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ANSWERS TO QUESTIONS

Q15.1 In the ocean, the ship floats due to the buoyant force from salt water. Salt water is denser than fresh
water. As the ship is pulled up the river, the buoyant force from the fresh water in the river is not
sufficient to support the weight of the ship, and it sinks.

Q15.2 Both the same. The force on the back of each dam is
the average pressure of the water times the area of
the dam. If both reservoirs are equally deep, the
force is the same.

Q15.3 If the tube were to fill up to the height of several stories of the building, the pressure at the bottom of
the depth of the tube of fluid would be very large according to Equation 15.4.  This pressure is much
larger than that due to the inward elastic forces of the balloon on the water.  As a result, water is
pushed into the balloon from the tube.  As more water is added to the tube, more water continues to
enter the balloon, stretching it thin.  For a typical balloon, the pressure at the bottom of the tube can
become greater than the pressure at which the balloon material will rupture, so the balloon will simply
fill with water and expand until it bursts.  Blaise Pascal splintered strong barrels by this method.

Q15.4 No.  The somewhat lighter barge will float higher in the water.

Q15.5 The level of the pond falls. This is because the anchor displaces more water while in the boat. A
floating object displaces a volume of water whose weight is equal to the weight of the object. A
submerged object displaces a volume of water equal to the volume of the object. Because the density of
the anchor is greater than that of water, a volume of water that weighs the same as the anchor will be
greater than the volume of the anchor.

Q15.6 Because the weight depends upon the total volume of glass. The pressure depends only on the depth.

Q15.7 The submarine would stop if the density of the surrounding water became the same as the average
density of the submarine. Unfortunately, because the water is almost incompressible, this will be much
deeper than the crush depth of the submarine.

Q15.8 No. The propulsive force of the fish causes the scale
reading to fluctuate about the weight of bucket, water, and
fish.

Q15.9 According to Archimedes’s principle, the magnitude of
buoyant force on the ship is equal to the weight of the
water displaced by the ship. Because the density of salty
ocean water is greater than fresh lake water, less ocean
water needs to be displaced to enable the ship to float.
Thus, the boat floats higher in the ocean than in the inland
lake.

Q15.10 Exactly the same. Buoyancy equals density of water times volume displaced.

Q15.11 The water level on the side of the glass stays the same. The floating ice cube displaces its own weight of
liquid water, and so does the liquid water into which it melts.
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Q15.12 At lower elevation the water pressure is greater because pressure increases with increasing depth
below the water surface in the reservoir (or water tower). The penthouse apartment is not so far below
the water surface. The pressure behind a closed faucet is weaker there and the flow weaker from an
open faucet.

Q15.13 The relatively slow-moving air below the ball at A
exerts enough pressure to support the weight of the
ball.  If the ball wanders off to one side – say to the
right in the picture – the rapidly-moving air on the
other side at B exerts less pressure, and the air at C
pushes the ball back toward the center of the stream.

Q15.14 The ski–jumper gives her body the shape of an airfoil.
She deflects downward the air stream as it rushes past
and it deflects her upward by Newton’s third law.  The
air exerts on her a lift force, giving her a higher and
longer trajectory.  To say it in different words, the
pressure on her back is less than the pressure on her
front.

Q15.15 The glass has higher density than water. The air inside has lower density. The total weight of the bottle
can be less than the weight of an equal volume of water.

Q15.16 Breathing in makes your volume greater and increases the buoyant force on you.

Q15.17 The excess pressure is transmitted undiminished throughout the container. It will compress air inside
the wood. The water driven into the wood raises its average density and makes if float lower in the
water. Add some thumbtacks to reach neutral buoyancy and you can make the wood sink or rise at
will by subtly squeezing a large clear–plastic soft–drink bottle.  Bored with graph paper and proving
his own existence, René Descartes invented this toy or trick.

Q15.18 The air in your lungs, the blood in your arteries and veins, and the protoplasm in each cell exert nearly
the same pressure, so that the wall of your chest can be in equilibrium.

Q15.19 Like the ball, the balloon will remain in front of you. It will not bob up to the ceiling. Air pressure will
be no higher at the floor of the car than at the ceiling. The balloon will experience no buoyant force.
You might equally well switch off gravity.

Q15.20 Styrofoam is a little more dense than the air, so the first ship floats lower in the water.

Q15.21 We suppose the compound object floats. In both orientations it displaces its own weight of water, so it
displaces equal volumes of water. The water level in the tub will be unchanged when the object is
turned over. Now the steel is underwater and the water exerts on the steel a buoyant force that was not
present when the steel was on top surrounded by air.  Thus, slightly less wood will be below the water
line on the block. It will appear to float higher.

Q15.22 Look at Figures 15.13 and 15.18. A breeze from any direction speeds up to go over the mound and the
air pressure drops. Air then flows through the burrow from the lower to the upper entrance.

Q15.23 Regular cola contains a considerable mass of dissolved sugar.  Its density is higher than that of water.
Diet cola contains a very small mass of artificial sweetener and has nearly the same density as water.
The low–density air in the can has a bigger effect than the thin aluminum shell, so the can of diet cola
floats.
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PROBLEM SOLUTIONS

*15.1
    
M V= = ( ) ( )[ ]ρ πiron

3 kg/m  m7860 0 01504
3

3.

  M =
  

0 111.  kg

15.2
    
ρ = =

×
= ×−

M
V

0 5
185 10

2 70 106
3.
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No.   The crown is made of aluminum.

15.3
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= = ( )
×( )

=
−

50 0 9 80
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. .

.π   
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*15.4 Let 
  
Fg  be its weight. Then each tire supports 

    
Fg / ,4  

so
    
P

F
A

F

A
g= =

4

yielding
    
F APg = = ( ) ×( ) =4 4 0 0240 200 103.  m  N/m2 2

  
1 92 104. × N

15.5 The Earth’s surface area is     4
2π R . The force pushing inward over this area amounts to

    
F P A P R= = ( )0 0

24π

This force is the weight of the air:

    
F mg P Rg = = ( )0

24π

so the mass of the air is

    
m
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g
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( )
=

×( ) ×( )

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 =

0
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π π. .

.

 N/m  m

 m/s
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2   
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*15.6 (a)
    
P P gh= + = × + ( )( )( )0

51 013 10 1024 9 80 1000ρ . . Pa  kg/m  m/s  m3 2

  P =
  
1 01 107. × Pa

(b) The gauge pressure is the difference in pressure between the water outside and the air inside the
submarine, which we suppose is at 1.00 atmosphere.

    
P P P ghgauge  Pa= − = = ×0

71 00 10ρ .

The resultant inward force on the porthole is then

    
F P A= = × ( )[ ] =gauge  Pa 0.150 m1 00 107 2. π

  
7 09 105. × N

15.7     F Fel = fluid or   kx ghA= ρ

and
  
h

kx
gA

=
ρ

    

h =
( ) ×( )

( )( ) ×( )





=
−

−

1000 5 00 10

9 80 1 00 10

3

2 2

 N/m  m

10  kg/m  m/s  m

2

3 3 2

.

. .π   
1 62.  m

15.8 Since the pressure is the same on both sides,
    

F
A

F
A

1

1

2

2
=

In this case,
    

15000
200 3 00

2= F
.

or     F2 =
  

225 N

15.9
    
Fg = ( ) =80 0 9 80 784. . kg  m/s  N2

When the cup barely supports the
student, the normal force of the ceiling
is zero and the cup is in equilibrium.

    
F F PA Ag = = = ×( )1 013 105.  Pa

    
A

F

P
g= =

×
=784

1 013 105.   
7 74 10 3. × − m2
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*15.10 (a) Suppose the “vacuum cleaner” functions as a high–vacuum pump. The air below the brick will
exert on it a lifting force

    
F PA= = × ×( )




=−1 013 105 2 2

.  Pa 1.43 10  mπ
  

65 1.  N

(b) The octopus can pull the bottom away from the top shell with a force that could be no larger than

    F PA P gh A= = +( )0 ρ
  
= × + ( )( )( )[ ] ×( )





−1 013 10 1030 9 80 32 3 1 43 105 2 2
. . . . Pa  kg/m  m/s  m  m3 2 π

  F =
  

275 N

15.11 The pressure on the bottom due to the water is     P gzb = = ×ρ 1 96 104.  Pa

So,   F P Ab b= =
  

5 88 10. × 6 N

On each end,
    
F PA= = × ( ) =9 80 103.  Pa 20.0 m2

  
196 kN

On the side,
    
F PA= = × ( ) =9 80 103.  Pa 30.0 m2

  
588 kN

*15.12 (a) We imagine the superhero to produce a perfect vacuum in the straw. Take point 1 at the water
surface in the basin and point 2 at the water surface in the straw:

    P gy P gy1 1 2 2+ = +ρ ρ

    
1 013 10 0 0 10005

2. × + = + ( )( ) N/m  kg/m 9.80 m/s2 3 2 y     y2 =
  
10 3.  m

(b) No atmosphere can lift the water in the straw through 
  

zero  height difference.

15.13     P gh0 = ρ

    

h
P

g
= = ×

×( )( ) =
0

5

3
1 013 10

0 984 10 9 80ρ
.

. .

 Pa

 kg/m  m/s3 2   
10 5.  m

  
Some alcohol and water will evaporate.
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15.14 (a) Using the definition of density, we have

    

h
m

Aw = = ( ) =
water

2 water
2 3

 g

5.00 cm  g/cmρ
100

1 00.   
20 0.  cm

(b) Sketch (b) at the right represents the situation after
the water is added. A volume (    A h2 2) of mercury
has been displaced by water in the right tube. The
additional volume of mercury now in the left tube
is     A h1 . Since the total volume of mercury has not
changed,

    A h A h2 2 1= or
    
h

A
A

h2
1

2
= (1)

At the level of the mercury–water interface in the right tube, we may write the absolute pressure
as:

    P P ghw= +0 ρwater

The pressure at this same level in the left tube is given by
    
P P g h h P ghw= + +( ) = +0 2 0ρ ρHg water

which, using equation (1) above, reduces to
    
ρ ρHg waterh

A
A

hw1 1

2
+









 =

or

    

h
h
A
A

w=
+







ρ

ρ

water

Hg 1 1

2

Thus, the level of mercury has risen a distance of

    

h =
( )( )

( ) +





=
1 00 20 0

13 6 1
10 0
5 00

. .

.
.

.

 g/cm  cm

 g/cm

3

3   
0 490.  cm

above the original level.

15.15     ∆ = ∆ = − ×P g h0
32 66 10ρ .  Pa :     P P P= + ∆ = −( ) × =0 0

51 013 0 0266 10. .  Pa
  

0 986 105. × Pa

*15.16 (a)     P P gh= +0 ρ

The gauge pressure is
    
P P gh− = = ( )( ) =0 1000 0 160ρ  kg 9.8 m/s  m2 .

  
1 57.  kPa

  
= ×

×




 =1 57 103.  Pa

1 atm
1.013 10  Pa5   

0 0155.  atm

It would lift a mercury column to height

    

h
P P

g
= − = ( )( ) =

0 1568

9 8ρ
 Pa

13600 kg/m  m/s3 2.   
11 8.  mm

(b) Increased pressure of the cerebrospinal fluid will raise the level of the fluid in the spinal tap.

(c) Blockage of the fluid within the spinal column or between the skull and the spinal column would
prevent the fluid level from rising.
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15.17 At equilibrium     Σ =F 0  or
  
F mg Bapp + =  

where B is the buoyant force.

The applied force,
  
F B mgapp = −

where     B g= ( )Vol waterρ

and     m = ( )Vol ballρ

So,
    
F g r gapp = ( ) −( ) = −( )Vol water ball water ballρ ρ π ρ ρ4

3
3

    
Fapp = ×( ) ( ) −( )−4

3
1 90 10 9 80 10 84 02 3 3π . . . m  m/s  kg/m  kg/m2 3 3  = 

  
0 258.  N

15.18
  
F m V gg s= +( )ρ must be equal to   F Vgb w= ρ

Since     V Ah= ,    m Ah Ahs w+ =ρ ρ

and   A =
  

m
hw sρ ρ−( )

15.19 (a)     P P gh= +0 ρ

Taking      P0
51 013 10= ×.  N/m2    and      h = 5 00.  cm,

we find
    
Ptop

2 N/m= ×1 0179 105.

For      h = 17 0.  cm , we get     Pbot
2 N/m= ×1 0297 105.

Since the areas of the top and bottom are     A = ( ) = −0 100 102 2.  m  m2

we find
    
F P Atop top= =

  
1 0179 103. × N

and     Fbot =
  
1 0297 103. × N

(b)     T B Mg+ − = 0

where
    
B Vgw= = ( ) ×( )( ) =−ρ 10 1 20 10 9 80 11 83 3 kg/m  m  m/s  N3 3 2. . .

and     Mg = ( ) =10 0 9 80 98 0. . .  N

Therefore,     T Mg B= − = − =98 0 11 8. .
  

86 2.  N

(c)
    
F Fbot top  N− = −( ) × =1 0297 1 0179 103. .

  
11 8.  N

which is equal to B found in part (b).
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15.20 Consider spherical balloons of radius 12.5 cm containing helium at STP and immersed in air at
0°C and 1 atm. If the rubber envelope has mass 5.00 g, the upward force on each is

    
B F F Vg Vg m gg g env env− − = − −, ,He air Heρ ρ

    
F r g m gup env= −( )( ) −ρ ρ πair He

4
3

3

    
Fup = −( )[ ] ( )[ ]( ) − × ( ) =−1 29 0 179 0 125 9 80 5 00 10 9 80 0 04014

3
3 3. . . . . . . kg/m  m  m/s  kg  m/s  N3 2 2π

If your weight (including harness, strings, and submarine sandwich) is

  
70 0 9 80 686. . kg  m/s  N2( ) =

you need this many balloons:
  

686
0 0401

17 000
 N

 N.
=

  
~ 104

15.21 (a) According to Archimedes,     B V g h g= = × × −( )[ ]ρwater water
3 g/cm  ( . ) . . .1 00 20 0 20 0 20 0

But
    
B mg V g g= = = = ( )( )Weight of block  g/cm  cmwood wood

3ρ 0 650 20 0 3. .

    0 650 20 0 1 00 20 0 20 0 20 03. . . . . .( ) = ( )( ) −( )g h g

    20 0 20 0 0 650. . .− = ( )h so     h = −( ) =20 0 1 0 650. .
  

7 00.  cm

(b)
  
B F Mgg= + where   M =mass of lead

    1 00 20 0 0 650 20 03 3. . . .( ) = ( ) +g g Mg

    M = −( )( ) = ( ) = =1 00 0 650 20 0 0 350 20 0 28003 3. . . . .  g
  

2 80.  kg

*15.22 Let A represent the horizontal cross-sectional area of the rod, which we presume to be constant.
The rod is in equilibrium:

    
Σ =Fy 0:     − + = = − +mg B V g V g0 0ρ ρwhole rod fluid immersed

    ρ ρ0ALg A L h g= −( )

The density of the liquid is 
    
ρ ρ=

−
0L

L h

15.23 The balloon stops rising when     ρ ρair He−( ) =gV Mg and     ρ ρair He−( ) =V M ,

Therefore,
    
V

M
e

=
−

=
−−ρ ρair He

400
1 25 0 1801. .

  V =
  
1430 m3
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*15.24 Constant velocity implies zero acceleration, which means that the submersible is in equilibrium
under the gravitational force, the upward buoyant force, and the upward resistance force:

    
Σ = =F may y 0

    
− × +( ) + + =1 20 10 1100 04.  kg  Nm g gVwρ

where m is the mass of the added water and V is the sphere’s volume.

    
1 20 10 1 03 10 1 50

11004 3 4
3

3. . .× + = × ( )[ ] + kg
 N

9.8 m/s2m π

so   m =
  

2 67 103. × kg

15.25
  
B Fg=

    
ρ ρH O sphere2

g
V

gV
2

=

  
ρ ρsphere H O2

= =1
2   

500 kg/m3

    
ρ ρglycerin sphereg V gV4

10
0( ) − =

  
ρglycerin

3 kg/m= ( ) =10
4

500
  
1250 kg/m3

*15.26 Let   l represent the length below water at equilibrium and M the tube’s mass:

    
Σ =Fy 0:       − + =Mg r gρπ 2 0l

Now with any excursion x from equilibrium:       − + −( ) =Mg r x g Maρπ 2 l

Subtracting the equilibrium equation gives:     − =ρπ r gx Ma2

    
a r g M x x= −( ) = −ρπ ω2 2/

 The opposite direction and direct proportionality of a to x imply SHM with angular frequency

    ω ρπ= r g M2 /

    
T = =2π

ω
    

2
r

M
g

π
ρ
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15.27     Volume flow rate = =A v A v1 1 2 2

    

20 0
60 0

1000
1 00 0 5002 2.

.
. .

 L
 s

 cm
1 L

 cm  cm
3

hose nozzle






= ( ) = ( )π πv v

(a)
    
vhose

3

2
 cm s

 cm
= =333

3 14
/

.   
106 cm/s

(b)
    
vnozzle

3

2
 cm s

 cm
= =333

0 785
/

.   
424 cm/s

15.28 By Bernoulli’s equation,

    
8 00 10 1000 6 00 10 1000 164 1

2
2 4 1

2
2. .× + ( ) = × + ( ) N/m  N/m2 2v v

    
2 00 10 1000 154 1

2
2. × = ( ) N/m2 v

    v = 1 63.  m/s

    

dm
dt

Av= = ×( ) ( ) =−ρ π1000 5 00 10 1 632 2
. .  m/s

  
12 8.  kg/s

15.29 (a)
    
P = = = 



 =∆

∆
∆
∆

∆
∆

E
t

mgh
t

m
t

gh Rgh

(b)
    
PEL = ×( )( )( ) =0 85 8 5 10 9 8 875. . .

  
616 MW

15.30 If we assume the tank is large in cross section compared to
the hole (    A A2 1>> ), then the fluid will be approximately at
rest at the top, point 2. Applying Bernoulli’s equation to
points 1 and 2, and noting that at the hole

    P P1 0=

we get

    
P v gy P gy0

1
2 1

2
1 2+ + = +ρ ρ ρ

But     y y h2 1− = , and so this reduces to
    
v

P P
gh1

02
2=

−( ) +
ρ
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15.31 Apply Bernoulli's equation between the top surface and the
exiting stream.

    
P gh P v ghx0 0

1
2

20+ + = + +ρ ρ ρ

    v g h hx
2

02= −( )     
∴ = −( ) v g h hx 2 0

  x v tx= :
    
y h gt= = 1

2
2

    
∴ = t

h
g

2

and   
    
x v

h
g

g h h
h

gx= = −( )2
2

2
0 :   x =

    
2 0h h h−( )

15.32 As in problem 31, apply Bernoulli's equation between the top surface and the exiting stream.

    
P gh P v ghx0 0 0

1
2

20+ + = + +ρ ρ ρ :     v g h hx
2

02= −( )

    
∴ = −( )v g h hx 2 0

  x v tx= ,   
    
h gt= 1

2
2   and   

    
t

h
g

= 2

    
x g h h

h
g

h h h= −( ) = −( )2
2

40 0

(a) Maximize x with respect to h.
    

dx
dh

= 0 :

    

dx
dh

h h

h h h
=

−( )
−( )

=
1
2 0

0

4 8

4
0

when 
    

h
h= 0

2

(b) For 
    
h

h= 0

2
,         v ghx = 0 ,     and     

    
t

h
g

= 0

then   x v tx= =
    

h0
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15.33 (a) Between sea surface and clogged hole:
    
P v gy P v gy1

1
2 1

2
1 2

1
2 2

2
2+ + = + +ρ ρ ρ ρ

    
1 0 1030 9 8 2 0 02 atm  kg/m  m/s  m3 2+ + ( )( )( ) = + +. P     P2 1 20 2= + atm  kPa.

The air on the back of his hand pushes opposite the water, so the net force on his hand is

    
F PA= = ×( ) 

 ×( )−20 2 10
4

1 2 103 2 2
. . N/m  m2 π

  F =
  

2 28.  N

(b) Now, Bernoulli’s theorem is

    
1 0 20 2 1 1030 01

2 2
2 atm  kPa  atm  kg/m3+ + = + ( ) +. v     v2 6 26= .  m/s

The volume rate of flow is
    
A v2 2

2 2 4

4
1 2 10 7 08 10= ×( ) ( ) = ×− −π
. . / m 6.26 m/s  m s3

One acre–foot is   4047 0 3048 1234 m  m  m2 3× =.

Requiring
  

1234
7 08 10 4

 m
 m s

3

3. /×
=−   

1 74 106. × s = 20.2 days

15.34 (a) Suppose the flow is very slow:
    
P v gy P v gy+ +( ) = + +( )1

2
2 1

2
2ρ ρ ρ ρ

river rim

    P g g+ + ( ) = + + ( )0 564 1 0 2096ρ ρ m  atm  m

    
P = + ( )( )( ) =1 1000 9 8 1532 atm  kg/m  m/s  m3 2.

  
1 15 0 atm  MPa+ .

(b) The volume flow rate is
    
4500

4

2
 m d3 / = =Av

d vπ

    
v = ( )


 ( )








 =4500

4

0 150 2 m d
1 d

86 400 s  m
3 /

.π   
2 95.  m/s

(c) Imagine the pressure as applied to stationary water at the bottom of the pipe:

    
P v gy P v gy+ +



 = + +





1
2

1
2

2 2ρ ρ ρ ρ
bottom top

    
P + = + ( )( ) + ( )( )0 1 1000 2 95 1000 15321

2
2 atm  kg/m  m/s  kg 9.8 m/s  m3 2.

    P = + +1 15 0 4 34 atm  MPa  kPa. .

The additional pressure is 
  

4 34.  kPa
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15.35 (a) For upward flight of a water–drop projectile from geyser vent to fountain–top,  
    
v v a yyf yi y

2 2 2= + ∆

Then   
    
0 2 9 80 40 02= + −( ) +( )vi . . m/s  m2        and   vi =   

28 0.  m/s

(b) Between geyser vent and fountain–top:
    
P v gy P v gy1

1
2 1

2
1 2

1
2 2

2
2+ + = + +ρ ρ ρ ρ

Air is so low in density that very nearly     P P1 2 1= =  atm

Then,
    
1
2

2 0 0 9 80 40 0vi + = + ( )( ). . m/s  m2

    v1 =
  

28 0.  m/s

(c) Between the chamber and the fountain–top:  
    
P v gy P v gy1

1
2 1

2
1 2

1
2 2

2
2+ + = + +ρ ρ ρ ρ

    
P P1 00 1000 9 80 175 0 1000 9 80 40 0+ + ( )( ) −( ) = + + ( )( ) +( ) kg/m  m/s  m  kg/m  m/s  m3 2 3 2. . .

    
P P1 0 1000 9 80 215− = ( )( )( ) = kg/m  m/s  m3 2.

  
2 11.  MPa

15.36
    
P

v
P

v
1

1
2

2
2

2

2 2
+ = +ρ ρ

   (Bernoulli equation),       v A v A1 1 2 2= where 
    

A
A

1

2
4=

    
∆ = − = −( ) = −







P P P v v v
A
A1 2 2

2
1
2

1
2 1

2

2
22 2

1
ρ ρ

and
    
∆ = =P

vρ 1
2

2
15 21000 Pa

    v1 2 00= .  m/s;        v v2 14 8 00= = .  m/s :

The volume flow rate is     v A1 1 =
  

2 51 10 3. /× − m s3

15.37     Mg P P A= −( )1 2  for a balanced condition
    

16000 9 80
7 00 104

2
.

.( ) = × −
A

P

where     A = 80 0.  m2 ,     ∴ = × − × = P2
4 47 0 10 0 196 10. .

  
6 80 104. × Pa

15.38 (a)
    
P gh P v0 0

1
2 3

20 0+ + = + +ρ ρ     v gh3 2=

If        h = 1 00.  m,     v3 =
  

4 43.  m/s

(b)
    
P gy v P v+ + = + +ρ ρ ρ1

2 2
2

0
1
2 3

20

Since     v v2 3= ,     P P gy= −0 ρ

Since     P ≥ 0,

    

y
P
g

≤ = ×

( )( ) =
0

5

3
1 013 10

10 9 8ρ
.

.

 Pa

 kg/m  m/s3 2   
10 3.  m
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*15.39 Take points 1 and 2 in the air just inside and outside the window pane.

    
P v gy P v gy1

1
2 1

2
1 2

1
2 2

2
2+ + = + +ρ ρ ρ ρ

    
P P0 2

1
2

20 1 30 11 2+ = + ( )( ). . kg/m  m/s3
    P P2 0 81 5= − .  Pa

(a) The total force exerted by the air is outward,

    
P A P A P A P A1 2 0 0 81 5 4 1 5− = − + ( )( )( ) =. . N/m  m  m2

  
489 N outward

(b)
    
P A P A v A1 2

1
2 2

2 1
2

21 30 22 4 4 1 5− = = ( )( ) ( )( ) =ρ . . . kg/m  m/s  m  m3
  
1 96.  kN outward

*15.40 In the reservoir, the gauge pressure is
    
∆ =

×
= ×−P

2 00
2 50 10

8 00 105
4.

.
.

 N
 m

 Pa2

From the equation of continuity:     A v A v1 1 2 2=

    
2 50 10 1 00 105

1
8

2. .×( ) = ×( )− − m  m2 2v v
    
v v1

4
24 00 10= ×( )−.

Thus,     v1
2  is negligible in comparison to     v2

2 .

Then, from Bernoulli’s equation:
    
P P v gy v gy1 2

1
2 1

2
1

1
2 2

2
2−( ) + + = +ρ ρ ρ ρ

    
8 00 10 0 0 0 10004 1

2 2
2. × + + = + ( ) Pa  kg/m3 v

    
v2

42 8 00 10

1000
=

×( )
=

.  Pa

 kg/m3   
12 6.  m/s

*15.41 The iceberg floats in equilibrium

    
Σ =Fy 0:

    
− + =F Bg 0

    
0 = − +m g V giceberg fluid immersedρ

    
ρ ρice iceberg fluid immersedV V=

    

V
V
immersed

iceberg

ice

fluid

3

3
 kg/m

 kg/m
= = ×

×
=ρ

ρ
0 917 10
1 03 10

0 890
3

3
.
.

.

The fraction of the volume above the water line is   1 0 890 0 110 11 0− = =. . . %

(b) With lower density, more fresh water must be displaced to support the iceberg. A 
  

smaller

fraction is above the water line

    

V
V
immersed

iceberg

ice

fluid

3

3
 kg/m

 kg/m
= = ×

×
=ρ

ρ
0 917 10
1 00 10

0 917
3

3
.
.

.

The fraction exposed is   1 0 917− =.
  

8 3. %
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*15.42 The weight of the additional water displaced is equal to the weight of the passengers:

    ρfluid immersed∆ = ∆V g mg
    
1 03 10 0 0100 2205 753. .×( )( ) = ( ) kg/m  m  kg3 A

    
A = × =1 65 10

10 3

5.
.

 kg
 kg/m2   

1 61 104. ×  m2

*15.43 (a)
    
θ = = =s

r
15 m

0.25 m   
60 0.  rad

(b) Let T represent the tension in the rope.  Define the positive y axis as pointing down.

For the anchor:
    
2000 2000 kg 9.8 m/s  kg2( )( ) − = ( )( )T a

For the reel:
    
Σ = =τ αI MR

a
R

1
2

2

    
T

a
0 25

1
2

300 0 25
0 25

2. .
.

 m  kg  m
 m

( ) = ( )( ) 



     T a= ( )150 kg

Substituting,     19600 150 2000 N  kg  kg− ( ) = ( )a a

    
a = =19600

2150
 N

 kg   
9 12.  m/s2

(c) The water exerts a buoyant force on the anchor,

    
B Vg

m
g= =







= ×( ) ×






( ) =ρ ρ

ρfluid fluid
iron

3
3

2 kg/m
 kg
 kg/m

 m/s  N1 03 10
2000

7 86 10
9 8 25703

3.
.

.

Now for the anchor, 
  
Σ =F may y :     19600 2500 2570 2000 N  N  N  kg− − − = ( )( )T a

while again for the reel     T a= ( )150 kg

So
    
a = − − =19600 2500 2570

2150
 N  N  N

 kg   
6 76.  m/s2

(d)
    
τ = = ( )( ) =Tr 150 0 25 kg 6.76 m/s  m2 .

  
253 N m⋅

15.44 Assume     vinside ≅ 0

    
P + + = + ( )( ) + ( )( )0 0 1 1000 30 0 1000 9 80 0 5001

2
2 atm . . .

    
P Pgauge  atm= − = × + × =1 4 50 10 4 90 105 3. .

  
455 kPa
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15.45 The “balanced” condition is one in which the
apparent weight of the body equals the apparent
weight of the weights. This condition can be written
as:

  
F B F Bg g− = ′ − ′

where B and   ′B  are the buoyant forces on the body
and weights respectively. The buoyant force
experienced by an object of volume V in air equals:

    Buoyant force Volume of object air= ( )ρ g

so we have     B V g= ρair and
    
B

F

g
gg′ =

′



ρ
ρair

Therefore, 
  
Fg =

    

F V
F

g
gg

g′ + −
′



ρ

ρair

15.46 At equilibrium, 
    
Σ =Fy 0:

    
B F F Fg g− − − =spring He balloon, , 0

giving 
    
F kL B m m gspring He balloon= = − +( )

But     B Vg= =weight of displaced air airρ

and     m VHe He= ρ

Therefore, we have:     kL Vg Vg m g= − −ρ ρair He balloon

or
    
L

V m
k

g=
−( ) −ρ ρair He balloon

From the data given,
    
L =

−( ) − × ( )
−1 29 0 180 5 00 2 00 10

90 0
9 80

3. . . .

.
.

 kg/m  kg/m  m  kg

 N/m
 m/s

3 3 3
2

Thus, this gives   L =
  

0 604.  m

15.47 The torque is
  
τ τ= = ∫∫ d r dF

From the figure
    
τ ρ= −( )[ ] =∫ y g H y wdy

H

0     
1
6

3ρ gwH

The total force is given as
    
1
2

2ρ gwH

If this were applied at a height 
  
yeff  such that the torque

remains unchanged, we have

    
1
6

3 1
2

2ρ ρgwH y gwHeff= [ ] and
  
yeff =

    
1
3

H
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15.48   P gh= ρ     1 013 10 1 29 9 805. . .× = ( )h

  h =
  

8 01.  km For Mt. Everest,   29300 8 88 ft  km= .
  

Yes

*15.49 Looking at the top scale and the iron block:

    
T B Fg1 + = ,Fe where 

    
B V g

m
g= =







ρ ρ
ρ0 0Fe

Fe

Fe

is the buoyant force exerted on the iron block by the oil.

Thus,
    
T F B m g

m
gg1 0= − = −





,Fe Fe

Fe

Fe
ρ

ρ

or     T1 =
    

1 0−






ρ
ρFe

Fem g  is the reading on the top scale.

Now, consider the bottom scale, which exerts an upward force of T2 on the beaker–oil–iron
combination.

    
Σ =Fy 0:

    
T T F F Fg g g1 2 0+ − − − =, , ,beaker oil Fe

    
T F F F T m m m g m gg g g b2 1 0

01= + + − = + +( ) − −




, , ,beaker oil Fe Fe

Fe
Fe

ρ
ρ

or     T2 =
    

m m m gb + +














0

0ρ
ρFe

Fe  is the reading on the bottom scale.

*15.50 Let   m V= ρ  represent the mass of the copper cylinder. The original tension in the wire is

    T mg Vg1 = = ρ . The water exerts a buoyant force 
    
ρwater

V
g

2




  on the cylinder, to reduce the

tension to

    
T Vg

V
g Vg2 2

2= − 



 = −( )ρ ρ ρ ρwater water / .

The speed of a wave on the string changes from     T1/µ  to     T2 /µ .  The frequency changes from

    
f

v T
1

1 1 1= =
λ µ λ

to
    
f

T
2

2 1=
µ λ

where we assume     λ = 2L  is constant.

Then
    

f
f

T
T

2

1

2

1

2 8 92 1 00 2
8 92

= = − = −ρ ρ
ρ

water / . . /
.

    
f2 300= = Hz

8.42
8.92   

291 Hz
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15.51 (a) The pressure on the surface of the two hemispheres is constant at all
points, and the force on each element of surface area is directed
along the radius of the hemispheres. The applied force along the
axis must balance the force on the "effective" area, which is the
projection of the actual surface onto a plane perpendicular to the x
axis,

    A R= π 2

Therefore,   F =
    

P P R0
2−( )π

(b) For the values given
    
F P P P= −( ) ( )[ ] = =0 0

2
00 100 0 300 0 254. . .π  m

  
2 58 104. × N

15.52 The incremental version of     P P gy− =0 ρ  is   dP gdy= −ρ

We assume that the density of air is proportional to pressure, or
    

P P
ρ ρ

= 0

0

Combining these two equations we have
    
dP P

P
gdy= − ρ0

0

    

dP
P

g
P

dy
P

P h

0

0

0 0∫ ∫= − ρ

and integrating gives
    
ln

P
P

gh
P0

0

0






= − ρ

so where      α ρ= 0 0g P/ ,     P P e h= −
0

α

15.53 Energy for the fluid-Earth system is conserved.

    
K U E K Ui f+( ) + = +( )∆ mech :

    
0

2
0 01

2
2+ + = +mgL

mv

    
v gL= = ( ) =2 00.  m 9.8 m/s2

  
4 43.  m/s
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15.54 Let s stand for the edge of the cube, h for the depth of immersion,   ρice  stand for the density of the
ice,   ρw  stand for density of water, and   ρa  stand for density of the alcohol.

(a) According to Archimedes’s principle, at equilibrium we have

    
ρ ρ ρ

ρice
icegs ghs h sw
w

3 2= ⇒ =

With   ρice
3 kg/m= ×0 917 103.

    ρw = ×1 00 10. 3 3 kg/m

and     s = 20 0.  mm

we get     h = ( ) = ≅20 0 0 917 18 34. . .  mm
  
18 3.  mm

(b) We assume that the top of the cube is still above the alcohol surface. Letting   ha  stand for the
thickness of the alcohol layer, we have

    ρ ρ ρa a w wgs h gs h gs2 2 3+ = ice so
    
h s hw

w

a

w
a=







−






ρ
ρ

ρ
ρ

ice

With     ρa = ×0 806 10. 3 3 kg/m

and     ha = 5 00.  mm

we obtain     hw = − ( ) = ≅18 34 0 806 5 00 14 31. . . .  mm
  
14 3.  mm

(c) Here   h s hw a′ = − ′ , so Archimedes’s principle gives

    ρ ρ ρ ρ ρ ρa a w a a a w ags h gs s h gs h s h s2 2 3′ + − ′( ) = ⇒ ′ + − ′( ) =ice ice

    
h sa

w

w a
′ =

−( )
−( ) = −( )

−( ) = ≅
ρ ρ
ρ ρ

ice 20 0
1 000 0 917
1 000 0 806

8 557.
. .
. .

.
  

8 56.  mm
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*15.55 Note: Variation of atmospheric pressure with altitude is
included in this solution. Because of the small distances
involved, this effect is unimportant in the final answers.

(a) Consider the pressure at points A and B in part (b) of the
figure:

Using the left tube:     P P gh g L hA a w= + + −( )atm ρ ρ  where the
second term is due to the variation of air pressure with
altitude.

Using the right tube:     P P gLB = +atm ρ0

But Pascal’s principle says that   P PA B= .

Therefore,     P gL P gh g L ha watm atm+ = + + −( )ρ ρ ρ0

or     ρ ρ ρ ρw a wh L−( ) = −( )0 , giving

    
h Lw

w a
= −

−






= −
−





 =ρ ρ

ρ ρ
0 1000 750

1000 1 29
5 00

.
.  cm

  
1 25.  cm

(b) Consider part (c) of the diagram showing the situation when
the air flow over the left tube equalizes the fluid levels in the
two tubes. First, apply Bernoulli's equation to points A and B
(    y y v v vA B A B= = =, ,   and  0).

This gives: 
    
P v gy P gyA a a A B a a B+ + = + ( ) +1

2
2 1

2
20ρ ρ ρ ρ

and since   y yA B= , this reduces to: 
    
P P vB A a− = 1

2
2ρ         (1)

Now consider points C and D, both at the level of the oil–water interface in the right tube. Using
the variation of pressure with depth in static fluids, we have:

  P P gH gLC A a w= + +ρ ρ and     P P gH gLD B a= + +ρ ρ0

But Pascal’s principle says that   P PC D= . Equating these two gives:

    P gH gL P gH gLB a A a w+ + = + +ρ ρ ρ ρ0 or     P P gLB A w− = −( )ρ ρ0 (2)

Substitute equation (1) for   P PB A−  into (2) to obtain
    
1
2

2
0ρ ρ ρa wv gL= −( )

or
    
v

gL w

a
=

−( ) = ( )( ) −





2
2 9 80 0 0500

1000 750
1 29

0ρ ρ
ρ

. .
.

 m/s  m2

  v =
  
13 8.  m/s
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*15.56 (a) The flow rate, Av, as given may be expressed as follows:

  25 0 0 833 833. . / liters/30.0 s  liters/s  cm s3= =

The area of the faucet tap is   π cm2, so we can find the velocity as

    
v

A
= = = =flow rate  cm /s

 cm
 cm/s

3

2
833

265
π   

2 65.  m/s

(b) We choose point 1 to be in the entrance pipe and point 2 to be at the faucet tap.

    A v A v1 1 2 2=  gives     v1 0 295= .  m/s. Bernoulli's equation is:

    
P P v v g y y1 2

1
2 2

2
1
2

2 1− = −( ) + −( )ρ ρ

and gives
    
P P1 2

1
2

3 2 2 310 2 65 0 295 10 9 80 2 00− = ( ) ( ) − ( )[ ] + ( )( )( ) kg/m  m/s  m/s  kg/m  m/s  m3 3 2. . . .

or
    
P P Pgauge = − =1 2   

2 31 104. × Pa

*15.57 (a) Since the upward buoyant force is balanced by the weight of the sphere,

    
m g Vg R g1

4
3

3= = ( )ρ ρ π

In this problem,   ρ = 0 78945.  g/cm3  at 20.0°C, and     R = 1 00.  cm so we find:

    
m R1

4
3

3 4
3

30 78945 1 00= ( ) = ( ) ( )[ ] =ρ π π. . g/cm  cm3
  

3 307.  g

(b) Following the same procedure as in part (a), with   ρ′ = 0 78097.  g/cm3 at 30.0°C, we find:

    
m R2

4
3

3 4
3

30 78097 1 00= ′( ) = ( ) ( )[ ] =ρ π π. . g/cm  cm3
  

3 271.  g

(c) When the first sphere is resting on the bottom of the tube,

    
n B F m gg+ = =1 1 , where n is the normal force.

Since   B Vg= ′ρ ,

    
n m g Vg= − ′ = − ( )( )[ ]1

33 307 0 78097 1 00 980ρ . . . g  g/cm  cm  cm/s3 2

    n = ⋅ =34 8.  g cm/s2
  

3 48 10 4. × − N
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ANSWERS TO EVEN NUMBERED PROBLEMS

  2. No.  Its density is only   2 70 103. ×  kg/m3

  4.   1 92 104. ×  N

  6. (a)   1 01 107. ×  Pa  (b)   7 09 105. ×  N outward

  8. 225 N down

10. (a) 65.1 N (b) 275 N

12. (a) 10.3 m (b) 0

14. (a) 20.0 cm (b) 0.490 cm

16. (a) 1.57 Pa,   1 55 10 2. × −  atm, 11.8 mm Hg
(b) The fluid level in the tap should rise.
(c) Blockage of flow of the cerebrospinal fluid.

18.
  

m
hw sρ ρ−( )

20.   ~ 104

22. See the solution

24.   2 67 103. ×  kg

26. See the solution.    
    
T

r
M
g

= 





2 π
ρ

28. 12.8 kg/s

30. See the solution

32. (a)     h0 2/  (b)     h0
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34. (a) 1 atm + 15.0 MPa (b) 2.95 m/s (c) 4.34 kPa

36.   2 51 10 3. /× −  m s3

38. (a) 4.43 m/s (b) The siphon can be no higher than 10.3 m.

40. 12.6 m/s

42.   1 61 104. ×  m2

44. 455 kPa

46. 0.604 m

48. 8.01 km;  yes

50. 291 Hz

52. See the solution

54. (a) 18.3 mm (b) 14.3 mm (c) 8.56 mm

56. (a) 2.65 m/s (b)   2 31 104. ×  Pa


