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ANSWERS TO QUESTIONS

Q19.1 Electrons are less massive and more mobile than protons. Also, they are more easily detached from
atoms than protons.

Q19.2 The clothes dryer rubs dissimilar materials together as it tumbles the clothes. Electrons are transferred
from one kind of molecule to another. The charges on pieces of cloth, or on nearby objects charged by
induction, can produce strong electric fields that promote the ionization process in the surrounding air
that is necessary for a spark to occur.  Then you hear or see the sparks.

Q19.3 No.  The balloon induces polarization of the molecules in the wall, so that a layer of positive charge
exists near the balloon.  This is just like the situation in Figure 19.6a, except that the signs of the charges
are reversed.  The attraction between these charges and the negative charges on the balloon is stronger
than the repulsion between the negative charges on the balloon and the negative charges in the
polarized molecules (because they are farther from the balloon), so that there is a net attractive force
toward the wall.  Ionization processes in the air surrounding the balloon provide ions to which excess
electrons in the balloon can transfer, reducing the charge on the balloon and eventually causing the
attractive force to be insufficient to support the weight of the balloon.

Q19.4 When the comb is nearby, molecules in the paper are polarized, similar to the molecules in the wall in
Figure 19.6a,  and the paper is attracted. After contact, charge from the comb is transferred to the paper
so it now has the same charge as the comb, and is thus repelled.

Q19.5 To avoid making a spark. Rubber-soled shoes acquire a charge by friction with the floor and could
discharge with a spark, possibly causing an explosion.

Q19.6 No. Life would be no different if electrons were + charged and protons were – charged. Opposite
charges would still attract, and like charges would repel.
The naming of + and – charge is merely a convention.

Q19.7 Similarities:  A force of gravity is proportional to the product of the intrinsic properties (masses) of two
particles, and inversely proportional to the square of the separation distance. An electrical force
exhibits the same proportionalities, with charge as the intrinsic property.
Differences: The electrical force can either attract or repel, while the gravitational force can only attract.
The electrical force between elementary particles is vastly stronger than the gravitational force.

Q19.8 So the electric field from the test charge does not distort the electric field you are trying to measure, by
moving the charges that create it.

Q19.9 At a point exactly midway between the two changes.

Q19.10 The negative charge will be drawn to the center of the positively charged ring. Since it will then have
velocity, it will continue on, to an equidistant point on the opposite side of the ring.  It will then start
moving back and arrive again at point P .  This periodic motion will continue.  If  x  is much less than
a,  the motion can be shown from the solution for the electric field to be simple harmonic.

Q19.11 Four times as many electric field lines start at the surface of the larger charge as end at the smaller
charge. The extra lines extend away from the pair of charges.  They may never end, or they may
terminate on more distant negative charges. (Figure 19.20 shows the situation for charges +2q and –q).

Q19.12 The fields are equal. The Equation 19.25       E = σconductor /e0  for the field outside the aluminum looks
different from Equation 19.24       E = σ insulator /2 0e  for the field around glass. But its charge will spread
out to cover both sides of the aluminum plate, so the density is     σconductor = Q A/2 . The glass carries
charge only on area A, with     σ insulator = Q A/ . The two fields are       Q A/2 0e  the same in magnitude, and
both are perpendicular to the plates.

Q19.13 The surface must enclose a positive total charge.
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Q19.14 The net flux through any gaussian surface is zero. We can argue it two ways. Any surface contains zero
charge so Gauss’s law says the total flux is zero. The field is uniform, so the field lines entering one
side of the closed surface come out the other side and the net flux is zero.

Q19.15 Gauss’s law cannot tell the different values of the electric field at different points on the surface. When
E is an unknown number, then we can say 

    
E dA E dAcos cosθ θ=∫ ∫ . When E(x, y, z) is an unknown

function, then there is no such simplification.

Q19.16 The electric flux through a sphere around a point charge is independent of the size of the sphere.  A
sphere of larger radius has a larger area, but a smaller field at its surface, so that the product of field
strength and area is independent of radius. If the surface is not spherical, some parts are closer to the
charge than others. In this case as well, smaller projected areas go with stronger fields, so that the net
flux is unaffected.

Q19.17 There is zero force. The huge charged sheet creates a uniform field. The field can polarize the neutral
sheet, creating in effect a film of opposite charge on the near face and a film with an equal amount
of like charge on the far face of the neutral sheet. Since the field is uniform, the films of charge feel
equal-magnitude forces of attraction and repulsion to the charged sheet. The forces add to zero.

Q19.18 Inject some charge at arbitrary places within a conducting object. Every bit of the charge repels every
other bit, so each bit runs away as far as it can, stopping only when it reaches the outer surface of the
conductor.

Q19.19 If a charge distribution is small compared to the distance of a field point from it, the charge
distribution can be modeled as a single particle with charge equal to the net charge of the distribution.
Further, if a charge distribution is spherically symmetric, it will create a field at exterior points just as if
all of its charge were a point charge at its center.

Q19.20 If the person is uncharged, the electric field inside the sphere is zero. The interior wall of the shell
carries no charge. The person is not harmed by touching this wall. If the person carries a (small) charge
q, the electric field inside the sphere is no longer zero. Charge –q is induced on the inner wall of the
sphere. The person will get a (small) shock when touching the sphere, as all the charge on his body
jumps to the metal.

Q19.21 In special orientations the force between two dipoles can be zero or a force of repulsion. In general
each dipole will exert a torque on the other, tending to align its axis with the field created by the first
dipole. After this alignment, each dipole exerts a force of attraction on the other.

Q19.22 The electric fields outside are identical. The electric fields inside are very different.  We have     E = 0
everywhere inside the conducting sphere while E decreases gradually as you go below the surface of
the sphere with uniform volume charge density.
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PROBLEM SOLUTIONS

*19.1 (a)
    
N =







×








 =10 0

107 87
6 02 10 4723.

.
.

 grams
 grams/mol

 
atoms
mol

 
electrons

atom   
2 62 1024. ×

(b)
    
#

.
electrons added

 C
1.60 10  C/electron

.19= = ×
×

= ×
−

−
Q
e

1 00 10
6 25 10

3
15

or
  

2 38.  electrons for every 10 already present9

*19.2

    

F k
q q
re= =

× ⋅( ) ×( ) ×( )
×[ ]

=
−

1 2
2

9 2 2 19 2 23 2

6 2

8.99 10 N m /C 1.60 10 C 6.02 10

2(6.37 10 m)   
514 kN

19.3 If each person has a mass of ≈ 70 kg and is (almost) composed of water, then each person contains

  N ≅
  

70000 grams
18 grams/mol

6.02 10
molecules

mol
10

protons
molecule

23





×








   ≅ ×2.3 10  protons28

With an excess of 1% electrons over protons, each person has a charge

    
q = ×( ) ×( ) = ×−0.01 1.6 10 C 2.3 10 3.7 10 C19 28 7

So
    
F = ke

q1q2

r2 = (9 × 109)
(3.7 × 107 )2

0.62 N   = ×4 10 N25
  

~ 1026 N

This force is almost enough to lift a weight equal to that of the Earth:

    
Mg = × ( ) = ×6 10 9 8 6 10 1024 25 26 kg  m/s  N  N2. ~

19.4 (a) The force is one of 
  

attraction . The distance r in Coulomb’s law is the distance between centers.
The magnitude of the force is

    
F

k q q
r

e= = × ⋅( ) ×( ) ×( )
=

− −
1 2
2

9
9 9

28 99 10
12 0 10 18 0 10

0 300
.

. .

( . )
 N m /C

C C

 m
2 2

  

  
2 16 10 5. × − N

(b) The net charge of   − × −6 00 10 9. C will be equally split between the two spheres, or   − × −3 00 10 9.  C

on each.  The force is one of 
  

repulsion , and its magnitude is

    
F

k q q
r

e= = × ⋅( ) ×( ) ×( )
=

− −
1 2
2

9
9 9

28 99 10
3 00 10 3 00 10

0 300
.

. .

( . )
 N m /C

C C

 m
2 2

  

  
8 99 10 7. × − N
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*19.5 The force on one proton is 
      
F = k q q

r
e 1 2

2  away from the other proton. Its magnitude is

  
8 99 10

1 6 10
2 10

9
19

15

2

.
.× ⋅( ) ×

×






=

−

− N m /C
 C

 m
2 2

  
57 5.  N

19.6 (a) F = 

    

k e
r
e

2

2
9

19 2

10 28 99 10
1 60 10

0 529 10
= × ⋅( ) ×( )

×( )
=

−

−
.

.

.
 N m /C

 C

 m

2 2
  

8 22 10 8. × − N

(b) We have F = 
    

mv
r

2
from which

    
v

Fr
m

= =
× ×( )

×

− −

−

8 22 10 0 529 10

9 11 10

8 10

31

. .

.

 N  m

 kg
=

  
2 19 106. × m/s

*19.7
    
F1 = ke

q1q2

r2 = (8.99 × 109  N ⋅ m2/ C2)(7.00 × 10−6  C)(2.00 × 10−6  C)
(0.500 m)2 = 0.503 N

    
F k

q q
re2
1 2

2

9 2 2 6 6

2
(8.99 10  N m /C )(7.00 10  C)(4.00 10  C)

(0.500 m)
1.01 N= = × ⋅ × × =

− −

    Fx = ° + °=0.503 1.01 0.755 Ncos . cos .60 0 60 0

    
Fy = ° − ° = −0.503 1.01 0.436 Nsin . sin .60 0 60 0

    F = (0.755 N)i − (0.436 N)j = 
  

0 872.  N at an angle of 330°

*19.8 For equilibrium,     Fe = −Fg

or     qE = −mg −j( )

Thus, 
    
E = mg

q
j

(a)

      

E = mg
q

j = (9.11 × 10−31 kg)(9.80 m s2 )

−1.60 × 10−19  C( ) j =
    

− ×





−5 58 10 11. N/C j

(b)

      

E = mg
q

j =
1.67 × 10−27  kg( ) 9.80 m s2( )

1.60 × 10−19  C( ) j =
    

1 02 10 7. ×





− N/C j
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19.9 The point is designated in the sketch. The magnitudes
of the electric fields,     E1, (due to the –2.50 ×   10 6−  C
charge) and     E2 (due to the 6.00 ×   10 6−  C charge) are

    E1 = 
    

k q
r
e
2  = 

    

( . )( . )8 99 10 2 50 109 6

2
× ⋅ × − N m /C  C2 2

d
(1)

    E2 = 
    

k q
r
e
2  = 

    

( . )( . )

.

8 99 10 6 00 10

1 00

9 6

2
× ⋅ ×

+( )
− N m /C  C

 m

2 2

d
(2)

Equate the right sides of (1) and (2)

to get     d d+( ) =1 00 2 402 2. . m

or d + 1.00 m = ±1.55d

which yields d = 1.82 m

or d = –0.392 m

The negative value for d is unsatisfactory because that locates a point between the charges where
both fields are in the same direction.

Thus,   d =
  
1 82 2 50. . m to the left of the  C charge− µ .

*19.10 (a)
      
E j j1

1

1
2

9 9

2

8 99 10 3 00 10

0 100
= −( ) =

×( ) ×( )
( )

−( )
−

k q

r
e . .

.     
= − ×( )2 70 103.  N/C j

      
E i i i2

2

2
2

9 9

2
2

8 99 10 6 00 10

0 300
5 99 10= −( ) =

×( ) ×( )
( )

−( ) = − ×( )
−

k q

r
e . .

.
.  N/C

    E E E= + =2 1     
− × − ×( . ( .5 99 10 2 70 102 3N/C) N/C)i j

(b)
      
F E i j= = ×( ) − −( )−q 5 00 10 599 27009.  C  N/C

F = 
    
− 3.00 × 10−6 i − 13.5 × 10−6 j( )N =

    
− −( )3 00 13 5. .i j µN
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19.11 (a) The electric field has the general appearance shown. It is

zero 
  

at the center , where (by symmetry) one can see
that the three charges individually produce fields that
cancel out.

In addition to the center of the triangle, the electric field
lines in the second figure to the right indicate three other
points near the middle of each leg of the triangle where
    E = 0, but they are more difficult to find mathematically.

(b) You may need to review vector addition in Chapter One.
The electric field at point P can be found by adding the
electric field vectors due to each of the two lower point
charges:     E E E= +1 2

The electric field from a point charge is 
              
E = k

q
re 2 ~~

As shown in the solution figure at right,

      
E1 2= k

q
ae  to the right and upward at 60°

      
E2 2= k

q
ae  to the left and upward at 60°

      
E E E i j i j j= + = ° + °( ) + − ° + °( )[ ] = °( )[ ] =1 2 2 260 60 60 60 2 60k

q
a

k
q
ae ecos sin cos sin sin

      

1 73 2. k
q
ae j

*19.12 (a)
    
E

k q
r
e= = × × =

−

2

9 6

2
(8.99 10 )(2.00 10 )

(1.12)
14 400 N/C

    Ex = 0 and
    
Ey = ° = ×2(14 400) sin 26.6 1.29 10  N/C4

so
    

E j= ×1 29 104.   N/C

(b)
      
F E j= = − ×( ) ×( ) =−q 3 00 10 1 29 106 4. .

    
− × −3 86 10 2. j N

*19.13 (a)
              
E = + +k q

r
k q
r

k q
r

e e e1
1

2
2

3
3

1
2

2
2

3
2~~ ~~ ~~

      
= ( ) + ( ) ° + °( )k q

a

k q

a
e e2 3

22 2i i jcos . sin .45 0 45 0
      
+

ke 4q( )
a2 j

      
E i j= +3.06 5.062 2

k q
a

k q
a

e e  = 
    

5 91 2.
k q
a
e at 58.8°

(b)     F E= =q
    

5 91
2

2.
k q
a
e at 58.8°
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19.14
      
E

k
d d

k Q
d d

k Q
d d

e e e=
+( ) = ( )

+( ) =
+( )

λl

l

l l

l l

/
 = 

  

( . )( . )
( . )( . . )
8 99 10 22 0 10

0 290 0 140 0 290

9 6× ×
+

−

E = 
  
1 59 106. × N/C,  directed toward the rod.

19.15 The electric field at any point x is

  E =
    

k q
x a

k q
x a

k q ax
x a

e e e

( ) ( ( ))
( )

( )−
−

− −
=

−2 2 2 2 2
4

When x is much, much greater than a, we find   E ≅
    

4
3

a k q
x

e( )

19.16 E = 

    

k xQ

x a

x

x

x

x

e
2 2 3 2

9 6

2 2 3 2

5

2 3 2

8 99 10 75 0 10

0 100

6 74 10

0 0100+( )
=

×( ) ×( )
+( )

= ×

+( )
−

/ / /

. .

.

.

.

(a) At x = 0.0100 m, E = 6.64 ×     106 i  N/C = 
    

6 64. i MN/C

(b) At x = 0.0500 m, E = 2.41 ×     107 i  N/C = 
    

24 1. i MN/C

(c) At x = 0.300 m, E = 6.40 ×     106 i  N/C = 
    

6 40. i MN/C

(d) At x = 1.00 m, E = 6.64 ×     105 i  N/C = 
    

0 664. i MN/C

19.17 Due to symmetry
    
E dEy y= =∫ 0,  and

    
E dE k

dq
rx e= = ∫∫ sin
sinθ θ

2

where dq = λ ds = λr dθ,

so that,
    
E

k
r

d
k
r

k
rx

e e e= = −( ) =∫λ θ θ λ θ λπ πsin cos
0 0

2

where λ = 
  

q
L

 and r = 
  

L
π

.

Thus,
    
E

k q
Lx
e= =

× ⋅( ) ×( )
( )

−
2 2 8 99 10 7 50 10

0 1402

9 6

2
π π. .

.

 N m /C  C

 m

2 2

Solving,     Ex = ×2 16 107.  N/C

Since the rod has a negative charge, E = (–2.16 ×     107 i ) N/C = 
    

−21 6. i MN/C



Chapter 19

88

19.18 E = 
    

k dq
x
e

2∫ , where dq =   λ0dx

E = 

    

k
dx
x

k
xe

x
e

x
λ0 2

0 0

1∞ ∞

∫ = −



 =

    

k
x
eλ0

0     
The direction is  or left for 0− >i λ 0

*19.19 (a) The electric field at point   P  due to each element of length dx, is

    
dE

k dq
x y

e=
+2 2  and is directed along the line joining the element to

point   P . By symmetry,

    
E dEx x= =∫ 0 and since dq = λdx,

    
E E dE dEy y= = = ∫∫ cosθ where 

    

cosθ =
+

y

x y2 2

Therefore,
      
E k y

dx
x ye=

+
=∫2 3 20

2
λ

( )2 2 /
/l

    

2 0k
y

eλ θsin

(b) For a bar of infinite length,   θ0 90→ ° and
  
Ey =

    

2k
y
eλ

*19.20 (a) The whole surface area of the cylinder is     A = 2π r2 + 2π rL = 2π r r + L( ).

    
Q A= = ×( ) ( ) +[ ]−σ π15 0 10 2 0 0250 0 0250 0 06009. . . . C/m  m  m  m2  = 

  
2 00 10 10. × − C

(b) For the curved lateral surface only,     A = 2πrL.

    
Q A= = ×( ) ( )( )[ ] =−σ π15 0 10 2 0 0250 0 06009. . . C/m  m  m2

  
1 41 10 10. × − C

(c)     Q = ρV = ρ π r2 L
  
= ×( ) ( ) ( )[ ] =−500 10 0 0250 0 06009 2C/m  m  m3 π . .

  
5 89 10 11. × − C

*19.21

*19.22 (a)
    

q
q

1

2

6
18

= − =
  

− 1
3

(b)
    

q q1 2 is negative,   is positive
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*19.23 (a)
    
a

qE
m

= = × ( )
×

=
−

−
1 602 10 640

1 67 10

19

27
.

.   
6 14 1010. ×  m/s2

(b)
  
v v atf i= +

    
1 20 10 6 14 106 10. .× = ×( )t   t =

  
1 95 10 5. × − s

(c)
    
x x v v tf i i f− = +( )1

2     
xf = ×( ) ×( ) =−1

2
6 51 20 10 1 95 10. .

  
11 7.  m

(d)
    
K mv= = ×( ) ×( ) =−1

2
2 1

2
27 6 2

1 67 10 1 20 10. . kg  m/s
  
1 20 10 15. × − J

19.24 The required electric field will be 
  

in the direction of motion .

Work done = ∆K

so, –Fd = –
    
1
2

2mvi  (since the final velocity = 0)

which becomes eEd = K

and    E =
  

K
e d

19.25 The acceleration is given by

    
v v a x xf i f i

2 2 2= + −( )  or
    
v a hf

2 0 2= + −( )

Solving
    
a

v

h
f= −
2

2

Now     Σ =F ma :
      
− + = −mg q

mv

h
fj E

j2

2

Therefore

      

q
mv

h
mgfE j= − +











2

2

(a) Gravity alone would give the bead downward impact velocity

  
2 9 80 5 00 9 90. . . m/s  m  m/s2( )( ) =

To change this to 21.0 m/s down, a 
  

downward  electric field must exert a downward electric
force.

(b)

    

q
m
E

v

h
gf= −









 = ×

×
⋅
⋅







( )

( ) −












=
−2

2
1 00 10 21 0

9 80
. .

.
3

4

2 2
2 kg

1.00 10  N/C
N s
kg m

 m/s
2 5.00 m

 m/s
  

3 43.  Cµ
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*19.26 (a)
    
t

x
vx

= =
×

= × =−0 0500
4 50 10

1 11 105
7.

.
.  s

  
111 ns

(b)

    

a
qE
my = =

×( ) ×( )
×( ) = ×

−

−

1 602 10 9 60 10

1 67 10
9 21 10

19 3

27
11

. .

.
.  m/s2

    
y y v t a tf i yi y− = + 1

2
2 :

    
yf = ×( ) ×( ) = × =− −1

2
11 7 2 39 21 10 1 11 10 5 67 10. . .  m

  
5 67.  mm

(c)   vx =
  

4 50 105. × m/s
    
v v a tyf yi y= + = ×( ) ×( ) =−9 21 10 1 11 1011 7. .

  
1 02 105. × m/s

*19.27 The particle feels a constant force:       F E= = × − = × −− −q ( )( )( ) ( )1 10 2000 2 106 3 C  N/C  N j j

and moves with acceleration :
      
a

j
j= Σ =

× ⋅ −( )
×

= ×( ) −( )
−

−
F

m
( )2 10

2 10
1 10

3

16
13 2 kg m/s  

 kg
m/s

2

Its x-component of velocity is constant at 
  
1 00 10 37 7 99 105 4. cos .×( ) ° = × m/s  m/s. Thus it moves

in a parabola opening downward. The maximum height it attains above the bottom plate is
described by

    
v v a y yyf yi y f i

2 2 2= + −( ):
    
0 6 02 10 2 10 04 2 13= ×( ) − ×( ) −( ).  m/s  m/s2 yf

    
yf = × −1 81 10 4.  m

Since this is less than 10 mm, the particle does not strike the top plate, but moves in a symmetric
parabola and strikes the bottom plate after a time given by

    
y y v t a tf i yi y= + + 1

2
2

    
0 0 6 02 10 1 104 1

2
13 2= + ×( ) + − ×( ).  m/s  m/s2t t

since t > 0,     t = × −1 20 10 8.  s

The particle’s range is
    
x x v tf i x= + = + ×( ) ×( ) = ×− −0 7 99 10 1 20 10 9 61 104 8 4. . . m/s  s  m

In sum,

  

The particle strikes the negative plate after moving in a parabola with a height of 0.181 mm  
and a width of 0.961 mm

19.28     ΦE EA= cosθ  = (2.00 ×   104  N/C)(18.0   m
2 )  cos .10 0° = 

  
355 kN m C2⋅ /

19.29     ΦE EA= cosθ A =     π r2  = π (0.200)2 = 0.126   m
2

5.20 ×   105 = E (0.126)   cos0° E = 4.14 ×   106 N/C = 
  

4 14.  MN/C
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19.30 (a) E = 
    

k Q
r
e
2 : 8.90 ×   102 = 

    

( . )
( . )

8 99 10
0 750

9

2
× Q

But Q is negative since E points inward. Q = – 5.56 ×   10 8−  C = 
  

−55 6.  nC

(b) The 
  

negative  charge has a 
  

spherically symmetric  charge distribution.

19.31 (a)
      
ΦE = qin

e0
=

+5.00 µC − 9.00 µC + 27.0 µC − 84.0 µC( )
8.85 × 10−12  C2 / N ⋅ m2  = – 6.89 ×   106   N m /C2 2⋅

  ΦE =
  

− ⋅6 89. / MN m C2

(b) Since the net electric flux is negative, more lines enter than leave the surface.

*19.32
      
ΦE

q= = ×
× ⋅

= × ⋅
−

−
in

12 2 2
2 C

8.85 10  C N m
 N m C

e0

6
7170 10

1 92 10.

(a)     ΦE( )one face     
= 1

6 ΦE = 1.92 × 107  N ⋅ m2 C
6     

ΦE( ) =one face   
3 20. / MN m C2⋅

(b)   ΦE =
  
19 2.  MN m /C2⋅

(c) The answer to (a) would change because the flux through each face of the cube would not be
equal with an asymmetric charge distribution. The sides of the cube nearer the charge would have
more flux and the ones farther away would have less. The answer to (b) would remain the same,
since the overall flux would remain the same.

19.33 (a) With δ  very small, all points on the hemisphere are nearly at a
distance   R  from the charge, so the field everywhere on the curved
surface is     k Q Re / 2  radially outward (normal to the surface).
Therefore, the flux is this field strength times the area of half a
sphere:

      
Φcurved local hemisphere= ⋅ =∫ E Ad E A

      
Φcurved = 



( ) = ( ) =k

Q
R

R Qe 2
1
2

2

0
4

1
4

2π
π

π
e

 
      

+Q
2 0e

 (b) The closed surface encloses zero charge so Gauss’s law gives

  Φ Φ Φ Φcurved flat flat curved        or        + = = − =0
      

−Q
2 0e
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19.34 (a) E = 
    

k Qr
a
e

3  = 
  

0

(b) E = 
    

k Qr
a
e

3  = 
  

( . )( . )( . )
( . )

8 99 10 26 0 10 0 100
0 400

9 6

3
× × −

 = 
  

365 kN/C

(c) E = 
    

k Q
r
e
2  = 

  

( . )( . )
( . )

8 99 10 26 0 10
0 400

9 6

2
× × −

 = 
  
1 46.  MN/C

(d) E = 
    

k Q
r
e
2  = 

  

( . )( . )
( . )

8 99 10 26 0 10
0 600

9 6

2
× × −

= 
  

649 kN/C

The direction for each electric field is 
  

radially outward .

*19.35 (a)   E =
  

0

(b)
    
E = keQ

r2 = (8.99 × 109)(32.0 × 10−6 )
(0.200)2 =   7 19.  MN/C   E =

  
7 19.  MN/C radially outward

19.36 (a) E = 
    

2k
r
eλ 3.60 ×   104  = 

    

2 8 99 10 2 40
0 190

9( . )( / . )
.

× Q

    Q = + × =−9 13 10 7.  C
  

+913 nC

(b)   E =
  

0

19.37 If ρ  is positive, the field must be radially outward. Choose
as the gaussian surface a cylinder of length L and radius r,
contained inside the charged rod. Its volume is     π r L2  and it
encloses charge     ρπ r L2 .  Because the charge distribution is
long, no electric flux passes through the circular end caps;

      E A⋅ = ° =d EdAcos .90 0 0 . The curved surface has

      E A⋅ = °d EdAcos0 , and E must be the same strength
everywhere over the curved surface.

Gauss’s law, 
        

E A⋅ =∫ d
q
e0

, becomes

      

E dA
r L

∫ =
Curved
Surface

ρπ 2

0e

Now the lateral surface area of the cylinder is     2π rL:

      
E r L

r L
2

2

0
π ρπ( ) =

e
Thus,   E =

      

ρ r
2 0e

radially away from the cylinder axis
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19.38
      
mg qE q q

Q A= =






=






σ
2 20 0e e

/

      

Q
A

mg
q

= =
×( )( )( )
− ×

=
−

−
2 2 8 85 10 0 01 9 8

0 7 10
0

12

6
e . . .

.   
−2 48.  C/m2µ

19.39 The distance between centers is 2 × 5.90 ×    10 15−  m. Each produces a field as if it were a point
charge at its center, and each feels a force as if all its charge were a point at its center.

F = 
    

k q q
r

e 1 2
2  = 

  
8 99 10

46 1 60 10
2 5 90 10

3 50 109
2 19 2

15 2
3. /

( ) ( . )
( . )

.× ⋅( ) ×
× ×

= × =
−

− N m C
 C

 m
 N2 2

  
3 50.  kN

19.40
      

EdA E rl
qin∫ = ( ) =2

0
π

e
E = 

      

q l
r

in /
2 0πe

= 
      

λ
π2 0e r

(a) r = 3.00 cm   E =
  

0  inside the conductor

(b) r = 10.0 cm   E =
  

30 0 10

2 8 85 10 0 100

9

12
.

. .

×
×( )( )

−

−π
=

  
5400 N/C,  outward

(c) r = 100 cm   E =
  

30 0 10

2 8 85 10 1 00

9

12
.

. .

×
×( )( )

−

−π
=

  
540 N/C,  outward

19.41 (a)       E = σ /e0   
σ = ×( ) ×( ) = ×− −8 00 10 8 85 10 7 08 104 12 7. . .  C/m2

σ =
  

708 nC/m2 , positive on one face and negative on the other.

(b) σ = 
  

Q
A

     Q A= = × −σ ( . )( . )7 08 10 0 5007 2  C

Q = 1.77 ×   10 7−  C =
  
177 nC , positive on one face and negative on the other.

19.42 The electric field on the surface of a conductor varies inversely with the radius of curvature of the
surface. Thus, the field is most intense where the radius of curvature is smallest and vice-versa.
The local charge density and the electric field intensity are related by

      
E = σ

e0
or       σ = e0E

(a) Where the radius of curvature is the greatest,

      
σ =e0Emin = 8.85 × 10−12  C2 N ⋅ m2( ) 2.80 × 104  N C( ) =

  
248 nC/m2

(b) Where the radius of curvature is the smallest,

      
σ =e0Emax = 8.85 × 10−12  C2 N ⋅ m2( ) 5.60 × 104  N C( ) =

  
496 nC/m2
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*19.43 (a) The charge density on each of the surfaces (upper and lower) of the plate is:

    
σ = 



 = × = × =

−
−1 1

2 2

8

2
8 2(4.00 10  C)

(0.500 m)
8.00 10 C/m

q
A   

80 0.  nC/m2

(b)
      
E k k=







= ×
× ⋅







=

−

−
σ
e0

8.00 10 C/m
8.85 10 C /N m

8 2

12 2 2     
9 04.  kN/C( )k

(c) E = 
    

−( )9 04.  kN/C k

19.44 (a) Inside surface: consider a cylindrical surface within the metal. Since E inside the conducting shell
is zero, the total charge inside the gaussian surface must be zero, so the inside charge/length = – λ.

0 = λ l +     qin so  
      

qin

l
= −λ

Outside surface: The total charge on the metal cylinder is        2λl = +q qin out

      qout = +2λ λl l  so the outside charge/length is  
  

3λ

(b) E = 
    

2 3k
r

e( )λ
 = 

    

6k
r
eλ  = 

      

3
2 0

λ
π e r

 radially outward

*19.45 (a)   E =
  

0

(b)
    
E

k Q
r
e= =

×( ) ×( )
( )

= ×
−

2

9 6

2
7

8 99 10 8 00 10

0 0300
7 99 10

. .

.
.  N/C   E =

  
79 9.  MN/C radially outward

(c)   E =
  

0

(d)
    
E

k Q
r
e= =

×( ) ×( )
( )

= ×
−

2

9 6

2
6

8 99 10 4 00 10

0 0700
7 34 10

. .

.
.  N/C   E =

  
7 34.  MN/C radially outward
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*19.46
      
E = σ

e0
 toward a 

  
negative  charge.

      
σ = = ( ) × ⋅( ) =−Ee0

12120 N/C 8.85 10  C N m2 2/
  
1 06 10 9. × −  C/m2

(b)
    
Q A R= = ( ) = − ×( ) ×( )





=−σ σ π π4 1 06 10 4 6 37 102 9 6 2
. . C/m  m2

  
− ×5 42 105. C

  
− ×

− ×




 =−5 42 10

1
1 6 10

5
19.

.
 C

 electron
 C   

3 38 1024. × excess electrons

*19.47 Consider as a gaussian surface a box with horizontal area A, lying between 500 and 600 m
elevation.

        
E A⋅ =∫ d

q
e0

:
      
+( ) + −( ) = ( )120 100

100

0
 N/C  N/C

 m
A A

Aρ
e

  
ρ =

( ) × ⋅( )
=

−20 8 85 10 12 N/C  C N m

100 m

2 2. /

  
1 77 10 12. × − C/m3

The charge is 
  

positive , to produce the net outward flux of electric field.

*19.48 (a) The Moon would feel a force 
  

away from Earth  of magnitude

    

F
k q q

r
e= = × ⋅( ) − ×( ) − ×( )

×( )














=1 2
2

9
5 5

8 28 99 10
5 10 1 37 10

3 84 10
.

.

.
 N m /C

 C  C

 m

2 2
  

4 18 103. ×  N

(b) The gravitational force is

    

F
Gm m

r
= =

× ⋅( ) ×( ) ×( )
×( )

−
1 2
2

11 24 22

8 2

6 67 10 5 98 10 7 36 10

3 84 10

. . .

.

 N m /kg  kg  kg

 m

2 2

    F = ×1 99 1020.  N  toward Earth.

Thus,
  

the electric force is weaker by

  

1 99 10
4 18 10

20

3
.
.

×
×

= N
 N   

4 77 1016. × times and in the opposite direction
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19.49 From the free-body diagram shown,

    
Σ =Fy 0:     T cos .15 0° = 1.96 ×   10 2−  N

So T = 2.03 ×   10 2−  N

From     Σ =Fx 0, we have qE =     T sin .15 0°

or q = 
    

T
E

sin15 0. °
 = 

  

( . )sin
.

.
2 03 10 15 0

1 00 10
5 25 10

2

3
6× . °

×
= × =

−
− N

 N/C
 C

  
5 25.  Cµ

19.50 From Figure A:     dcos . .30 0 15 0° =  cm,

or
    
d =

°
15 0

30 0
.

cos .
 cm

From Figure B:
    
θ = 





−sin
.

1

50 0
d
 cm

  
θ =

°( )






= °−sin

.
. cos .

.1 15 0
50 0 30 0

20 3
 cm

 cm

    

Fq

mg
= tanθ

or     Fq = mg tan 20.3° (1)

From Figure C:
    
F Fq = °2 30 0cos .

    
F

k q
q

e=
( )













°2
0 300

30 0
2

2.
cos .

 m
(2)

Combining equations (1) and (2),

    
2

keq
2

0.300 m( )2












cos 30.0° = mg tan 20.3°

    
q2 = mg 0.300 m( )2 tan 20.3°

2ke cos 30.0°

    

q2 =
2.00 × 10−3  kg( ) 9.80 m s2( ) 0.300 m( )2 tan 20.3°

2 8.99 × 109  N ⋅ m2 C2( )cos 30.0°

    q = 4.20 × 10−14  C2 = 2.05 × 10−7  C=
  

0 205.  Cµ

Figure A

Figure B

Figure C
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*19.51 Charge Q/2 resides on each block, which repel as point charges:

    
F

k Q Q
L

k L Le
i= ( )( ) = −( )/ /2 2

2

    

Q = 2L
k L − Li( )

ke
= 2 0.400 m( ) 100 N / m( ) 0.100 m( )

8.99 × 109  N ⋅ m2 / C2( ) =
  

26 7.  Cµ

*19.52 Charge   Q/2 resides on each block, which repel as point charges:

    
F

k Q Q
L

k L Le
i= ( )( ) = −( )/ /2 2

2

Solving for   Q ,   Q =
    

2L
k L L

k
i

e

−( )

19.53
    
F

k q q
r

e= 1 2
2 :

  
tan

.

.
θ = 15 0

60 0

  θ = °14 0.

    F1 = 
  

( . )( . )
( . )

8 99 10 10 0 10
0 150

9 6 2

2
× × −

= 40.0 N

    F3 = 
  

( . )( . )
( . )

8 99 10 10 0 10
0 600

9 6 2

2
× × −

= 2.50 N

    F2 = 
  

( . )( . )
( . )

8 99 10 10 0 10
0 619

9 6 2

2
× × −

 = 2.35 N

    F F Fx = − − ° = − − ° =3 2 14 0 2 50 2 35 14 0cos . . . cos .  – 4.78 N

    
F F Fy = − − ° = − − ° =1 2 14 0 40 0 2 35 14 0sin . . . sin .  – 40.6 N

    Fnet  = 
    

F Fx y
2 2+  =   ( . ) ( . )4 78 40 62 2+  = 

  
40 9.  N

    
tan

.
.

φ = = −
−

F

F
y

x

40 6
4 78

 φ = 
  

263°
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*19.54 At an equilibrium position, the net force on the charge Q is zero. The equilibrium position can be
located by determining the angle θ  corresponding to equilibrium.

In terms of lengths s, 
    
1
2

3a , and r, shown in Figure P19.54, the charge at the origin exerts an
attractive force

    
k Qq s ae / +( )1

2

2
3

The other two charges exert equal repulsive forces of magnitude     k Qq re / 2. The horizontal
components of the two repulsive forces add, balancing the attractive force,

    

F k Qq
r s a

enet = −
+( )

















=2 1

3
02 1

2

2
cosθ

From Figure P19.54
    
r

a
=

1
2

sinθ     
s a= 1

2
cotθ

The equilibrium condition, in terms of θ , is

    

F
a

k Qqenet = 



 −

+( )












=4
2

1

3
02

2
2cos sin

cot
θ θ

θ

Thus the equilibrium value of θ  satisfies 
  
2 3 12 2

cos sin cotθ θ θ+( ) =

One method for solving for θ  is to tabulate the left side. To three significant figures a value of θ
corresponding to equilibrium is   81 7. °.

The distance from the vertical side of the triangle to the equilibrium position is

 
    
s a= ° =1

2
81 7cot .

    
0 0729. a

θ   
2 32 2

cos sin cotθ θ θ+( )
  60°

  70°

  80°

  90°

  81°

  81 5. °

  81 7. °

4

2.654

1.226

0

1.091

1.024

0.997

A second zero-field point is on the negative side of the x-axis, where θ = –9.16° and s = –3.10 a.
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*19.55 (a) From the 2Q charge we have     Fe − T2 sinθ2 = 0 and     mg − T2 cosθ2 = 0

Combining these we find 
    

Fe

mg
= T2 sinθ2

T2 cosθ2
= tanθ2

From the Q charge we have     Fe − T1 sinθ1 = 0 and     mg − T1 cosθ1 = 0

Combining these we find
    

Fe

mg
= T1 sinθ1

T1 cosθ1
= tanθ1 or

  
θ θ2 1=

(b)
    
Fe = ke 2QQ

r2 = 2keQ
2

r2

If we assume θ is small then 
      
tan

/θ ≅ r 2
l

Substitute expressions for Fe and   tanθ  into either equation found in part (a) and solve for r.

    

Fe

mg
= tanθ then

      

2 1
2

2

2
k Q
r mg

re 





≅
l

 and solving for r we find 
      
r

k Q
mg
e≅







4 2 1 3

l
/

*19.56

      

dE = ke dq

x2 + 0.150 m( )2
−x i + 0.150 m j

x2 + 0.150 m( )2













      

=
− +( )
+ ( )[ ]

k x dx

x

eλ i j0 150

0 1502 2 3 2
.

.
/

m

 m

      

E E
i j

= =
− +( )

+ ( )[ ]∫ ∫ =
d k

x dx

x
e x

all charge

 m m

 m
λ

0 150

0 1502 2 3 20

0 400 .

.

.

      

E = keλ
+ i

x2 + 0.150 m( )2
0

0.400 m

+ 0.150 m( )j x

0.150 m( )2 x2 + 0.150 m( )2
0

0.400 m















    
E i j= × ⋅( ) ×( ) −( ) + −( )[ ]− − −8 99 10 35 0 10 2 34 6 67 6 24 09 9 1 1. . . . . N m /C  C/m  m  m2 2

    E = −1.36i + 1.96 j( ) × 103  N C =
    

− +( )1 36 1 96. .i j kN/C

*19.57 (a) Zero contribution from the same face due to symmetry,
opposite face contributes

    
4 sin2

k q
r
e φ



 where

    
 

2 2
1.5 1.22  

2 2
2r

s s
s s s= 



 + 



 + = =

    sin /φ = s r
    
E

k qs
r

k q
s

e e= = =4
4

(1.22)3 3 2  
    

2 18 2.
k q
s
e

(b)
    

The direction is the  direction.k
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*19.58 The field on the axis of the ring is calculated in Example 19.5, 

    

E E
k xQ

x a
x

e= =
+( )2 2 3 2/

The force experienced by a charge   −qplaced along the axis of the ring is 

    

F k Qq
x

x a
e= −

+( )
















2 2 3 2/

and when   x a<< , this becomes
    
F

k Qq
a

xe= 



3

This expression for the force is in the form of Hooke’s law,
with an effective spring constant of     k k Qq ae= / 3

Since     ω π= =2 f k m/ , we have   f =
    

1
2 3π

k Qq
ma
e

19.59 (a)
        

E A⋅ = ( ) =∫ d E r qin4 2
0π /e

For r < a,
    
qin = ρ 4

3
π r3( )

so   E =
      

ρ r
3 0e

For a < r < b and c < r,   qin  = Q

So   E =
      

Q
r4 2

0π e

For b ≤ r ≤ c, E = 0, since 
    

E = 0  inside a conductor.

(b) Let     q1 = induced charge on the inner surface of the hollow sphere. Since E = 0 inside the
conductor, the total charge enclosed by a spherical surface of radius b ≤ r ≤ c must be zero.

 Therefore,     q1 + Q = 0 and
    
σ

π1
1

24
= =q

b
    

−Q
b4 2π

Let     q2  = induced charge on the outside surface of the hollow sphere. Since the hollow sphere is
uncharged, we require

    q1 +     q2  = 0 and
    
σ2 = q1

4π c2 =
    

Q
c4 2π
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19.60 Consider the field due to a single sheet and let   E+  and   E−  represent
the fields due to the positive and negative sheets. The field at any
distance from each sheet has a magnitude given by Equation 19.24:

      
E E+ −= = σ

2 0e

(a) To the left of the positive sheet,   E+  is directed toward the left and

  E−  toward the right and the net field over this region is   E =
  

0 .

(b) In the region between the sheets,   E+  and   E−  are both directed
toward the right and the net field is

  E =
    

σ
e0

to the right

(c) To the right of the negative sheet,   E+  and   E−  are again oppositely directed and   E =
  

0 .

19.61 The magnitude of the field due to the each sheet
given by Equation 19.24 is

      
E = σ

2 0e
 directed perpendicular to the sheet.

(a) In the region to the left of the pair of sheets, both
fields are directed toward the left and the net field is

  E =
    

σ
e0

to the left

(b) In the region between the sheets, the fields due to the individual sheets are oppositely directed
and the net field is

  E =
  

0

(c) In the region to the right of the pair of sheets, both are fields are directed toward the right and the
net field is

  E =
    

σ
e0

to the right
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19.62 The resultant field within the cavity is the superposition of
two fields, one   E+  due to a uniform sphere of positive
charge of radius     2a , and the other   E−  due to a sphere of
negative charge of radius   a centered within the cavity.

      

4
3

3

0

24
π ρ πr

r E
e







= + so

        
E

r
+ = =ρ ρr

3 30 0e
~

e

–
      

4
3

1
3

0
1
24

π ρ πr
r E

e







= − so

        
E r− = −( ) = −ρ ρr1

0
1

0
13 3e

~
e

Since     r a r= + 1,
      
E

r a
− = − −ρ( )

3 0e

        
E E E

r r a a
i j= + = − + = = ++ −

ρ ρ ρ ρ ρ
3 3 3 3

0
30 0 0 0 0e e e e e

a

Thus,  
    

Ex = 0

and
      

E
a

y = ρ
3 0e

 at all points within the cavity.

*19.63
        

E ⋅ dA∫ = E(4π r2 ) = qin

e0

(a) For r > R,
    
q Ar r dr

ARR

in = =∫ 2

0

2
5

4 4
5

( )π π

and E = 
      

AR
r

5

0
25e

(b) For r < R,
    
qin = Ar2

0

r

∫ (4πr2 )dr = 4π Ar5

5

and E = 
      

Ar3

05e
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ANSWERS TO EVEN NUMBERED PROBLEMS

  2. 514 kN

  4. (a)   2 16 10 5. × −  N  toward the other (b)   8 99 10 7. × −  N  away from the other

  6. (a) 82.2 nN (b) 2.19 Mm/s

  8. (a) 55.8 pN/C down (b) 102 nN/C  up

10. (a) (–599i  – 2 700j) N/C (b) (–3.00i  –  13.5j)  µN

12. (a)     1 29 104. ×   N/Cj (b)     − × −3 86 10 2. j N

14.   1 59 106. ×  N/C toward the rod

16. (a) 6.64 i MN/C (b) 24.1 i MN/C
(c) 6.40 i MN/C (d) 0.664 i MN/C ,  taking the axis of the ring as the x-axis

18.       −k xeλ0 0i/

20. (a)   2 00 10 10. × −  C (b)   1 41 10 10. × −  C (c)   5 89 10 11. × −  C

22. (a) –1/3 (b)     q q1 20 0< >,  

24. K/ed in the direction of motion

26. (a) 111 ns (b) 5.67 mm (c) (450 i + 102 j) km/s

28.   355 kN m C2⋅ /

30. (a) –55.6 nC (b) negative, with a spherically symmetric distribution

32. (a)   3 20. / MN m C2⋅ (b)   19 2. / MN m C2⋅
(c) The answer to (a) could change, but the answer to (b) would stay the same.

34. (a) 0 (b) 365 kN/C radially outward
(c) 1.46 MN/C outward (d) 649 kN/C radially outward
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36. (a) 913 nC (b) 0

38.   −2 48.  µC/m2

40. (a) 0 (b) 5 400 N/C outward (c) 540 N/C outward

42. (a)   248 nC/m2 (b)   496 nC/m2

44. (a) –λ,  +3λ (b)       3 2 0λ π/ e r   radially outward

46. (a) negative   1 06.  nC/m2 (b) –542 kC,     3 38 1024. ×  excess electrons

48. (a) 4.18 kN away from Earth
(b) The gravitational force is   4 77 1016. ×  times stronger and in the opposite direction

50. 0.205 µC

52.
    
Q L

k L L
k

i

e
=

−( )
2

54. 0.0729 a

56. (–1.36 i + 1.96 j)  kN/C

58. See the solution

60. (a) 0 (b)     σ /e0  to the right (c) 0

62. See the solution


