
CHAPTER 16
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ANSWERS TO QUESTIONS

Q16.1 The copper's temperature drops and the water temperature rises until both temperatures are the same.
Then the metal and the water are in thermal equilibrium.

Q16.2 The astronaut is referring to the temperature of the lunar surface, specifically a 400°F difference.  A
thermometer would register the temperature of the thermometer liquid.  Since there is no atmosphere
in the moon, the thermometer will not read a realistic temperature unless it is placed into the lunar soil.

Q16.3 All dimensions of the heated metal piece
increase, including the size of the hole.

Q16.4 Thermal expansion of the glass container occurs first (since it is in contact with the hot water).  Then
the mercury heats up, and it expands.

Q16.5 The measurements made with the heated steel tape will be too short — but only by a factor of   5 10 5× −

of the measured length.

Q16.6 The volume of the balloon will decrease.  The pressure of the atmosphere remains the same, so from
  PV nRT=  , volume must decrease with temperature.

Q16.7 The ideal gas law,   PV nRT=  predicts zero volume at absolute zero.  This is incorrect because the ideal
gas law cannot work all the way down to or below the temperature at which gas turns to liquid, or in
the case of   CO2, a solid.

Q16.8 Suppose the balloon rises into air uniform in temperature.  The air cannot be uniform in pressure
because the lower layers support the weight of all the air above them.  The rubber in a typical balloon
is easy to stretch and stretches or contracts until interior and exterior pressures are nearly equal.  So as
the balloon rises it expands.  This is an isothermal expansion with P decreasing as V increases by the
same factor in   PV nRT= .  If the rubber wall is very strong it will eventually contain the helium at
higher pressure than the air outside but at the same density, so that the balloon will stop rising.  More
likely, the rubber will stretch and break, releasing the helium to keep rising and "boil out" of the Earth's
atmosphere.

Q16.9 Call the process isobaric cooling or isobaric contraction.  The rubber wall is easy to stretch.  The air
inside is nearly at atmospheric pressure originally and stays at atmospheric pressure as the wall moves
in, just maintaining equality of pressure outside and inside.  The air is nearly an ideal gas to start with,
but   PV nRT=  soon fails.  Volume will drop by a larger factor than temperature as the water vapor
liquefies and then freezes, as the carbon dioxide turns to snow, as the argon turns to slush, and as the
oxygen liquefies.  From the outside, you see contraction to a small fraction of the original volume.

Q16.10 Cylinder A must be at lower pressure.  If the gas is thin, it will be at one-third the absolute pressure of
B.

Q16.11 At high temperature and pressure, the steam inside exerts large forces on the pot and cover.  Strong
latches hold them together, but they would explode apart if you tried to open the hot cooker.
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Q16.12 (a) The water level in the cave rises by a
smaller distance than the water outside,
as the trapped air is compressed.  Air can
escape from the cave if the rock is not
completely airtight, and also by
dissolving in the water.

(b) The ideal cave stays completely full of
water at low tide.  The water in the cave
is supported by atmospheric pressure on
the free water surface outside.

Q16.13 The alcohol evaporates, absorbing energy from the skin to lower the skin temperature.

Q16.14 Refer to equations 16.15 and 16.19.
(a) 3 (b)   3

Now think of the first steps in the kinetic-theory account of how a gas exerts pressure.
(c)   3 (d)   3 (e) 3

Q16.15 Absolute zero is a natural choice for the zero of a temperature scale.  If an alien race had bodies that
were mostly liquid water — or if they just liked its taste or its cleaning properties — it is conceivable
that they might place one hundred degrees between its freezing and boiling points.  It is very unlikely,
on the other hand, that these would be our familiar "normal" ice and steam points, because
atmospheric pressure would surely be different where the aliens come from.
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PROBLEM SOLUTIONS

16.1 Since we have a linear graph, the pressure is related to the temperature as P = A + BT, where A
and B are constants. To find A and B, we use the data

0.900 atm = A + (–80.0°C)B (1)

1.635 atm = A + (78.0°C)B (2)

Solving (1) and (2) simultaneously,

we find A = 1.272 atm

and     B = × °−4 652 10 3.  atm/ C

Therefore, P = 1.272 atm +
    
4 652 10 3. × °( )−  atm/ C T

(a) At absolute zero P = 0 = 1.272 atm +
    
4 652 10 3. × °( )−  atm/ C T

which gives  
    

T = − °274 C

(b) At the freezing point of water P = 1.272 atm + 0 = 
  
1 27.  atm

(c) And at the boiling point P = 1.272 atm +
  
4 652 10 1003. × °( ) °( )−  atm/ C C  = 

  
1 74.  atm

16.2     P V nRT1 1=

and     P V nRT2 2=

imply that
    

P
P

T
T

2

1

2

1
=

(a)
    
P

P T
T2
1 2

1

0 980 45 0
273 20 0

= = ( ) +( )
+( ) =. .

.
 atm 273 K  K

 K   
1 06.  atm

(b)
    
T

T P
P3
1 3

1

293
0 980

149= = ( )( ) = = K 0.500 atm
 atm

 K
.   

− °124 C

16.3 (a)
    
T TF C= + ° = −( ) + =9

5
9
5

32 0 195 81 32 0. . . F
  

− °320 F

(b) T =  TC + 273.15 = –195.81 + 273.15 = 
  

77 3.  K
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16.4 (a) To convert from Fahrenheit to Celsius, we use
    
T TC F= −( ) = −( ) =5

9
5
9

32 0 98 6 32 0. . .
  

37 0. °C

and the Kelvin temperature is found as     T TC= + =273
  

310 K

(b) In a fashion identical to that used in (a), we find   TC  = 
  

− °20 6.  C

and T = 
  

253 K

16.5 (a)
    
∆ = ° = ° ° − °

° − °




 =T 450 450

32 0
100 0 00

C C
212 F F

C C
.

.   
810°F

(b) ∆T = 450°C = 
  

450 K

*16.6   α = × °− −1 10 10 5 1.  C  for steel

    
∆ = × °( ) ° − − °( )[ ] =− −L 518 1 10 10 35 0 20 05 1 m  C C C. . .  

  
0 313.  m

*16.7 (a)
    
∆ = ∆ = × °( )( ) °( ) =− −L L Tiα 24 0 10 3 0000 80 0 0 005766 1. . . . C  m C  m

  
Lf = 

  
3 0058.  m

 (b)
    
∆ = ∆ = × °( )( ) − °( ) = −− −L L Tiα 24 0 10 3 0000 20 0 0 00146 1. . . . C  m C  m

  
Lf = 

  
2 9986.  m

16.8 For the dimensions to increase,   ∆ = ∆L L Tiα

    1 00 10 1 30 10 2 20 20 02 4 1. . . .× = × ° ( ) − °( )− − − cm  C  cm CT

T = 
  

55 0. °C

16.9 (a)     ∆ = ∆ = × ° ( ) °( ) =− −L L Tiα 9 00 10 30 0 65 06 1. . . C  cm C
  

0 176.  mm

(b)     ∆ = ∆ = × ° ( ) °( ) =− −L L Tiα 9 00 10 1 50 65 06 1. . . C  cm C
  

8 78 10 4. × − cm

(c)
    
∆ = ∆ = × °( ) ( )( )







 °( ) =− −V V Ti3 3 9 00 10

30 0 1 50
4

65 06 1
2

α π
.

. .
. C  cm C3

  
0 0930.  cm3
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16.10 (a)     ∆ = ∆A A Ti2α :
    
∆ = × °( )( ) °( )− −A 2 17 0 10 0 0800 50 06 1 2. . . C  m C

∆A = 1.09 ×   10 5−  m2  = 
  

0 109.  cm2

(b) The length of each side of the hole has increased. Thus, this represents an 
  

increase  in the area of
the hole.

16.11     ∆ = −( ) ∆V V Tiβ α3
  
= × − ×( )( )( )( )− −5 81 10 3 11 0 10 50 0 20 04 6. . . . gal = 

  
0 548.  gal

*16.12 (a)     L L Ti= + ∆( )1 α :
    
5 050 5 000 20 01. . . cm  cm 1 24.0 10  C C6= + × ° − °( )[ ]− − T

T = 
  

437°C

(b) We must get     L LAl Brass=  for some ∆T, or

    L T L Ti i, ,Al Al Brass Brass1 1+ ∆( ) = + ∆( )α α

    
5 000 1 24 0 10 5 050 19 0 106 1 6 1. . . . cm  C  cm 1  C+ × °( )∆[ ] = + × °( )∆[ ]− − − −T T

Solving for ∆T, ∆T = 2080°C,

 so  
    

T = °3000 C

This will not work because 
  

aluminum melts at 660 C° .

*16.13 (a)     ∆ = ∆ − ∆ = −( ) ∆V V T V T V Tt t t iβ β β αAl Al Al3  = (9.00 ×   10 4−  – 0.720 ×   10 4− )   °
−C 1(2000   cm3 )(60.0°C)

∆V = 
  

99 4.  cm3  overflows

(b) The whole new volume of turpentine is

2000   cm3  + 9.00 ×   10 4−    °
−C 1(2000   cm3 )(60.0°C) = 2108   cm3

so the fraction lost is
  

99 4
2108

.  cm
 cm

3

3 =  4.71 ×   10 2−

and this fraction of the cylinder's  depth will be empty upon cooling:

4.71 ×   10 2− (20.0 cm) = 
  

0 943.  cm
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*16.14 The area of the chip decreases according to
    
∆ = ∆ = −A A T A Af iγ 1

    
A A T A Tf i i= + ∆( ) = + ∆( )1 1 2γ α

The star images are scattered uniformly, so the number N of stars that fit is proportional to the
area.

Then
    
N N Tf i= + ∆( ) = + × °( ) − ° − °( )[ ] =− −1 2 5342 1 2 4 68 10 1006 1α .  C C 20 C

  
5336 star images

*16.15 The horizontal section expands according to   ∆ = ∆L L Tiα

    
∆ = × °( )( ) ° − °( ) = ×− − −x 17 10 28 0 46 5 1 36 106 2 C  cm C 18.0 C  cm1 . . .

The vertical section expands similarly by

    
∆ = × °( )( ) °( ) = ×− − −y 17 10 134 28 5 6 49 106 2 C  cm C  cm1 . .

The vector displacement of the pipe elbow has magnitude

    ∆ = ∆ + ∆ = ( ) + ( ) =r x y2 2 2 20 136 0 649 0 663. . . mm  mm  mm

and is directed to the right below the horizontal at angle

    
θ = ∆

∆




 = 



 = °− −tan tan

.

.
.1 1 0 649

0 136
78 2

y
x

 mm
 mm

    
∆ = °r 0 663.  mm  to the right at 78.2  below the horizontal

16.16 (a) Initially,   PV n RTi i i i=     1 00 10 0 273 15. . . atm  K( ) = +( )V n Ri i

Finally, 
  
P V n RTf f f f=

    
P V n Rf i i0 280 40 0 273 15. . .( ) = +( ) K

Dividing these equations,
    

0 280

1 00
313 15
283 15

.

.
.
.

Pf

 atm
 K
 K

=

giving
  
Pf  = 3.95 atm

or
  
Pf  = 

  
4 00 105. × ( )Pa abs.

(b) After being driven     P V n Rd i i1 02 0 280 85 0 273 15. . . .( )( ) = +( ) K

    
P Pd f= =1 121.

  
4 49 105. × Pa
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16.17 The equation of state of an ideal gas is   PV nRT=  so we need to solve for the number of moles to
find N.

    
n

PV
RT

= =
×( ) ( )( )( )[ ]

⋅( )( ) = ×
1 01 10 10 0 20 0 30 0

8 315 293
2 49 10

5
5

. . . .

.
.

 N/m  m  m  m

 J/mol K  K
 mol

2

    
N nNA= = × ×( ) =2 49 10 6 022 105 23. . mol  molecules/mol

  
1 50 1029. ×  molecules

16.18
    
PV NP V r NP= ′ ′ = ′4

3
3π :

    
N

PV
r P

=
′

= ( )( )
( ) ( )

=3
4

3 150 0 100

4 0 150 1 203 3π π
.

. .   
884 balloons

16.19
    
Σ =Fy 0 :     ρ ρout ingV gV g− − ( ) =200 0 kg

    
ρ ρout in−( )( ) =400 200 m  kg3

The density of the air outside is   1 25.  kg/m3.

From   PV nRT= , 
  

n
V

P
RT

=

The density is inversely proportional to the temperature,
and the density of the hot air is

    
ρin

inT
= ( )




1 25
283

.  kg/m
 K3

Then 
    
1 25 1

283
400 200.  kg/m

 K
 m  kg3 3( ) −





( ) =

Tin     
1

283
0 400− = K

Tin
.

    
0 600

283
. =  K

Tin
  Tin =

  
472 K

*16.20 (a) PV = nRT n = 
  

PV
RT

m = nM = 
  

PVM
RT

= 
  

1 013 10 28 9 10

8 315

5 3 3. .

.

× ( ) ×( )
⋅( )( )

− Pa 0.100 m  kg/mol

 J/mol K 300 K

m = 
  
1 17 10 3. × − kg

(b)
  
Fg  = mg = 1.17 ×   10 3−  kg

  
9 80.  m/s2( ) = 

  
11 5.  mN

(c) F = PA = 
  
1 013 10 0 100 2. .×( )( ) =5 2 N/m  m

  
1 01.  kN

(d) The 
  

molecules must be moving very fast  to hit the walls hard.
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16.21 At depth, P =     P gh0 + ρ and   PV nRTi i=

At the surface, 
    
P V nRTf f0 = :

    

P V

P gh V

T

T
f

i

f

i

0

0 +( ) =
ρ

Therefore
    
V V

T

T
P gh

Pf i
f

i
=







+





0

0

ρ

    

Vf = 





× + ( )( )( )
×











1 00
293 1 013 10 1025 9 80 25 0

1 013 10

5

5.
. . .

.
 cm

 K
278 K

 Pa  kg/m  m/s  m

 Pa
3

3 2

  
Vf =

  
3 67.  cm3

16.22 My bedroom is 4 m long, 4 m wide, and 2.4 m high, enclosing air at 100 kPa and 20 °C = 293 K.
Think of the air as 80.0%   N2 and 20.0%   O2.

Avogadro’s number of molecules has mass

  (0.800)( 28.0 g/mol ) + (0.200) (32.0 g/mol) = 0.0288 kg/mol

Then PV = nRT = (m/M)RT

gives m = 
  

PVM
RT

= 
  

1 00 10 38 4 0 0288

8 315 293

5 3. ( . )( . )

. ( )

×( )
⋅( )

 2N/m  m  kg/mol

 J/mol K  K
 = 45.4 kg 

  
~ 102  kg

*16.23 PV = nRT:
  

m

m
f

i
 = 

  

n

n
f

i
 = 

  

P V

RT
RT
PV

f f

f

i

i i
 = 

  

P

P
f

i

so
  
m m

P

Pf i
f

i
=







    
∆ = − =

−





= −



 =m m m m

P P

Pi f i
i f

i
12 0

26 0
41 0

.
.

.
 kg

41.0 atm  atm
 atm   

4 39.  kg

*16.24 The   CO2 is far from liquefaction, so after it comes out of solution it behaves as an ideal gas. Its
molar mass is     M = + ( ) =12 0 2 16 0 44 0. . . g/mol  g/mol  g/mol. The quantity of gas in the cylinder is

    
n m M= = ( ) =sample  g/ 44.0 g/mol  mol/ . .6 50 0 148

Then   pV nRT=

gives
    
V

nRT
p

= =
⋅( ) +( )

×
⋅










=

0 148 273 20
1 013 10

1
1

10
15

3.
.

 mol 8.315 J/mol K  K  K
 N/m

 N m
 J

 L
 m2 3   

3 55.  L
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*16.25
    
N

PVN
RT

A= =
( )( ) ×( )

⋅( )( ) =
−10 6 02 10

8 315

9 23 Pa 1.00 m  molecule/mol

 J/K mol 300 K

3 .

.   
2 41 1011. × molecules

16.26     P V n RT m M RT0 1 1 1 1= = ( )/

    P V n RT m M RT0 2 2 2 2= = ( )/

    

m m
P VM

R T T1 2
0

1 2

1 1− = −






*16.27 Consider the x axis to be perpendicular to the plane of the window. Then, the average force
exerted on the window by the hail stones is

    
F Nm

v
t

Nm
v v

t
Nm

v v
t

xf xi= ∆
∆







=
−





=
− −( )





=

sin sinθ θ

    
Nm

v
t

2 sinθ





Thus, the pressure on the window pane is
  
P

F
A

= =
    

Nm
v
At

2 sinθ





16.28
    
F =

×( ) ×( )( )[ ]
=

−5 00 10 2 4 68 10

1 00
14 0

23 26. .

.
.

 kg 300 m/s

 s
 N

and
    
P

F
A

= =
×

=−
14 0

4
.  N

8.00 10  m2   
17 6.  kPa

*16.29 (a)   PV Nk TB= :

    

N
PV
k TB

= =
× ( )[ ]

×( )( )
=−

1 013 10 0 150

1 38 10 293

5 4
3

3

23

. .

.

 Pa  m

 J/K  K

π

  
3 54 1023. ×  atoms

(b)
    
K k TB= = ×( )( ) =−3

2
3
2

231 38 10 293.  J
  

6 07 10 21. × −  J

(c) For helium, the atomic mass is
    
m =

×
= × −4 00

6 02 10
6 64 1023

24.
.

.
 g/mol

 molecules/mol
 g/molecule

    m = × −6 64 10 27.  kg/molecule

    
1
2

2 3
2

mv k TB= :
    
∴ = =v

k T
mrms
B3

  
1 35.  km/s
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16.30 One mole of helium contains Avogadro’s number of molecules and has a mass of 4.00 g.  Let us
call m the mass of one atom, and we have

  N mA  = 4.00 g/mol

or m = 
  

4.00 g/mol
6.02 10 molecules/mol23  ×

= × −6 64 10 24.  g/molecule

m = 
  

6 64 10 27. × − kg

16.31 (a)
    
K k TB= = ×( )( ) =−3

2
3
2

231 38 10 423.  J/K  K
  

8 76 10 21. × − J

(b)
    
K mvrms= = × −1

2
2 218 76 10.  J

so
    
v

mrms = × −1 75 10 20.  J
(1)

For helium, m = 
  

4.00 g/mol
6.02 10 molecules/mol23  ×

= × −6 64 10 24.  g/molecule

m =   6 64 10 27. /× −  kg molecule

Similarly for argon, m = 
  

39.9 g/mol
6.02 10 molecules/mol23  ×

= × −6 63 10 23.  g/molecule

m =   6 63 10 26. × −  kg/molecule

Substituting in (1) above,

we find for helium, 
    

vrms = 1 62.  km/s

and for argon, 
    

vrms = 514 m/s

*16.32 (a) PV = nRT = 
    

Nmv2

3

The total translational kinetic energy is
    

Nmv2

2
=     Etrans :

    Etrans  = 
    
3
2

3
2

5 33 00 1 013 10 5 00 10PV = × ×( ) ×( ) =−. . .
  

2 28.  kJ

(b)

    

mv k T RT
N

B

A

2

232
3

2
3
2

3 8 315 300

2 6 02 10
= = = ( )( )

×( ) =.

.   
6 22 10 21. × − J
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*16.33 (a)
    
v

n v
Nav

i i= Σ = ( ) + ( ) + ( ) + ( ) + ( ) + ( )[ ] =1
15

1 2 2 3 3 5 4 7 3 9 2 12
  

6 80.  m/s

(b)
    
v

n v
Nav
i i2

2
54 9( ) = Σ = .  m /s2 2

so
    
v vrms av

= ( ) = =2 54 9.
  

7 41.  m/s

(c)
  
vmp =

  
7 00.  m/s

*16.34 Following Equation 16.23,
    
v

k T
mmp
B= =

×( )( )
×

=
−

−
2 2 1 38 10 4 20

6 64 10

23

27

. .

.

 J/K  K

 kg   
132 m/s

*16.35 Use Equation 16.20; take  
    

dN
dv

v = 0
    
4

2 2
2

2
2

0
3 2 2 3

π
π

N
m
k T

mv
k T

v
mv
k TB B B







−






−







=

/

exp

and solve for 
  
vmp  to get Equation 16.23.

Reject as solutions     v = 0  and   v = ∞

Retain only 
    
2 0

2
− =mv

k TB

Then
    
v

k T
mmp
B= 2

*16.36 (a) From 
    
v

k T
mav
B= 8

π

we find the temperature as 

    

T =
×( ) ×( )

× ⋅( ) =
−

−

π 6 64 10 1 12 10

8 1 38 10

27 4 2

23

. .

.

 kg  m/s

 J/mol K   
2 37 104. × K

(b)

    

T =
×( ) ×( )

× ⋅( ) =
−

−

π 6 64 10 2 37 10

8 1 38 10

27 3 2

23

. .

.

 kg  m/s

 J/mol K   
1 06 103. × K

*16.37 For a uniform lapse rate, the identity
  

∆
∆

=
−

∆
T
y

T T

y
f i

implies 
    
T T

T
y

yf i= + ∆
∆

∆ = ° − °( )( ) =30 C 6.7 C/km 3.66 km
  

5 5. °C
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*16.38 (a)
    

dT
dy

gM
R

= − − = −
( )( )

⋅( )




 ⋅






γ

γ
1 0 40

1 40

9 8 28 9

8 315
1 1.

.

. .

. /

 m/s  g/mol

 J/mol K
 kg

1000 g
 J

1 kg m s

2

2 2

  = − × =−9 73 10 3.  K/m
  

− °9 73. C/km

(b) Air contains water vapor. Air does not behave as an ideal gas. As a parcel of air rises in the
atmosphere and its temperature drops, its ability to contain water vapor decreases, so water will
likely condense out as liquid drops or as ice crystals. (The condensate may or may not be visible
as clouds.) The condensate releases its heat of vaporization, raising the air temperature above the
value that would be expected according to part (a).

(b) For an object of mass m on Mars,

  weight = force of planet’s gravity:
    
mg

GM m
r

= Mars

Mars
2 or

    
g

GM
r

= Mars

Mars
2

    

g =
× ⋅( ) ×( )

×( )
=

−6 67 10 6 42 10

3 37 10
3 77

11 23

6 2

. .

.
.

 N m /kg  kg

 m
 m/s

2 2
2

    

dT
dy

gM
R

= − − = −
( )( )

⋅( )
γ

γ
1 0 30

1 30

3 77 0 0440

8 315
.
.

. .

.

 m/s  kg/mol

 J/mol K

2

  = − × =−4 60 10 3.  K/m
  

− °4 60. C/km

(d)
  

∆
∆

=T
y

dT
dy

:
    
∆ = ∆ = − ° − − °( )

− °
=y

T
dT dy/ . /

60 40
4 60

C C
C km   

4 34.  km

(e) The dust in the atmosphere absorbs and scatters energy from the electromagnetic radiation
coming through the atmosphere from the sun. The dust contributes energy to the gas molecules
high in the atmosphere, resulting in an increase in the internal energy of the atmosphere aloft and
a smaller decrease in temperature with height, than in the case where there is no absorption of
sunlight. The larger the amount of dust, the more the lapse rate will deviate from the theoretical
value in part (c). Thus it was dustier during the Mariner flights in 1969.

16.39 The excess expansion of the brass is
    
∆ − ∆ = −( ) ∆L L L Tirod tape brass steelα α

    ∆ ∆( ) = −( ) × °( ) ( ) °( )− −L 19 0 11 0 10 0 950 35 06 1. . . . C  m C

∆(∆L) = 2.66 ×   10 4−  m

(a) The rod contracts more than tape to

a length reading 0.9500 m – 0.000266 m = 
  

0 9497.  m

(b) 0.9500 m + 0.000266 m = 
  

0 9503.  m
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16.40 At 0°C, 10.0 gallons of gasoline has mass,

from ρ = m/V

m = ρV = 
  
730 10 0

0 00380
1 00

 kg/m  gal
 m

 gal
3

3

( ) 





( . )

.
.

= 27.7 kg

The gasoline will expand in volume by

  ∆ = ∆V V Tiβ  = 9.60 ×   10 4−    °
−C 1(10.0 gal)(20.0°C – 0.0°C) = 0.192 gal

At 20.0°C, 10.192 gal = 27.7 kg

10.0 gal = 
  
27 7

10 0
10 192

.
.

.
 kg

 gal
 gal







= 27.2 kg

The extra mass contained in 10.0 gallons at 0.0°C is

27.7 kg – 27.2 kg = 
  

0 523.  kg

16.41 Neglecting the expansion of the glass,

  
∆ = ∆h

V
A

Tβ

    

∆ =







×( )
× °( ) °( ) =

−
− −h

4
3

3

3 2
4 1

0 250
2

2 00 10
1 82 10 30 0

π

π

.

.
. .

 cm

 cm
 C C

  
3 55.  cm

16.42 (a) The volume of the liquid increases as     ∆ = ∆V V Til β . The volume of the flask increases as

    
∆ = ∆V V Tg i3α . Therefore, the overflow in the capillary is     V V Tc i= ∆ −( )β α3 ; and in the capillary

  V A hc = ∆ .

Therefore, 
    

∆ = −( )∆h
V
A

Ti β α3

(b) For a mercury thermometer β (Hg) = 1.82 ×   10 4 1− −° C

and for glass, 3α = 3 × 3.20 ×   10 6 1− −° C

Thus β – 3α  ≅  β

or α β<<
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16.43 (a) ρ = 
  

m
V

and
    
d

m
V

dVρ = − 2

For very small changes in V and ρ, this can be expressed as

  
∆ = − ∆ = − ∆ρ ρ βm

V
V

V
T

The negative sign means that any increase in temperature causes the density to decrease and vice
versa.

(b) For water we have

    

β ρ
ρ

= ∆
∆

= −

( ) ° − °( )
=

T
1 0000 0 9997

1 0000 10 0 4 0

. .

. . .

 g/cm  g/cm

 g/cm  C  C

3 3

3   
5 10 5 1× °− −C

*16.44 The astronauts exhale this much   CO2:

    
n

m

M
= =

⋅





( )( )





=sample  kg
astronaut day

 g
1 kg

 astronauts  days
 mol

44.0 g
 mol

1 09 1000
3 7

1
520

.

Then 520 mol of methane is generated. It is far from liquefaction and behaves as an ideal gas.

    
P

nRT
V

= =
⋅( ) −( )

×
=−

520 273 45
150 10 3

 mol 8.315 J/mol K  K  K
 m3   

6 58 106. × Pa

16.45 (a) We assume that air at atmospheric pressure is above the piston.

In equilibrium
    
P

mg
A

Pgas = + 0

Therefore,
    

nRT
hA

mg
A

P= + 0

or
    

h
nRT

mg P A
=

+ 0

where we have used V = hA as the volume of the gas.

(b) From the data given,

h = 

  

0 200 400

20 0 1 013 10 0 008005
.

. . .

 mol 8.315 J/K mol  K

 kg 9.80 m/s  N/m  m2 2 2
⋅( )( )

( ) + ×( )( )  = 
  

0 661.  m
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*16.46 The angle of bending θ , between tangents to the two ends of the strip, is
equal to the angle the strip subtends at its center of curvature. (The angles
are equal because their sides are perpendicular, right side to the right side
and left side to left side.)

(a) The definition of radian measure gives     L L ri + ∆ =1 1θ

and     L L ri + ∆ =2 2θ

By subtraction,     ∆ − ∆ = −( )L L r r2 1 2 1θ

    α α θ2 1L T L T ri i∆ − ∆ = ∆

    
θ

α α
=

−( ) ∆
∆

2 1 L T
r

i

(b) In the expression from part (a), θ  is directly proportional to ∆T and also to   α α2 1−( ). Therefore θ
is zero when either of these quantities becomes zero.

(c) The material that expands more when heated contracts more when cooled, so the bimetallic strip
bends the other way. It is fun to demonstrate this with liquid nitrogen.

(d)
    
θ

α α
=

−( ) ∆
∆

=
× − ×( )°( )( ) °( )− − −

2
2

2 19 10 0 9 10 200 1

0 500
2 1

6 6 1
L T

r
i

.

.

C  mm C

 mm

  
= × = × °



 =− −1 45 10 1 45 102 2. .  rad

180
 radπ   

0 830. °

*16.47 (a)
    
T

L
gi
i= 2π so

    
L

T g
i

i= =
( ) ( )

=
2

2

2

24

1 000 9 80

4
0 2482

π π

. .
.

 s  m/s
 m

2

    ∆ = ∆ = × ° ( ) °( ) = ×− − −L L Tiα 19 0 10 0 2843 10 0 4 72 106 1 5. . . . C  m C  m

    
T

L L
gf

i= + ∆ = =2 2
0 2483

9 80
1 0000949π π .

.
.

 m
 m/s

 s2

∆T = 
  

9 49 10 5. × − s

(b) In one week, the time lost is time lost = 1 week(   9 49 10 5. × −  s lost per second)

time lost = 
  
7 00

86400
1 00

9 49 10 5.
.

. d/week
 s

 d
s lost

s
( )


 ×





−

time lost = 
  

57 4.  s lost
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16.48 From the diagram we see that the change in area is

    ∆ = ∆ + ∆ + ∆ ∆A w w wl l l

Since    ∆l  and ∆w   are each small quantities, the product ∆w  ∆l will be
very small. Therefore, we assume       ∆w∆ ≅l 0.

Since   ∆w = wα ∆T     and   ∆l = lα ∆T,

we then have   ∆A = lwα ∆T + lwα ∆T

and since A = lw,   
    

∆ = ∆A A T2α

 The approximation assumes       ∆w∆ ≅l 0, or α ∆T  ≅ 0 . Another way of

stating this is 
    
α ∆ <<T 1 .

*16.49 I = 
    

r dm2∫  and since  r(T) = r(  Ti)(1 + α ∆T)

 for   α ∆T << 1 we find
    

I T
I T

T
i

( )
( ) = + ∆( )1 2α

 thus 
    

I T I T
I T

i

i

( ) ( )
( )
− ≅  2α ∆T

(a) With  α = 17.0 ×   10 6 1− −° C   and ∆T = 100°C

we find for Cu:
  

∆I
I

 = 2(17.0 ×   10 6 1− −° C )(100°C) = 
  

0 340. %

(b) With α = 24.0 ×   10 6 1− −° C

 and ∆T = 100°C

we find for Al:
  

∆I
I

 = 2(24.0 ×   10 6 1− −° C )(100°C) = 
  

0 480. %

16.50 (a) Let m represent the sample mass.  The number of moles is n = m/M and the density is ρ = m/V

So PV = nRT becomes PV =
  

m
M

RT or PM =
  

m
V

RT

Then, ρ =
  

m
V

 = 
  

PM
RT

(b) ρ =
  

PM
RT

 =
  

1 013 10 0 0320

8 315 293

5. .

.

×( )( )
⋅( )( )

 2N/m  kg/mol

 J/mol K  K
 = 

  
1 33.  kg/m3
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*16.51 After expansion, the length of one of the spans is

  
L Lf i= (1 + α ∆T) = 125 m[1 + 12 ×   10 6 1− −° C (20.0 C°)] = 125.03 m

  
Lf , y, and the original 125 m length of this span form a right triangle with y as the altitude. Using
the Pythagorean theorem gives:

    125 03 1252 2 2.  m  m( ) = + ( )y

yielding y = 
  

2 74.  m

*16.52 After expansion, the length of one of the spans is 
  
Lf  = L(1 + α ∆T). 

  
Lf , y, and the original length L

of this span form a right triangle with y as the altitude.  Using the Pythagorean theorem gives

    
L L yf

2 2 2= + , or
    
y L L L T L T Tf= − = + ∆( ) − = ∆ + ∆( )2 2 2 21 1 2α α α

Since α ∆T << 1, y  ≅  
    

L T2α ∆

*16.53 (a) From PV = nRT, the volume is: V = 
  

nR
P





 T

Therefore, when pressure is held constant,
  

dV
dT

nR
P

V
T

= =

Thus, 
    
β ≡ 



 = 





1 1
V

dV
dT V

V
T

, or β = 
    

1
T

(b) At T = 0°C = 273 K, this predicts β = 
  

1
273 K

= 
  

3 66 10 3 1. × − −K

Experimental values are:   βHe = 3.665 ×   10 3 1− − K  and   βair = 3.67 ×   10 3 1− − K

They agree within 0.06% and 0.2%, respectively.

16.54 For ∆L =   L Ls c−  to be constant, the rods must expand by equal amounts:   α αc c s sL T L T∆ = ∆

  
L

L
s

c c

s
= α

α
and

  
∆ = −L

L
Lc c

s
c

α
α

    

∴ = ∆
−

=
× °( )

× ° − × °( ) =
− −

− − − − 
.

. .
L

L
c

s

c s

α
α α

5 00

17 0 10 11 0 10

6 1

6 1 6 1

 cm 11.0 10  C

 C  C   
9 17.  cm

and
    
L

L
s

c

c s
= ∆

−
= 



 =α

α α
5 00.  cm

17.0
6.00   

14 2.  cm
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*16.55 (a) With piston alone: T = constant, so     PV P V= 0 0

or     P Ah P Ahi( ) = ( )0 0

With A = constant, P = 
    
P

h
hi

0
0





But, P = 
    
P

m g

A
p

0 +

 where 
  
mp  is the mass of the piston.

Thus, 
    
P

m g

A
P

h
h

p

i
0 0

0+ =






which reduces to

    

h
h
m g

P A

i
p

=
+

=

+
( )

× ( )[ ]

0

0 5 2
1

50 0

1 013 10

.

.

 cm

1
20.0 kg 9.80 m/s

 Pa 0.400 m

2

π

= 49.81 cm

With the man of mass M on the piston, a very similar calculation (replacing 
  
mp  by 

  
mp  + M) gives:

    

h
h

m M g

P A
p

′ =

+
+( ) =

+
( )

× ( )[ ]

0

0
5 2

1

50 0

1 013 10

.

.

 cm

1
95.0 kg 9.80 m/s

 Pa 0.400 m

2

π

= 49.10 cm

Thus, when the man steps on the piston, it moves downward by

    ∆h h hi= − ′ = − = =49 81 49 10 0 706. . . cm  cm  cm
  

7 06.  mm

(b) P = const,  so 
  

V
T

V
Ti

= ′
or

  

Ah
T

Ah
T

i

i
= ′

giving
    
T T

h
hi

i=
′





 = 



 =293 K

49.81
49.10   

297 K  (or 24°C)

*16.56 (a)
  

dL
L

dT= α :
    

α αdT
dL
L

L

L
T

T

T

L

L f

ii

i

i

i∫ ∫= ⇒






= ∆ ⇒ln
  

L L ef i
T= ∆α

(b)
    
L ef = ( ) =

× ° °( )[ ]− −

1 00 1 002002
2 00 10 1005 1

. .
.

 m  m
 C C

    
L f′ = + × ° °( )[ ] =− −1 00 100 1 0020005 1. . m 1 2.00 10  C C  m:

    

L L

L
f f

f

− ′
= × =−2 00 10 6.

  
2 00 10 4. %× −

    
L ef = ( ) =

× ° °( )[ ]− −

1 00 7 389
2 00 10 1002 1

. .
.

 m  m
 C C

    
L f′ = + ° °( )[ ] =−1 00 1 0 0200 100 3 0001. . . m C C  m:

  

L L

L
f f

f

− ′
=

  
59 4. %
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*16.57 Some gas will pass through the porous plug from the reaction chamber 1 to the reservoir 2 as the
reaction chamber is heated, but the net quantity of gas stays constant according to

    
n n n ni i f f1 2 1 2+ = +

Assuming the gas is ideal, we apply     n PV RT= /  to each term:

    

PV
R

P V
R

P V

R

P V

R
i i f f0 0 0 0

300
4

300 673

4

300 K  K  K  K( ) + ( )
( ) = ( ) +

( )
( )

    
1

1
673

4
 atm

5
300 K  K 300 K





 = +



Pf     

Pf = 1 12.  atm

*16.58 The pressure of the gas in the lungs of the diver must be the same as the absolute pressure of the
water at this depth of 50.0 meters. This is:

    
P P gh= + = + ×( )( )( )0

31 00 1 03 10 9 80 50 0ρ . . . . atm  kg/m  m/s  m3 2

or
    
P = + ×

×




 =1 00

1 00
1 013 10

5 985.
.

.
. atm 5.05 10  Pa

 atm
 Pa

 atm5

If the partial pressure due to the oxygen in the gas mixture is to be 1.00 atmosphere (or the
fraction 1/5.98 of the total pressure) oxygen molecules should make up only 1/5.98 of the total
number of molecules. This will be true if 1.00 mole of oxygen is used for every 4.98 mole of
helium. The ratio by weight is then

    

4 98
1 00 2 15 999

.
. .

 mole He 4.003 g/mole He
 mole O  g/mole O2 2

( )( )
( ) ×( ) =

g
g   

0 623.

*16.59 Let   2θ  represent the angle the curved rail subtends. We have

    L L R L Ti i+ ∆ = = + ∆( )2 1θ α

and
    
sin

/θ = =L
R

L
R

i i2
2

Thus, 
    
θ α α θ= + ∆( ) = + ∆( )L

R
T Ti

2
1 1 sin

and we must solve the transcendental equation     θ α θ θ= + ∆( ) = ( )1 1 0000055T sin . sin

Homing in on the non-zero solution gives, to four digits, θ = 0.01816 rad = 1.0405°

Now, 
    
h R R

Li= − =
−( )

cos
cos

sin
θ

θ
θ

1
2

This yields 
    

h = 4 54.  m , a remarkably large value compared to ∆L = 5.50 cm.
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*16.60 (a) Maxwell’s speed distribution function is

    
N N

m
k T

v ev
B

mv k TB=






−4
2

3 2
2 22

π
π

/
/

With N = 1.00 ×   104 , m = 
    

M
NA

=
×

= × −0 032
6 02 10

5 32 1023
26.

.
.

 kg
 kg

T = 500 K

and     kB = × ⋅−1 38 10 23.  J/molecule K

this becomes
    
N v ev

v
= ×( )− − ×( )−

1 71 10 4 2 3 85 10 6 2

.
.

To the right is a plot of this function for the range
0 ≤ v ≤ 1500 m/s.

(b) The most probable speed occurs where   Nv  is a
maximum.

From the graph, 
    

vmp ≅ 510 m/s

(c)   vav =
    

8k T
m
B

π
=

  

8 1 38 10 500
5 32 10

23

26
( . )( )

( . )
×

×
=

−

−π   
575 m/s

Also,

  vrms =
    

3k T
m
B =

  

3 1 38 10 500
5 32 10

23

26
( . )( )

.
×

×
=

−

−   
624 m/s

(d) The fraction of particles in the range 300 m/s ≤ v ≤ 600 m/s

is 
    

N dv

N
v300

600
∫

where N =   104

and the integral of   Nv  is read from the graph as the area under the curve.

This is approximately 4400 and the fraction is 0.44 or 
  

44% .
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*16.61
    
N v N

m
k T

v mv k Tv
B

B( ) =






−( )4
2

2
3 2

3 2π
π

/

exp /

Note that 
    
v k T mmp B= ( )2 1 2/ /

Thus, 
    
N v N

m
k T

v ev
B

v vmp( ) =






−( )4
2

3 2
2

2 2

π
π

/
/

And

    

N v

N v

v
v

ev

v mp mp

v vmp( )
( ) =











−( )
2

1 2 2/

For 
    
v vmp= /50

    

N v

N v
ev

v mp

( )
( ) = 



 = ×

−( )[ ] −1
50

1 09 10
2 1 1 50 3

2/
.

The other values are computed similarly, with the following
results:

  

v
vmp   

N v

N v
v

v mp

( )
( )

1/50 1.09 ×   10 3−

1/10 2.69 ×   10 2−

1/2 0.529
1 1.00
2 0.199

10 1.01 ×   10 41−

50 1.25 ×   10 1082−

To find the last value, note:

    50 25002 1 2500 2499( ) =− −e e

    10 10 102500 10 2499 10 2500 2499 10log ln /ln log /lne( ) −( ) −=   = =− −10 102500 2499 10 1081 904log /ln .
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ANSWERS TO EVEN NUMBERED PROBLEMS

  2. (a) 1.06 atm (b) –124°C

  4. (a) 37.0 °C = 310 K (b) –20.6 °C = 253 K

  6. 0.313 m

  8. 55.0 °C

10. (a)   0 109.  cm2 (b) increase

12. (a) 437 °C (b) 3 000 °C.  No; aluminum melts at 660 °C.

14. 5 336  star images

16. (a) 400 kPa (b) 449 kPa

18. 884 balloons

20. (a) 1.17 g (b) 11.5 mN
(c) 1.01 kN (d) The molecules are moving very fast.

22. between 10 and 100 kg

24. 3.55 L

26.
    
m m

P VM
R T T1 2

0

1 2

1 1− = −






28. 17.6 kPa

30.   6 64 10 27. × −  kg

32. (a) 2.28 kJ (b)   6 22 10 21. × −  J

34. 132 m/s
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36. (a)   2 37 104. ×  K (b)   1 06 103. ×  K

38. (a) –9.73 °C/km (b) See the solution. (c) –4.60 °C/km
(d) 4.34 km (e) See the solution; the Mariner flights.

40. 0.523 kg

42. (a) See the solution. (b)
  
α βglass Hg<<

44. 6.58 MPa

46. (a)
    
θ α α= −( )

−( )L
T

r ri 2 1
2 1

∆
(b) θ → 0 as ∆T → 0 and as   α α1 2→

(c) It bends the opposite way. (d) 0.830°

48. See the solution. We assume that  α∆T  is much  less than 1.

50. (a) See the solution. (b)   1 33.  kg/m3

52. y = L 2α ∆T 

54.     L LC S cm,   cm= =9 17 14 2. .

56. (a)
  
L L ef i

T= α∆ (b)   2 00 10 4.  %× − ;  59.4%

58. 0.623

60. (a) See the solution (b) about 510 m/s
(c) 575 m/s,  624  m/s (d) 44%


