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CHAPTER 20
ANSWERS TO QUESTIONS

When one object B with electric charge is immersed in the electric field of another charge or charges
A, the system possesses electric potential energy. The energy can be measured by seeing how much
work the field does on the charge B as it moves to a reference location. We choose not to visualize A’s
effect on B as an action-at-a-distance, but as the result of a two-step process: Charge A creates electric
potential throughout the surrounding space. Then the potential acts on B to inject the system with
energy.

To move like charges together from an infinite separation, at which the potential energy of the system
of two charges is zero, requires work to be done on the system, hence energy is stored, and potential
energy is positive. As unlike charges move together from an infinite separation, energy is released, and
the potential energy of the set of charges becomes negative.

If there were a potential difference between two points on the conductor, the free electrons in the
conductor would move until the potential difference disappears.

A sharp point in a charged conductor would imply a large electric field in that region. An electric
discharge could most easily take place at that sharp point.

Cold, snowy, windy weather would provide the most favorable environment for charge separation
and possible car battery discharge.

Use a conductive box, to shield the equipment. Any stray electric field will cause charges on the outer
surface of the conductor to rearrange and cancel the stray field inside the volume it encloses.

Seventeen combinations:

Individual C, G, G
Parallel C1 + C2 + C3, C1 + Cz, Cl + C3, C2 + C3
-1 -1 -1
Series — Parallel 1 + L +Cs, 1 + 1 +Cy, 1 + 1 +C
G G G G C, G
1 1) 1 1Y) 1 1Y"
+—1 , +— , +—
Ci+C, Gy Ci+C G C+C; G
. 11 1Y (1 1Y (1 1Y (1 1)
Series — |, | ==, | ==, | =+=
G G G ¢ G C, G5 G G5

Nothing happens to the charge if the wires are disconnected. If the wires are connected to each other,
charges in the single conductor which now exists move between the wires and the plates until the
entire conductor is at a single potential and the capacitor is discharged.

Put a material with higher dielectric strength between the plates, or evacuate the space between the
plates. At very high voltages, you may want to cool off the plates or choose to make them of a different
chemically stable material, because atoms in the plates themselves can ionize, showing thermionic
emission under high electric fields.

Energy is proportional to voltage squared. It gets four times larger.
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The work you do to pull the plates apart becomes additional electric energy stored in the capacitor.
The charge is constant and the capacitance decreases but the potential difference increases to drive up

the potential energy %QAV. The electric field between the plates is constant in strength but fills more
volume as you pull the plates apart.

Make the plate separation very small with a thin sheet of material with high dielectric constant.

The material of the dielectric may be able to support a larger electric field than air, without breaking
down to pass a spark between the capacitor plates.

The parallel-connected capacitors store more energy, since they have higher equivalent capacitance.

2
The charge Q and voltage AV both double to make U = %C(AV)2 = % four times larger.
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(b)

20.2

20.3

Chapter 20
PROBLEM SOLUTIONS

Energy of the proton-field system is conserved as the proton moves from high to low potential,
which can be defined for this problem as moving from 120 V down to 0 V.

K; +U; + AEpe = Ky + Uy 0+qV+0=_mo,”+0

(1.60x107 C)(120 V)(1 \1/] C) = 2(1.67x107 kg)o,”

v, :‘ 1.52x10° m/s ‘

The electron will gain speed in moving the other way,

from V; =0to Vy =120 V: K; +U; + AEpee, = Ky + Uy
0+O+0:%mvez+qv

0=(911x107" kg)o,? +(~1.60x 107 C)(120J/C)

v, =‘ 6.49x10° m/s

AV =-140V and Q= -N e =—(6.02x102)(1.60x107%) =-9.63x10* C
W 4
aV= 5 50 W= QAV = (-9.63x10* C)(-14.0]/C) = 1.35MJ

For speeds larger than one-tenth the speed of light, %mvz gives noticeably wrong answers for

kinetic energy, so we use

K= mcz(l— 1) =(9.11x10™" kg)(3.00x10° m/s)z( -

J 1 |=747x1079]
/ 2 2 [ 2
V1-v% /¢ V1-0.400

Energy of the electron-field system is conserved during acceleration

K;+U; + AE

mech = Kf"'uf
0+qV; +0=7.47x10""° J+qV;

The change in potential is

—747x107° ] —7.47x107° ]

= = +46.7 kV
q -1.60x107" C

The positive answer means that the electron speeds up in moving toward higher potential.
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1 2
20.4 (@) (K+U,). =(K+U,),: 0+0=| ————-1|mc” —qV
et =ty )
— L 1]0511 MeV =20 keV
J1-92/c2
2
1 10391 50 1- 2 =0926
N1-v%/c? c

v=0.272c=| 81.6 Mm/s

(b) With %mvz :‘q‘V,
02
2

S(0511 MeV)( -

}: 20 keV

We find v=0.280c :‘ 83.9 Mm/s, too large by 2.91%

20.5 (a) We follow the path from (0, 0) to (20.0 cm, 0) to (20.0 cm, 50.0 cm).
AU = - (work done)
AU = - (work from origin to (20.0 cm, 0)) — (work from (20.0 cm, 0) to (20.0 cm, 50.0 cm))

Note that the last term is equal to 0 because the force is perpendicular to the displacement.

AU = ~(gE,)Ax =~(12.0x107° C)(250 V/m)(0.200 m)= ~6.00x10™* J

4 N
) av=2Y__ 6000 _ 5605/c-] 500V
q 12.0x10™ C e

_lavl _250x10°/C

20.6 E = 5 — =167x10°N/C= 167 MN/C
d  150x102m
1 1 _ 2 2 _
20.7 AU =—2m(o? -072)=-1(9.11x10™! kg)[(1.40 x10> m /s)" =(3.70x10° m /s ] =6.23x107% ]
AU = gAV: +6.23x 107 = (-1.60x107%) AV

AV :‘ -38.9 V  The origin is at higher potential. ‘
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Chapter 20

|AV|=Ed=(590x10° V/m)(0.0100 m) = 59.0 V

%mvfzz‘qAV‘:

vf :‘ 455%10° m/s

Arbitrarily choose V =0 at 0. Then at other points
V=-Ex and U,=QV =-QEx.
Between the endpoints of the motion,

(I<+us+ue)l.=(1<+us+ue)f

0+0+0=0+ 2 ktyp? = QFxpmay 50

At equilibrium,

XF, =-F,+F =0 or

So the equilibrium position is at x =

The block’s equation of motion is XF, =—kx+QE=m

Let x'=x- %, or

so the equation of motion becomes:

d*(x"+QE/ k)
dr?

7

—k(x' + QkE)—i- QE=m

This is the equation for simple harmonic motion a,.

with
The period of the motion is then

(K+Ug +U,), + AEeq = (K+ U, +U€)f

1
0+0+0— uymgxmay =0+ Ekxfnax — QEXmax

= 2(QE - ymg)

max k

%(9.11 x 10*31)vf2 = (1.60 x 10*19)(59.0)

k Q E
m —_—
v
I
x=0

Xmax = k

kx=QE.

i

dat?

QE
k 7

d*x’ (k)
i el 4
dt m

x=x"+

2

=—-x’,

w=+k/m.

T=22_ 2z "
® ﬂ\“k
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(a)

Chapter 20

g (899%10° N-m?/C?)(160x107° C) [
The potential at 1.00 cmis V; =k, += = =‘ 1.44x107 V ‘
r 1.00x107% m

g (8.99>< 10° N~m2/C2)(1.60 %1071 C)

The potential at 2.00 cmis V, =k, -+ - =0.719x 107 V
r 2.00x10™ m

Thus, the difference in potential between the two pointsis AV =V, -V, :‘ ~7.19%x1078 V ‘

0—19

The approach is the same as above except the charge is -1.60 x 1 C. This changes the sign of

all the answers, with the magnitudes remaining the same.

That is, the potential at 1.00 cm is| ~1.44x107 V |

The potential at 2.00 cm is — 0.719 x 107 V, 50 AV =V, - V; = 7.19x 10° V|

. . e
Since the charges are equal and placed symmetrically, 0 2.00 uC . 2.00 uC
X
| 0 o
S F=gE=0,| E=0
meer x=-0800m 0 x=0.800m
-6
v =2k, =2(89910° N-m? / ¢2)| 22X10_C
r 0.800 m
V=450x10* V= 45.0kV
E,.= ke;h + _ kel >=0 becomes E.= ke(ﬂg + i 5 ) =0
X (x=2.00) x°  (x-=2.00)
Dividing by k,, 2gx? = g(x —=2.00>  x* +4.00x —4.00 = 0
Therefore E =0 when xX= —400+ \26'0 160 [ 483 m

(Note that the positive root does not correspond to a physically valid situation.)

yoke, kb _, or V=ke(+‘7—2‘7 ):0
X 2.00—-x x 200-x
Again solving for x, 2gx = q(2.00 — x)
For0<x<2.00 V=0 when x=| 0.667 m |
q _ =29
and = Forx <0 x=| —2.00 m
x| |2-x]
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_ qi
20.13 V= 2"71’ /4\@_

4.00
-1 1 1 om \ g
v =(899x10°)(7.00 10—6)[ - + ] /
0.0100 0.0100 ~ 0.0387 /s )

<—2.00 cm —>T

V:‘ -1.10x10” V=-11.0 MV ‘

2014 (a) U=leDf2_ ~(8.99x10%)(1.60 10‘19)2

00529 %107 =-4.35x107"® J=| —27.2 eV
r . X |

—(8.99 x 109)(1.60 x 10—19)2

(b) U= kel _ :‘ ~6.80 eV ‘
r 22(0.0529 x 10—9)
k —ke* [
© u=kmm_ ke
v oo |
1 fi,% 93
20.15 U,=q,Vi+qg,Vo +qg,Vs = —— A a2 A5
e = YaV1t4aVo T44V3 q4(4ﬂ'60)(1’1 -
1 1 1

2
u€=(10.0><10‘6 C) (8.99><1o9 N-m?/ Cz) + +—
0.600m 0.150 m (0,600 m)* +(0.150 m)’

U,= 895]

e

y
p 4 (0,0.500 m)
2.00 uC 200 4uC 4
@ @
-1.00m,0) |  (1.00m,0)

2016 () V= kel Kel2 Z(ke‘l)
1’1 7"2 r

(8.99 %x10° N-m? ’Cz)(z.oo %1076 C)
V=2
1/(1.00 m)* +(0.500 m)?

V=322x10* V= 322kV

(b) U=qV= (—3.00 x107° C)(3.22 x10* (]:) = —9.65x1072 ] ‘
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20.17 U=U+U,+Uz+Uy @ @
U=0+ Uy + (U +Uss) +(Upy +Upy +Usy) s
2 2 2
U=0+keQ+kEQ(L+1J+keQ(1+L+1) S
R B I L D———
2 2
=" (4 + 2) _ sk
s A2 s
An alternate way to get the term (4 +2/ \/E) is to recognize that there are 4 side pairs and 2 face
diagonal pairs.

*20.18 (a) Each charge separately creates positive potential everywhere. The total potential produced by the
three charges together is then the sum of three positive terms. There is | no point | located at a
finite distance from the charges, at which this total potential is zero.

2
(b) V:k“q+k€q: keq
a a a
20.19  Consider the two spheres as a system.

(a) Conservation of momentum: 0 = myo; i+ myv,(—1i) or

) ke (— 1 1
By conservation of energy, 0= e(Zl)qz = 5’”1012 + E77121)22 +
k k 1 1 m;“v
and g2 _ Kei92 _ 7m1012 L
7’1 + 7’2 d 2 2 m2

2myk, 0192

) \/ml(ml +mz)[71i72 _Lli]

U

k, (—’11 ) 1

n + 16}

2(0.700 kg)(8.99x10° N-m?/ C?)(2x107° C)(3x10°° C} ( 1

-]

(0.100 kg)(0.800 kg)
o Mo _ 0100 kg(10.8m/s) _ 155 m/s
My 0.700 kg

1)=

8x10° m 1.00m

Moy
my

10.8 m/s

If the spheres are metal, electrons will move around on them with negligible energy loss to place

the centers of excess charge on the insides of the spheres. Then just before they touch, the effective
distance between charges will be less than 71+, and the spheres will really be moving

faster than calculated in (a) |.
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*20.20 Consider the two spheres as a system.

Conservation of momentum:

(a)

or

By conservation of energy,

and

Chapter

20

0 = mlvli + m202 (_ i)

kemds _kemdp _ 1 2

n+n

d 2 2

%1

_2myk g1, ( 1 1)

ml(ml +m2) n +1’2 —E

o

m o, - 2mk,q19, 1
"y 1 \sz(m1+m2) nt+n d

If the spheres are metal, electrons will move around on them with negligible energy loss to place

the centers of excess charge on the insides of the spheres. Then just before they touch, the effective
distance between charges will be less than r{ +r, and the spheres will really be moving

faster than calculated in (a) |.

*20.21 Using conservation of energy for the alpha particle-nucleus system,
we have Ke+Up=K; +U;
k
But U, = eJafgold
hi
and rl = co
Thus, u;=0
Also K¢=0 (v =0 at turning point),
SO uf =K;
k
or eangold _ %mavaz
Tmin
2
2k Golgora 2(8:99%10° N-m?/C?)(2)(79)(1.60x 107 C) w
Tmin = 7 = 5 =2.74x107"" m=
My Vq (6.64 x107% kg)(Z.OO %107 m/s)

274 fm

113



*20.22

20.23

(b)

114

Chapter 20

In an empty universe, the 20-nC charge can be placed at its location with no energy investment.
At a distance of 4 cm, it creates a potential

kg, (899x10° N-m?/C?)(20x107 C)
o 0.04 m

v = =450 kV

To place the 10-nC charge there we must put in energy
Uy = ,V; = (10107 C)(4.5x10° V)= 450x107 J

Next, to bring up the —20-nC charge requires energy

2 -9 -9
Uys +Uys = 43Vs +q3Vi = g3(Va + V1) =20 x 107 C[8.89><109 N-m ][10“0 € _20x10 CJ

Cc? 0.04 m 0.08 m

=-450x107 J-450x107 ]

The total energy of the three charges is

Uy +Ups +Uy3 = —4.50x107° |

The three fixed charges create this potential at the location where the fourth is released:

V=\/1+v2+V3=(8.99><109N-mz/cz)[wm2 008 003 005
047 +0. ‘ '

20x1077 10102 20x107°
- C/m

V=3.00x10°V

Energy of the system of four charged objects is conserved as the fourth charge flies away:

(% mo? + qV)i = (% mo? + qV)f

0+(40x10 C)(3.00x10° V) = 1(2.00x 107 kg)o? +0

1
2

12(1.20x 107
(13]): 3.46x10* m/s
| 2x107° kg

V=a+bx=10.0 V+(-7.00 V/m)x

Atx =0, V= 100V

Atx=3.00m, V= -110V

Atx=6.00m, V= 320V

E= —Z—‘x/ =-b=—(-7.00 V/m)= 7.00N/C inthe +x direction




*20.24

20.25

20.26

2027 (a) [a]:[’l]zc.(l): C

(b) Vzke-"df=kej‘/ljx=keai

V =>5x- 3x2y + 2y22

Evaluate E at (1,0 -2)

g2V
ox
Ey:_?y/: +3x% - 272
A%
E,=-—= —4yz =-4(0)(-2)=0

= (B BB =5 ¢S 0 -

AV:VZR_VO= “ kEQ

\R? +(2R)

(a) Forr<R V=k€Q
R
g =-4V
dr
(b) Forr=R V:@
r
v
dr

_kQ_kQ

2

N

X m \m

xdx

0

d+x

)

Chapter 20

—5+6xy |=-5+6(1)(0) =-5

= 3(1)* -2(-2)*=-5

7.07 N/C

—0.533ke—Q
R

QL )-

|«d>
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20.28 v:jkedq:kejc axdx

r b2 +(L/2-x)

Let z=§—x.
L

Then x=5—z, and dx=-dz

L/2—z)(-d |
V:kea'[(/‘ Z)( Z):—kfaL'[ 4z + ko “‘Zdz =—k@aLln(z+x/zz+b2)+kea\e’zz+b2

VB + 22 2 B2 B2 2

koL [ L L

v=-tli (L/z-x)+\;’(L/z-x)2+b2]

+kea\/(L/2—x)2 +b2‘

0 0

koL >L/2—L+\;§(L/2)2+b2 e T 3
V=-=""In J +k,oA[(L/2-L) +b° —/(L/2)"+b
2| L/2+4(L/2)%+0? N ) Vi2) ]
b2 +(12/4)-L/2
Ve _keaLln\ "'( /) /
2 \/b2+(L2/4)+L/2
20.29 v=[dv= ! jﬂ

drey? v

All bits of charge are at the same distance from O,

_ -6
So y=_1 (Q)=(8.99><109 N-m?/ Q)| 2220 C s my
dreg\ R 0.140m/ 7
*20.30 Substituting given values into V = M,

r

_(8.99%10° N-m?/C?)q
0.300 m

750 % 10° vV

Substituting g=2.50x10"" C,

250x107 C

= Te0x10 P /e = 1.56x10'? electrons
.60 x e
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*2031 (a) E:\ 0

8.99x10%)(26.0x107%) —
V=M=( A )=’ 1.67MV‘
R 0.140
9 -6
o E- ke _ (8.99><10 )(26.20><10 ) Errevor
r (0.200)
9 —6
ok (8.99><10 )(26.0><10 ) NERTIY,
R 0.200
9 -6
o EJL;?: (8.99><10 )(26.20><10 )= TN/ away
R (0.140)
vk _ 167 mv
R
*20.32 (a) Both spheres must be at the same potential according to Koy _ ko
n o]
where also ¢ +q,=120x107° C
Then 01 =01 /1

Gory /7y +G5 =1.20x107° C

-6
_ 120X € 0.300x107° C on the smaller sphere

12 " 1+6cm/2cm

7 =120x107° C-0.300x10° C=0.900x107° C

ke (8.99x10° N-m?/C?)(0.900x 107 C

5 )= 1.35x10° V
7'1 6)(107 m |

(b) Outside the larger sphere,

B ooketia Vi 1.35x10° V s
! r12 n 0.06 m

2.25x10° V/m away

Outside the smaller sphere,

5
B, = X0V o 6744100 V/m away

0.02m

The smaller sphere carries less charge but creates a much stronger electric field than the larger
sphere.
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2033 (a) Q=CAV= (4.00 x107° F)(12.0 V)=4.80x107° C= 48.0 uC

(b) Q=CAV=(400x10" F)(1.50 V)=6.00x10" C= 6.00 uC

—6
2034 (a) c:%:%:momo-ﬁ:: 1.00 uF
-6
(b) AVZQ:M: 100 V
C 100x10°°F
2035 (a) AV=Ed
- 200V 411kv/m
180x10° m ']
b E=Z
€0

0':(1.11><104 N/C)(s.85><10*12 CZ/N~m2): 98.3 nC/m?

8.85x1072 C2 / N-m2)(7.60 cm2)(1.00 m / 100 cm)?
(c) c:eoAz( ] . ] S s pF
1.80x10™° m

Q= (200 V)(3.74x107 F)= 747 pC

*20.36 =K.
r
(4.80x10* N/C)(0.210 m)?
q= s =0.240 uC
(8.99x10° N-m?/C?)
—6
(a) G=i=w= 1.33 uC/m?

A~ 47(0.120)

(b) C=dmeyr =47(8.85x10712)(0.120) = 13.3 pF
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20.38
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(a)

Chapter 20

With 6 = 7, the plates are out of mesh and the overlap
area is zero. With 0 = 0, the overlap area is that of a semi-

circle, 7R?/2. By proportion, the effective area of a

single sheet of charge is (7 —6)R? /2.

When there are two plates in each comb, the number of
adjoining sheets of positive and negative charge is 3, as
shown in the sketch. When there are N plates on each
comb, the number of parallel capacitors is 2N — 1 and the

total capacitance is

EoA

effective _

(2N ~1)ey(m~6)R? /2 _| (2N -1)ey(z-6)R

C=(2N-1)

!

distance d/2

50.0

d

) = 3.02kV

C— - = 2.68 nF
2k, ln(b) 2(8.99 109)In(7'27) ‘ ‘
a 2.58
Method 1: AV = 2keﬂ,ln(b)
a
-6
A=q/l = 810x107°C _ 4 o 1077 C/m
50.0 m
AV = 2(8.99x10°)(1.62 % 10_7)111(7'27
2.58

-6

Method 2: av= 8 BI0AC Fao kv
C 268x10
ZF, =0: Tcos@—-mg=0
XF, =0: Tsin6—-Eq=0
Dividing, tan @ = Eq
mg
SO E="8 tang
q
and AV =Ed= mgdtan
q
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(a)

(c)

Chapter 20

The electric field created by the charges points radially
outward in the space between radius 4 and radius b. To find
it, use a spherical Gaussian surface of radius r. The
magnitude of the field must be uniform over this surface, so

fEdA = Tn
o
gives E(47r72) _L
o
Q Q
E = 4 5 = k(? —2
Tegr r

Now to find the difference in electric potential between the
conducting spheres, we use

b
Vb—Vaz—jaE~ds

along a radius line

b
bk P 11 1 1
V, -V, =— L:u rezQ (cos0) dr = *Q | = keQ( - a) = —k,_,Q(a - ) =—k
a

Va - Vb = +keQ(b _ba)

a
Then the capacitance is C= Q _ _a
Vu - Vb ke (b - 11)
Asb— o, b—a—b, to give C—>a—b: £
kb |k,
with k, = 1 ! , this is C =4neya, in agreement with Equation 20.20.
ey

Capacitors in parallel add. Thus, the equivalent capacitor has a value of

Coy = Cy+Cy =5.00 uF +12.0 uF =| 17.0 uF

The potential difference across each branch is the same and equal to the voltage of the battery.

AV =900V

Qs = CAV = (5.00 uF)(9.00 V) = | 45.0 uC

and Q= CAV =(12.0 uF)(9.00 V) = 108 uC



20.42

20.43

(a)

(c)

(a)

Chapter 20

In series capacitors add as

L_1 1 _ 1 1
C, C C, 500uF 12.0uF

and C,, = 3.53 uF

The charge on the equivalent capacitor is

Qpg = CpyAV = (3.53 uF)(9.00 V) = 31.8 uC

Each of the series capacitors has this same charge on it.

So Q,=0Q,= 31.8uC

The potential difference across each is

Ay = 3L8UC _Fyasy
C,  5.00 uF
and AV, =& 38UC [ sy
C, 120uF
1 1 1
e
C. 150 3.0 -
15.0 3.00
C, =2.50 uF ol uE uF _| I_o
6.00 20.0
C, =250 + 6.00 = 8.50 uF | HE uF
1
1 1\
Cpy = + = 5.96 uF ||
77850 uF ' 20.0 uF A
uF
S " M
Q = CAV = (5.96 uF)(15.0 V) = ‘ 89.5 uC ‘ on 20.0 4F 600 | 200
uF uF
11
1A
av=8._8951C _, 47y
C~ 20.0 uF o———
8.50 20.0
15.0 - 4.47 = 10.53 V WFuF
Q = CAV = (6.00 uF)(10.53 V) =| 63.2 C |on 6.00 uF
89.5-63.2=| 26.3 uC |on 15.0 uF and 3.00 uF
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20.44 C,=C+C,
and 1_1 + 1
G G G
C,-C +C
Substitute C, = Cp -Gy 1_1 + 1 _p 1T
G G G -G cl(cp— cl)
Simplifying, C* = GiC,+C,Cs =0
C,+.,C,2-4C,C s
__PTNTP ps |1 12
and C = 7 = ECP +\/ZCP —CPCs

where the positive sign was arbitrarily chosen (choosing the negative sign gives the same values
for the capacitances, with the names reversed).

Then, from G =C-G

1 1~ 2
C, = ECP_\/ZCP —CPCS

20.45 c- & 50 6.00x 1076 =2 i i
AV 20.0 L
AV ~C, C,
and Q= 120 uC A I
S1 52
Q=120 uC-Q,
and AV = g: M — %
C G C,
120-Q, _ O
6.00  3.00
(3.00)(120 - Q,) = (6.00)Q,
360 [ ]
Q= 900~ 40.0 uC Q; =120 uC - 40.0 uC = 80.0 uC
-1
1 1
*20.46 C, = ( + ) =2.92 uF
5.00 7.00

Cp=2.92+4.00 +6.00 = 12.9 uF a
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*20.47 : Co Co
v v

Col C 1 c+¢

|
vo]| o j—
Co
According to the hint, this combination of capacitors is equivalent to (L_l IC_J) .
X Y

Then 11 1 1 _C+G+6+C+G
C G C+C (G CO(C+CO)

CoC+Cy2 =2C? +3C,C
2C%+2C,C-Cy2 =0

~2Cy + (4G, +4(2C,?)
4

C=

Only the positive root is physical

Coy
C=7°(\s‘3 -1)

2048 (a) U=_C(AV)’ =2(3.00 uF)(12.0 V)’ = 216 4]

(b) U=_C(AV)* = (3.00 uF)(6.00 V)’ = 54.0 ]

*20.49 U= %CAVZ

av= 2o 280Dy g7y
V'€ \30x10° C/V
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20.50

(a)

20.51

*20.52 (a)

20.53
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_1 2
U=_C(AV)
The circuit diagram is shown at the right.

C, =Cy +C, =25.0 uF +5.00 uF = 30.0 uF

1 — 2
U =1(30.0x107°)(100)* = 0.150]

1 -1
=L+ l) oL =417 uF
c, G 25.0 4uF * 5.00 uF

1 2
u=_1c(av)

AV = /&Z 3‘&50)6: 268 V
V' C V417x10"

W=U-=[Fdx
w podU_d(Q)_dafQ) <
dx dx{2C) dx|2e)A 2e4A

Q=CAV = (150 x 10712 F)(10 %103 V) = 1.50x107 C

1 2
U=_C(AV)

s -6
AV = E:;z(zsox—@upz 1.83x10° V
VC \150x107* F

_U_1_ g
u—v—EEOE

1.00x 1077

= 5(8:85x10712)(3000)*

1000 L

m3

V= 251x10" m? =(2.51><10*3 m3)(

)

251L

J_lOO v |z

25.0 5.00
— MF ju— MF
|1
L]
25.0 uF
AV =
5.00 iF




20.54

20.55

*20.56

20.57

(a)

(b)

Chapter 20

kA 210(8.85% 1072 F/m)(1.75% 10~ m?)

C -5
d 4.00x107° m
AVpax = Emaxdl = (60.0x10° V/m)(4.00x 107 m) =
Qmax = CAVmax'
but AVmax = Emaxd
Also, C= KA
d
Thus, Qo = "ESA (Emaxtl) = K60 A ma

With air between the plates, k¥ =1.00

and Eoox =3.00x10° V/m.

Therefore,

=8.13x101 F= 813 pF

240 kV

With polystyrene between the plates, k= 2.56 and E, ., = 24.0x10° V/m.

Qmnax = KE0AE max =2.56(8.85x10™% F/m)(5.00x10™* m?)(24.0x10° V/m) =

_ kA
d

C

or 95.0%10~7 =

3.70(8.85x 107'2)(0.0700) ¢

0.0250x1073

0= 1.04m

K=23.00, Ep. =2.00x108 V/m=AV, .,

For C= KA

=0250x 10°F,

4 Cd _CAVy,

(0.250 107 )(4000)

Qumax = KEQAE iy = (8.85 x10712 F/ m)(5.00>< 1074 mz)(S.OO x10° V/ m) =

13.3 nC

272 nC

= 0.188 m?

Tke)  K0Emax 3.00(8.85x 1012)(2.00 x 107
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*20.58

*20.59

*20.60

126

(a)

(c)

(a)

Chapter 20

Originally, C= €4 = _Q
d (AV),
A(AV).
The charge is the same before and after immersion, with value Q = EO(d)’.

(8:85x1072 C*/N-m?)(25.0x10™* m?)(250 V)

= = 369 pC
(150x107 m) P
Finally,
c KA Q B 80.0(8.85x10™ C*/N-m?)(25.0x10™* m?) iprrye
md (av), f (1.50x107 m)
(aV); = Qd _egAAV)d _(AV); 250V [, oy
KepA KegAd K 80.0

2

Originally, u; = EC(AV)I'2 = S\
2 2d
. AAV)? g A(AV) 2
Finally, U:=LCAAV) 2 = K€ i _%o i
£ =251 )f 2dx? 2dx

2

So, AU U1~ —E0ABY) 2= 1)
for 2dK
(8:85x107 C*/N-m?)(25.0x10™* m?)(250 V)*(79.0) [
AU =- . = —455n]
2(1.50 10 m)(80.0) L
Epax =3-00x10° V/m = kETQ = ka(l) = Vmax(l)
r r r r
Vimax = Emax? = 3.00x10°(0.150) = 450 KV |
kQmax _ p {Or kQmax _ / } 0 - Ema® _ 3.00x10°00.1502 o~ e
1’2 — “max r max max ke 8.99 x 109 .

The energy transferred is Hgy = %QAV = %(50.0 C)(l.OO x 108 V) =250x10% ]

and 1% of this (or AE;, =2.50x10” J) is absorbed by the tree. If m is the amount of water boiled
away,

then AE;n = m(4186 ]/ kg -°C)(100 °C—30.0 °C) +m(2.26 x 10° ] /kg) =250 x 107 ]

giving m= 9.79 kg




*20.61

*20.62

*20.63

(a)

Chapter 20

From Example 20.5, the potential at the center of the
ring is V;=k,Q/R and the potential at an infinite R
distance from the ring is Vf =0. Thus, the initial and l Q x
—

final potential energies of the point charge-ring system ‘ v
are: Uniformly

' Q2 charged ring

U =0V, = e
1 Q 1 R

and Uf = QVf =0

From conservation of energy,

Kf +Uf = Ki +Ul-
2
or 1 Mo +0=0+ 58
2 R
/ 2
giving vf = \‘%

To make a spark 5 mm long in dry air between flat metal plates requires potential difference

AV:Ed:(3><106 V/m)(5><10‘3 m)=1.5><104 vV ~10* V

The area of your skin is perhaps 1.5 m?, so model your body as a sphere with this surface area. Its
radius is given by 1.5 m? = 47+%, r=0.35 m. We require that you are at the potential found in

part (a):
vk _Vr_ 15x10* V(0.35m)( J )(N~m)
r 1 k., 899x10° N-m?/C2\V-CA ]
q=5.8><10*7c‘ ~107° c‘
Q
W =[Vdg
0
where V= M;
R
k,Q*

Therefore, W =
2R
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20.65
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(a)

Chapter 20

The original kinetic energy of the particle is

K=2mo? = (2107 kg)(2x10° m/s)2 = 4.00x107*]

Q _ 1000 uC

= =100 V
C  10uF

The potential difference across the capacitoris AV =

For the particle to reach the negative plate, the particle-capacitor system would need energy

U =gAV =(-3x10° C)(-100 V) =3.00x10™* J

Since its original kinetic energy is greater than this, the particle will reach the negative plate |

As the particle moves, the system keeps constant total energy

. 4 -6 1 -16),, 2
(KU)yy s prate = (K+U)y e’ 4.00x107 J+(-3x107° C)(+100 V) = 1(2x 107 Jo 2 +0

vf—\

2(1.00x107*
(16])= 1.00x10° m/s
2x1071° kg

We use Equation 20.29 to find the potential energy of the capacitor. As we will see, the potential
difference AV changes as the dielectric is withdrawn. The initial and final energies are

QZ 1 Q2
w-i(g) e uefE)

2
But the initial capacitance (with the dielectric) is C; = KCf. Therefore, Uy = ;K[%]

1

Since the work done by the external force in removing the dielectric equals the change in potential
energy, we have

o2 (2

1 1

To express this relation in terms of potential difference AV, we substitute Q=C;(AV;), and
evaluate:

1 2 1 — 2 -5
W =2 Ci(AV;) (x =1) = 5(2.00x10 F)(100 V)*(5.00-1.00) = 4.00x107 J

The positive result confirms that the final energy of the capacitor is greater than the initial energy.
The extra energy comes from the work done on the system by the external force that pulled out
the dielectric.

Q

The final potential difference across the capacitor is AV = =.

f

Substituting Cy = S and Q=Ci(AV;) gives AV, =xAV; =5.00(100 V)= 500 V
K

Even though the capacitor is isolated and its charge remains constant, the potential difference
across the plates does increase in this case.
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*20.66 (a) Cz%o[(f—x)ﬂﬂcﬂx]z %0[02+12x(1<—1)]

1 2 |1 eAV)? ) 2
(b) U= C(AV) = 2(51 [0%+ 0x(c - 1)]
2
(c) F= —(iliu)i = %E(l{ —1) to the left | (out of the capacitor)
x

2000)?(8.85 x 10712)(0.0500)(4.50 — 1
(d) F:( ) ( )( X )= 1.55%107° N
2(2.00 X 10‘3)

*20.67 The portion of the capacitor nearly filled by metal has
capacitance keg(Lx)/d — oo
and stored energy Q?/2C — 0.

The unfilled portion has
capacitance el(0—x)/d

The charge on this portion is Q=0-x)Qy /2

(a) The stored energy is

@ _[-0Q /0 | Ql(e-x)d
T 2C 2ep0(0-x)/d | 2ep0®

(b) F:_dll__d(Q02(ﬂ_x)dJ:+ Qozd

dx — dx|  2ey0° 2e00?
Qy’d
F= 5 0 5 to the right | (into the capacitor)
€0
2
(c) Stress:i: Qo 7
ﬂd 2600
2 2 5
Q) u=lepr=le ) —le| L | o
( ) " ZEO 260 €p 260 EOBZ 26094
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*20.68

*20.69

*20.70
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Chapter 20

By symmetry, the potential difference across 3C is zero, so the circuit reduces to

(1 1Y s [
& (2(: 4C) N
I —
C 2C C 2C
s ads - = o
2C 4C
Il - L
c oc C 2C

. 1.00 gal 1.00 m® 7
Gasoline: 126000 Bt 1)(1054 J/ Bt =5.25x%x10 k
( u/gal)(1054 ]/ u)[3.786><10‘3 m3 )( 670 kg ) J/kg

(12.0J/C)(100 C/s)(3600 s)
16.0 kg

Battery: =2.70x10° J/kg

1 2
5(0.100 F)(12.0 V)
0.100 kg

Capacitor: =72.0]/kg

Gasoline has 194 times the specific energy content of the battery and 727000 times that of the capacitor

The initial charge on the larger capacitor is
Q=CAV =10 uF(15 V) =150 uC

An additional charge g is pushed through the 50-V battery, giving the smaller capacitor charge g
and the larger charge 150 uC +g4.

Then 50v=_9_10HC+q
5uF 10 uF

500 uC =24 +150 uC+q

g=117 uC
So across the 5-uF capacitor Av=1- N7 uc =‘ 233V ‘
C 5 uF
Across the 10-uF capacitor AV = W =/ 267V
‘L[ I
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*20.71 Let C = the capacitance of an individual capacitor, and C; represent the equivalent capacitance of
the group in series. While being charged in parallel, each capacitor receives charge

Q = CAVpyqrge = (500 10~ F)(800 V) =0.400 C

While being discharged in series,

Q Q 0.400 C . .
AVy; === = = 8.00 kV | (or 10 times the original voltage
discharge C, C/10 500x10° F ( gl A% g )
B
*20.72 (a) V-V, = —JA E-ds and the field at distance r from a uniformly - _ ),

charged rod (where r > radius of charged rod) is

A _2kA ‘

- 2reyr r

In this case, the field between the central wire and the coaxial
cylinder is directed perpendicular to the line of charge so that

VB—VA:—jrthr:Zk Aln| e |,
Tq r ¢ Tb
or AV = 2ke,11n(rﬂ)

Ty

(b) From part (a), when the outer cylinder is considered to be at zero potential, the potential at a
distance r from the axis is

V =2k,A 1n(’a)
.

The field at r is given by

A% T T 2k, A
E=-2" = o a| L |[-To|=2e
or ¢ (ru)( rZ) 7

But, from part (a), 2k,A = L
In(r,/r,)
Therefore, E= AV(l)
In(r, /n,)\r
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*20.73 2rrlE = Tin
€o

SO E= A
2r T’EO

AV=-[E-dr=[" A g Ao
n n 2mwreg 2rey \1h

A

max =E

max/inner
2 e 0

AV =(1.20x10° V/m}(0.100x 10 m)ln((;)-;)%)

AV,

max

:‘ 579V‘

*20.74 (a) From Problem 72,

p-_ AV 1

In(r,/n)r

We require just outside the central wire

3
5.50%10° V/m = 20-0x10" V (1)
)

" In(0.850 m/1, )

or (110 m™)7, In 0850m )_,
T

We solve by homing in on the required value

1, (m) 0.0100 | 0.00100 | 0.00150 | 0.00145 | 0.00143 | 0.00142

(110 mfl)rb 1n(0.850m) 4.89 0.740 1.05 1.017 1.005 0.999
Ty

Thus, to three significant figures,

n, = 142 mm

(b) Atr,
= S0.0kV ( ! ): 9.20 kV/m ‘
In(0.850 m/0.00142 m)\ 0.850 m
2
38)(54)(1.60 x 107"
20.75 U=qv=k 112 =(899x 109)( )4 ) =4.04x107" ] = 253 MeV

"o (5.50 +6.20)x 107"
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*20.76  (a) V:M_M: keq (1,2 _rl)

(c)

n 6}

From the figure, for r >>a,

Then

nn

\% EM2QCOSO =

E =——
T or

_dV | 2k;pcost

T3

In spherical coordinates, the 6 component of the gradient is —

Therefore,

For r>>a,

and

and

n

9=

1, —1 =2acos0.

k,pcos6

16} 7’2

1’3

1(&\/) _| k,psin®
r\ d0

2k
E(0)==3"

r

E,(90°)=0,

Eg(0°)=0

Ey(90°) = X

1’3

These results are| reasonable for r >>a

However, for

and

r— 0, E(0) — . This is unreasonable,

V:

(2 +y2)"?

k.py

X

E =

v __ Bkpxy

A ERE

X"ty

r

Y

3y (x2+y2)5/2

1(8

20

)

. Their directions are as shown in Figure 20.8 (c).

since 7 is not much greater than a if it is 0.
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*20.77 (a) Co= % = —A%
0

When the dielectric is inserted at constant voltage,

C= KCO =£,
AV,
U, = co(szo)Z

and — =K

The extra energy comes from (part of the) electrical work done by the battery in separating the
extra charge.

(b) Q =Co AV
and Q = CAVO = KCO AVO
S0 Q/Qy=x
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14.

16.

18.

20.

22,

24.

26.

28.

30.

32.

34.

36.

Chapter 20

ANSWERS TO EVEN NUMBERED PROBLEMS

1.35 MJ
(a) 81.6Mm/s

1.67 MN/C
(a) 59.0V

(a) 1.44x107V
() -144x107 V,+7.19x10°8 v

(a) —4.83m

(a) —272eV

(a) 322kV

(b)

(b)

(b)

(b)
(b)

(b)

83.9 Mm/s, too large by 2.91%

455%10° m/s

—719%x108 Vv

0.667 m and

—6.80 eV

—9.65%1072 ]

(a) no point at a finite distance from the charges

-2.00 m

1

@ v = | 2mpk, g1, ( 1 1] v :\ 2mk, 19,

\ my(my +my)\ 1 +1, d
(b) Faster than calculated in (a)

(a) —-45.04J
(@ 0

-0.553 k,Q/R

o (| 100
2 \/(L2/4)+b2+L/2

1.56 x10'? electrons removed

(a) 135kV

(b)

(b)

my(my +my)

34.6 km/s

k.Q/1*

(

41 + 10}

1

d

|

(c)

(b)

2k,q/a

(b) 2.25MV/m away for the large sphere and 6.74MV/m away for the small sphere

(a) 1.00 uF

(a) 1.33 uC/m?

(b)

(b)

100 V

13.3 pF



38.

40.

42.

44.

46.

48.

50.

52.

54.

56.

58.

60.

62.

64.

66.

68.

70.

72.

74.

76.
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(a) 2.68nF
See the solution

(a) 3.53 uF

1 1~2
3G 3G —C,C

12.9 uF

(a) 216 4J

(b)

(b)

(b)

Chapter 20

3.02kV

6.35V and 265V (¢) 31.8 uC on each

54.0 uJ

(a) stored energy =0.150]. See solution for circuit diagram.
(b) potential difference = 268 V. See solution for circuit diagram.

(a) 1.50 uC

(a) 81.3pF

1.04 m

(@) 369 pC

9.79 kg

(@) ~10*V

Yes; 1.00x10° m/s

(a) %O(fz + 0x(x — 1))

eo(AV)?

(c) 0(k —1) to the left

233V, 26.7V

See the solution

(a) 1.42mm

(a) See the solution

() V= kepy(xz + yz)_3/2

(b)

(b)

(b)

(b)

(b)

(d)

(b)

(b)

1.83 kV

240 kV

118 pF, 3.12V () -45.5n]
~10°C or ~10°C

co(aV)* (02 + 0x(c - 1))

1.55x10™2 N to the left

9.20kV/m

E, =2k,pcos@/r® Ep=k,psin®/r>;yes; no

E =3k, pxy i(x2 + yz)—s/z + kep(Zyz - xz)j(xz + yz)

-5/2



