = +( )

−( ) =f 2500
343 25 0
343 40 0

.

.
 
  

3 04.  kHz

(b)
    

′ = + −( )
− −







=f 2500
343 25 0
343 40 0

.
( . )

 
  

2.08 kHz

(c)
    

′ = + −( )
−







=f 2500
343 25 0

343 40 0
.

.
 
  

2.62 kHz   while police car overtakes

    
′ = +

− −( )






=f 2500
343 25 0

343 40 0
.
.

 
  

2.40 kHz   after police car passes
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13.33
  

′ =
−







f f
v

v vs     
485 512

340
340 9 80

=
− −( )






. tfall

    
485 340 485 9 80 512 340( ) + ( )( ) = ( )( ). tf

    
tf = −



 =512 485

485
340
9 80

1 93
.

.  s

    
d gtf1

1
2

2 18 3= = .  m:
    
treturn  s= =18 3

340
0 0538

.
.

The fork continues to fall while the sound returns.

    
t t tftotal fall return  s  s  s= + = + =1 93 0 0538 1 985. . .

    
d gttotal total fall= =1

2
2

  
19 3.  m

*13.34 (a)
    
ω π π= = 





=2 2
115

60 0
12 0f

/
.

.
min

 s/min
 rad/s

    
v Amax . .= = ( ) ×( ) =−ω 12 0 1 80 10 3 rad/s  m

  
0 0217.  m/s

(b) The heart wall is a moving observer.

    
′ = +



 = ( ) +



 =f f

v v
v

o 2 000 000
1500 0 0217

1500
 Hz

.
  

2 000 028 9.  Hz

(c) Now the heart wall is a moving source.

    
′′ = ′

−






= ( )
−





 =f f

v
v vs

2 000 029
1500

1500 0 0217
 Hz

.   
2 000 057 8.  Hz

13.35 The maximum speed of the speaker is described by
    
1
2

2 1
2

2mv kAmax =

    
v

k
m

Amax
.
.

. .= = ( ) =20 0
5 00

0 500 1 00
 N/m

 kg
 m  m/s

The frequencies heard by the stationary observer range from

    
′ =

− −( )






f f

v
v vmin

max
to

    
′ =

−






f f
v

v vmax
max

where v is the speed of sound.
    

′ =
+







=fmin .
440

343 1 00
 Hz

343 m/s
 m/s  m/s   

439 Hz

    
′ =

−






=fmax .
440

343 1 00
 Hz

343 m/s
 m/s  m/s   

441 Hz
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*13.36 (a)
    
v = +

⋅°
− °( ) =( ) .331 0 6 10 m/s

m
s C

C
  

325 m/s

(b) Approaching the bell, the athlete hears a frequency of 
  

′ = +



f f

v v
v

o

After passing the bell, she hears a lower frequency of 
  

′′ =
+ −( )





f f
v v

v
o

The ratio is 
    

′′
′

= −
+

=f
f

v v
v v

o

o

5
6

which gives     6 6 5 5v v v vo o− = + or
    
v

v
o = = =

11
325

11
 m/s

  
29 5.  m/s

*13.37 (a) The 
  

longitudinal wave travels a shorter distance and is moving faster, so it will arrive at point B
first.

(b) The wave that travels through the Earth must travel

a distance of 2R sin 30.0° = 2(6.37 × 10  6 m) sin 30.0° = 6.37 × 10  6 m

at a speed of 7800 m/s

Therefore, it takes 
  

6 37 10
7800

6. ×  m
 m/s

= 817 s

The wave that travels along the Earth's surface must travel

a distance of 
    
s R R= = 



 = ×θ π

3
6 67 106 rad  m.

at a speed of 4500 m/s

Therefore, it takes 
  

6 67 10
4500

6. ×  
 

= 1482 s

  The time difference is 
  

665 s  = 11.1 min

*13.38 The distance the waves have traveled is d = (7.80 km/s)t = (4.50 km/s)(t + 17.3 s)

where t is the travel time for the faster wave.

Then, (7.80 – 4.50)(km/s)t = (4.50 km/s)(17.3 s)

or
    
t = ( )( )

−( ) =
4 50 17 3
7 80 4 50
. .
. .

 km/s  s
 km/s

 23.6 s

 and the distance is d = (7.80 km/s)(23.6 s) = 
  

184 km
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*13.39 Assume a typical distance between adjacent people ~1 m.

Then the wave speed is
    
v

x
t

= ∆
∆

~ ~
1

10
 m

0.1 s
 m/s

Model the stadium as a circle with a radius of order 100 m.  Then, the time for one circuit around
the stadium is

    
T

r
v

=
( )

=2 2 10

10
63

2
π π

~
 m/s

 s 
  

~  1 min

*13.40 (a)
    
λ = = =−

v
f

343
1480 1

 m/s
 s   

0 232.  m

(b)
    

′ =
′

= =−λ v
f

343
1397

0 2461
 m/s

 s
 m. ∆ = ′ − =λ λ λ

  
13 8.  mm

*13.41 Assuming the incline to be frictionless and taking the positive x-direction to be up the incline:

∑  Fx  = T – Mg sin θ = 0 or the tension in the string is T = Mg sin θ

The speed of transverse waves in the string is then
    
v

T Mg
m L

MgL
m

= = =
µ

θ θsin
/

sin

The time interval for a pulse to travel the string’s length is
    
∆t

L
v

L
m

MgL
= = =

sinθ
    

mL
Mgsinθ

13.42
    
Mgx kx= 1

2
2

(a) T = kx =  
    

2Mg

(b) L =     L0  + x =  
    

L
Mg
k0

2+

(c)
  
v

T TL
m

= = =
µ

 
    

2 2
0

Mg
m

L
Mg
k

+





13.43 Since   cos sin2 2 1θ θ+ = ,   sin cosθ θ= ± −1 2 (each sign applying half the time)

    
∆ ∆P P kx t v s kx t= −( ) = ± − −( )max sin cosmaxω ρ ω ω1 2

Therefore
    
∆P v s s kx t v s s= ± − −( ) = ± −ρ ω ω ρ ωmax max maxcos2 2 2 2 2
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*13.44 (a)   µ x( ) is a linear function, so it is of the form   µ x mx b( ) = +

To have   µ µ0 0( ) =  we require     b = µ0 .  Then     µ µ µL mLL( ) = = + 0

so     m LL= −( )µ µ0 /

Then
    

µ µ µ µx x LL( ) = −( ) +0 0/

(b) From     v dx dt= / , the time required to move from x to   x dx+  is dx/v. The time required to move
from 0 to L is

    
t

dx
v

dx
T T

x dx
L L L

= = = ( )∫ ∫ ∫0 0 0

1
/µ

µ

    
t

T
x

L L
dx

LL LL

L
=

−( ) +






−



 −





∫1 0

0

1 2
0

0 0

µ µ
µ µ µ

µ µ

/

t 

    

=
−







−( ) +






1 1
3 20

0
0

3 2

0
T

L x
LL

L

L

µ µ
µ µ

µ
/

/

    
t

L
T L

L=
−( ) −( )2

3 0

3 2
0

3 2

µ µ
µ µ/ /

t 

    

=
−( ) + +( )

−( ) +( )
2

3
0 0 0

0 0

L

T
L L L

L L

µ µ µ µ µ µ

µ µ µ µ

    
T

L
T

L L

L
=

+ +
+







2

3
0 0

0

µ µ µ µ
µ µ

13.45
  
v

T=
µ

 where T = µxg, the weight of a length x, of rope.

Therefore,   v gx=

But       v dx dt= / ,  so that
  
dt

dx
gx

=

and
    
t

dx
gx

L
= ∫0

 
    
= =1

1 2
0

g
x

L

( / )
 

    

2
L
g
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*13.46 At distance x from the bottom, the tension is     T mxg L Mg= ( ) +/ , so the wave speed is:

    
v T TL m xg MgL m

dx
dt

= = = + ( ) =/ / /µ

(a) Then 
    
t dt xg MgL m dx

t L
= = + ( )[ ]∫ ∫

−

0 0

1 2
/

/

    

t
g

xg MgL m

x

x L

=
+ ( )[ ]

=

=
1

1 2

1
2 0

/
/

    
t

g
Lg MgL m MgL m= +( ) − ( )[ ]2 1 2 1 2/ // /

    

t
L
g

m M M
m

= + −





2

(b) When     M = 0 , as in Problem 45,
    
t

L
g

m
m

= −





=2
0

    

2
L
g

(c) As     m → 0 we expand
      

m M M m M M m M m M+ = +( ) = + − +( )1 11 2 1
2

1
8

2 2/ / //
K

to obtain

      

t
L
g

M m M m M M

m
=

+ − + −









2
1
2

1
8

2 3 2/ / / K

    
t

L
g

m
M

≅






=2
1
2

  

mL
Mg

*13.47 (a) Assume the spring is originally stationary throughout, extended to have a length L much greater
than its equilibrium length.  We start moving one end forward with the speed v at which a wave
propagates on the spring.  In this way we create a single pulse of compression that moves down
the length of the spring.  For an increment of spring with length dx and mass dm, just as the pulse
swallows it up,   ΣF ma=

becomes k dx = a dm or
    

k
dm dx/

 = a

But
  

dm
dx

= µ so
  
a

k=
µ

Also,  
  
a

dv
dt

v
t

= =   when      vi = 0. But  L = vt , so
    
a

v
L

=
2

Equating the two expressions for a, we have  
    

k v
Lµ

=
2

or
  

v
kL=
µ

(b) Using the expression from part (a)
    
v

kL kL
m

= =
µ

2
 =

  

100 2 00
0 400

2 N/m  m
 kg

( )( ) =
.

.   
31 6.  m/s
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13.48 (a)
      
P x A v A e

k
bx( ) = = 



 =−1

2
2 2 1

2
2

0
2 2µω µω ω

    

µω 2

0
2 2

2k
A e bx−

(b)   P(0) = 
    

µω 2

0
2

2k
A

(c)
      

P

P

x( )
( )0

= 
    

e bx−2

13.49
    
v = = =4450

9 50
468

 km
 h

 km/h
.

 
  
130 m/s

    

d
v
g

= = ( )
( ) =

2 2130

9 80

 m/s

 m/s2.   
1730 m

*13.50 The trucks form a train analogous to a wave train of crests with speed v = 19.7 m/s

 and unshifted frequency 
    
f = = −2

3 00
0 667 1

.
.

 min
 min

(a) The cyclist as observer measures a lower Doppler-shifted frequency:

    
′ = +



 = ( ) + −( )





=−f f
v v

v
o 0 667

19 7 4 47
19 7

1.
. .

.
 min  

  
0 515. /min

(b)
    

′′ = + ′



 = ( ) + −( )





=−f f
v v

v
o 0 667

19 7 1 56
19 7

1.
. .

.
 min  

  
0 614. /min

The cyclist’s speed has decreased very significantly, but there is only a modest increase in the
frequency of trucks passing him.

13.51
    
v

d
t

= 2
:

    
d

vt= = ×( )( ) =
2

6 50 10 1 851
2

3. . m/s  s  
  

6 01.  km

13.52 (a)
  

′ =
−

f
f v

v u   
′′ =

− −( )f
f v

v u     
′ − ′′ =

−
−

+




f f fv

v u v u
1 1

∆ f  =  

    

fv v u v u
v u

uvf

v
u
v

+ − +( )
−

=
−







2 2

2
2

2

2

1

=  
    

2

1 2 2
u v

u v
f

/

/

( )
− ( )

(b) 130 km/h = 36.1 m/s ∴ ∆f = 

  

2 36 1 400

340 1
36 1
340

2

2

.

.

( )( )

− ( )











=
  

85 9.  Hz
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*13.53 (a) Sound moves upwind with speed   343 15−( ) m/s.  Crests pass a stationary upwind point at
frequency 900 Hz.

Then
    
λ = = =v

f
328

900
 m/s

 s   
0 364.  m

(b) By similar logic,
    
λ = = +( ) =v

f
343 15

900
 m/s

 s   
0 398.  m

(c) The source is moving through the air at 15 m/s toward the observer. The observer is stationary
relative to the air.

    
′ = +

−






= +
− −( )







=f f
v v
v v

o

s
900

343 15
 Hz

343 0
  

941 Hz

(d) The source is moving through the air at 15 m/s away from the downwind firefighter. Her speed
relative to the air is 30 m/s toward the source.

    
′ = +

−






= +
− −( )







= 



 =f f

v v
v v

o

s
900

3
343 15

900 Hz
343 0

 Hz
373
358   

938 Hz

*13.54 (a) If the source and the observer are moving away from each other, we have:     θ θS − = °0 180 , and
since   cos180 1° = − , we get Equation 13.30 with negative values for both     v0 and   vS .

(b) If     vo = 0 m/s then 
    

′ =
−

f
v

v v
f

S Scosθ

Also, when the train is 40.0 m from the intersection, and the car is 30.0 m from the intersection,

    
cosθS = 4

5

so
    

′ =
−

( )f
343

0 800 25 0
500

 m/s
343 m/s  m/s

 Hz
. ( . )

or   ′ =f
  

531 Hz

Note that as the train approaches, passes, and departs from the intersection,   θS varies from 0° to
180° and the frequency heard by the observer varies from:

    
′ =

− °
=

−
( ) =f

v
v v

f
S

max
 m/s

343 m/s  m/s
 Hz  Hz

cos .0
343

25 0
500 539

    
′ =

− °
=

+
( ) =f

v
v v

f
S

max
 m/s

343 m/s  m/s
 Hz  Hz

cos .180
343

25 0
500 466
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ANSWERS TO EVEN NUMBERED PROBLEMS

  2. See the solution

  4. 0.800 m/s

  6. 2.00 cm, 2.98 m, 0.576 Hz, 1.72 m/s

  8. (a) –1.51 m/s, 0 (b) 16.0 m, 0.500 s, 32.0 m/s

10. (a) 0.021 5 m (b) 1.95 rad
(c) 5.41 m/s   (d) y(x, t) =(0.0215 m)sin (8.38x rad/m + 80.0πt rad/s + 1.95 rad)

12. 80.0 N

14.   1 64.  m/s2

16. (a)
    
v m=







30 4.

m/s
kg

(b) 3.89 kg

18. 1.07 kW

20. (a) P remains constant (b) P remains constant
(c) P remains constant (d) P is quadrupled

22. 5.67 mm

24. 7.82 m

26. 0.103 Pa

28. (a) zero (b) 3.87 Pa

30. (a) A drop by 75.7 Hz (b) 0.948 m

32. (a) 3.04 kHz (b) 2.08 kHz (c) 2.62 kHz;  2.40 kHz

34. (a) 0.021 7 m/s (b) 2 000 028.9 Hz (c) 2 000 057.8 Hz
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36. (a) 325 m/s (b) 29.5 m/s

38. 184 km

40. (a) 23.2 cm (b) 1.38 cm

42. (a) 2Mg (b)
    
L

Mg
k0 + 2

(c)
    

2 2Mg
m

L
Mg
k0 +





44. (a)     µ µ µ0 0+ −( )L x L/ (b) See the solution

46. See the solution

48. (a)
    

µω 2

0
2 2

2k
A e bx− (b)

    

µω 2

0
2

2k
A (c)     e

bx−2

50. (a) 0.515/min
(b) The noisy, smelly, inefficient, road hogging trucks pass the cyclist at the frequency 0.614/min.

52. (a) See the solution (b) 85.9 Hz

54. (a) See the solution (b) 531 Hz


