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ANSWERS TO QUESTIONS

Q20.1 When one object  B  with electric charge is immersed in the electric field of another charge or charges
A,  the system possesses electric potential energy.  The energy can be measured by seeing how much
work the field does on the charge B  as it moves to a reference location.  We choose not to visualize A’s
effect on B as an action-at-a-distance, but as the result of a two-step process:  Charge A creates electric
potential throughout the surrounding space.  Then the potential acts on B to inject the system with
energy.

Q20.2 To move like charges together from an infinite separation, at which the potential energy of the system
of two charges is zero, requires work to be done on the system, hence energy is  stored, and potential
energy is positive. As unlike charges move together from an infinite separation, energy is released, and
the potential energy of the set of charges becomes negative.

Q20.3 If there were a potential difference between two points on the conductor, the free electrons in the
conductor would move until the potential difference disappears.

Q20.4 A sharp point in a charged conductor would imply a large electric field in that region. An electric
discharge could most easily take place at that sharp point.

Q20.5 Cold, snowy, windy weather would provide the most favorable environment for charge separation
and possible car battery discharge.

Q20.6 Use a conductive box, to shield the equipment. Any stray electric field will cause charges on the outer
surface of the conductor to rearrange and cancel the stray field inside the volume it encloses.

Q20.7 Seventeen combinations:

Individual     C C C1 2 3,  ,  

Parallel     C C C C C C C C C1 2 3 1 2 1 3 2 3+ + + + +,   ,  ,  

Series – Parallel  
    

1 1

1 2

1

3C C
C+






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
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Q20.8 Nothing happens to the charge if the wires are disconnected. If the wires are connected to each other,
charges in the single conductor which now exists move between the wires and the plates until the
entire conductor is at a single potential and the capacitor is discharged.

Q20.9 Put a material with higher dielectric strength between the plates, or evacuate the space between the
plates. At very high voltages, you may want to cool off the plates or choose to make them of a different
chemically stable material, because atoms in the plates themselves can ionize, showing thermionic
emission under high electric fields.

Q20.10 Energy is proportional to voltage squared. It gets four times larger.
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Q20.11 The work you do to pull the plates apart becomes additional electric energy stored in the capacitor.
The charge is constant and the capacitance decreases but the potential difference increases to drive up
the potential energy 

    
1
2

Q V∆ . The electric field between the plates is constant in strength but fills more
volume as you pull the plates apart.

Q20.12 Make the plate separation very small with a thin sheet of material with high dielectric constant.

Q20.13 The material of the dielectric may be able to support a larger electric field than air, without breaking
down to pass a spark between the capacitor plates.

Q20.14 The parallel-connected capacitors store more energy, since they have higher equivalent capacitance.

Q20.15 The charge Q and voltage     ∆V   both double to make 
    
U C V

Q
C

= ( ) =1
2

2
2

2
∆  four times larger.
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PROBLEM SOLUTIONS

20.1 (a) Energy of the proton-field system is conserved as the proton moves from high to low potential,
which can be defined for this problem as moving from 120 V down to 0 V.

    
K U E K Ui i f f+ + = +∆ mech     

0 0 01
2

2+ + = +qV mvp

    
1 60 10 120

1
1 67 1019 1

2
27 2. .×( )( )

⋅




 = ×( )− − C  V

 J
1 V C

 kg vp

  
vp =   

1 52 105. × m/s

(b) The electron will gain speed in moving the other way,

from     Vi = 0 to 
    
Vf = 120 V :

    
K U E K Ui i f f+ + = +∆ mech

    
0 0 0 1

2
2+ + = +mv qVe

    
0 9 11 10 1 60 10 1201

2
31 2 19= ×( ) + − ×( )( )− −. . kg  C  J/Cve

  ve =   
6 49 106. × m/s

20.2 ∆V = –14.0 V and Q = 
    
− = − ×( ) ×( ) = − ×−N eA 6 02 10 1 60 10 9 63 1023 19 4. . .  C

∆V = 
  

W
Q

, so W = Q∆V = 
  
− ×( ) −( )9 63 10 14 04. . C  J/C  = 

  
1 35.  MJ

20.3 For speeds larger than one-tenth the speed of light, 
    
1
2

2mv  gives noticeably wrong answers for
kinetic energy, so we use

    
K mc

v c
=

−
−









 = ×( ) ×( )

−
−







= ×− −2

2 2
31 8 2

2
151

1
1 9 11 10 3 00 10

1

1 0 400
1 7 47 10

/
. .

.
. kg  m/s  J

Energy of the electron-field system is conserved during acceleration

    
K U E K Ui i f f+ + = +∆ mech

    
0 0 7 47 10 15+ + = × +−qV qVi f.  J

The change in potential is

  
V Vf i− :

    
V V

qf i− = − × = − ×
− ×

=
− −

−
7 47 10 7 47 10

10

15 15

19
. . J  J

1.60  C   
+46 7.  kV

The positive answer means that the electron speeds up in moving toward higher potential.
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20.4 (a)
  
K U K Ue i e f+( ) = +( ) :

    
0 0

1

1
1

2 2
2+ =

−
−









 −

v c
mc qV

/

    

1

1
1 0 511 20

2 2−
−









 =

v c/
.  MeV  keV

    

1

1
1 0391

2 2−
=

v c/
. so

    
1 0 926

2

2− =v
c

.

v = 0.272c = 
  

81 6.  Mm/s

(b) With  
    
1
2

2mv q V= ,

    

1
2

2

20 511 20.  MeV  keV( )





=v

c

We find     v c= =0 280.
  

83 9.  Mm/s,  too large by 2.91%

20.5 (a) We follow the path from (0, 0) to (20.0 cm, 0) to (20.0 cm, 50.0 cm).

∆U = –  (work done)

∆U = – (work from origin to (20.0 cm, 0)) – (work from (20.0 cm, 0) to (20.0 cm, 50.0 cm))

Note that the last term is equal to 0 because the force is perpendicular to the displacement.

 ∆U = 
    
−( )∆ = − ×( )( )( ) =−qE xx 12 0 10 250 0 2006. . C  V/m  m

  
− × −6 00 10 4. J

(b) ∆V = 
  

∆U
q

= – 
  

6 00 10
12 0 10

4

6
.
.

×
×

−

−
 J
 C

 = – 50.0 J/C = 
  
−50 0.  V

20.6 E = 
  

 ∆V
d

 = 
  

25 0 10
1 50 10

3

2
.

.
×
× −

 J/C
 m

 = 1.67 ×   106 N/C = 
  
1 67.  MN/C

20.7
    
∆U = − 1

2
m vf

2 − vi
2( ) = − 1

2
9.11× 10−31 kg



 1.40 × 105  m / s( )2 − 3.70 × 106  m / s( )2




= 6.23 × 10−18  J

∆U = q ∆V: + 6.23 × 
    
10 1 60 1018 19− −= − ×( )∆. V

  ∆V =
  
−38 9.  V   The origin is at higher potential.
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20.8 (a)
    
∆ = = ×( )( ) =V Ed 5 90 10 0 01003. . V/m  m

  
59 0.  V

(b)
    
1
2

2mv q Vf = ∆ :
    
1
2

31 2 199 11 10 1 60 10 59 0. . .×( ) = ×( )( )− −vf

  
vf =   

4 55 106. × m/s

*20.9 (a) Arbitrarily choose V = 0 at 0. Then at other points

V = –Ex and   U QV QExe = = − .

 Between the endpoints of the motion,

  
K U U K U Us e i s e f+ +( ) = + +( )

    
0 0 0 0 1

2
2+ + = + −kx QExmax max so     xmax =

    

2QE
k

(b) At equilibrium,

    Σ = − + =F F Fx s e 0 or   kx QE= .

So the equilibrium position is at   x =
  

QE
k

(c) The block’s equation of motion is 
    
Σ = − + =F kx QE m

d x
dtx

2

2 .

Let 
  
x x

QE
k

′ = − , or
  
x x

QE
k

= ′ + ,

 so the equation of motion becomes:

    
− ′ +



 + =

′ +( )
k x

QE
k

QE m
d x QE k

dt

2

2
/

, or
    

d x
dt

k
m

x
2

2
′ = −


 ′

This is the equation for simple harmonic motion     a xx′ = − ′ω 2 ,

with     ω = k m/ .

The period of the motion is then
    
T = =2π

ω     
2π m

k

(d)
    
K U U E K U Us e i s e f+ +( ) + = + +( )∆ mech

    
0 0 0 0 1

2
+ + − = + −µkmgx kx QExmax max

2
max

    xmax =
    

2 QE mg
k

k−( )µ
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20.10 (a) The potential at 1.00 cm is
    
V k

q
re1

9 19

2

8 99 10 1 60 10

1 00 10
= =

× ⋅( ) ×( )
×

=
−

−

. .

.

 N m /C  C

 m

2 2

  
1 44 10 7. × − V

(b) The potential at 2.00 cm is
    
V k

q
re2

9 19

2

8 99 10 1 60 10

2 00 10
= =

× ⋅( ) ×( )
×

=
−

−

. .

.

 N m /C  C

 m

2 2

 0.719 ×   10 7−  V

Thus, the difference in potential between the two points is     ∆ = − =V V V2 1   
− × −7 19 10 8. V

(c) The approach is the same as above except the charge is – 1.60 ×   10 19−  C. This changes the sign of
all the answers, with the magnitudes remaining the same.

That is, the potential at 1.00 cm is 
  
− × −1 44 10 7. V .

The potential at 2.00 cm is – 0.719 ×   10 7−  V, so     ∆ = − =V V V2 1   
7 19 10 8. × − V .

20.11 (a) Since the charges are equal and placed symmetrically, 
    

F = 0

(b) Since F = qE = 0, 
    

E = 0

(c)
    
V k

q
re= = × ⋅( ) ×





−

2 2 8 99 10
2 00 10

0 800
9

6
. /

.
.

 N m C
 C

 m
2 2

V = 4.50 ×   104  V = 
  

45 0.  kV

20.12 (a)
    
E

k q
x

k q
xx

e e= +
−

=1
2

2
22 00

0
( . )

becomes
    
E k

q
x

q
xx e= + + −
−






=2 2

2
2 00

0
( . )

Dividing by   ke ,     2 2 002 2qx q x= −( . )     x
2 + 4.00x – 4.00 = 0

Therefore  E = 0 when 
    
x = −4.00 ± 16.0 + 16.0

2
=

  
−4 83.  m

(Note that the positive root does not correspond to a physically valid situation.)

(b)
    
V

k q
x

k q
x

e e= +
−

=1 2

2 00
0

.
or

    
V k

q
x

q
xe= + −

−




 =

2
2 00

0
.

Again solving for x, 2qx = q(2.00 – x)

For 0 ≤ x ≤ 2.00  V = 0  when x = 
  

0 667.  m .

and
    

q
x

q
x

= −
−
2

2
For x < 0 x = 

  
−2 00.  m
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20.13 V = 
  

k
q
r
i

ii
∑

    
V = ×( ) ×( ) − − +





−8 99 10 7 00 10
1

0 0100
1

0 0100
1

0 0387
9 6. .

. . .

V = 
  
− × = −1 10 10 11 07. .V  MV

20.14 (a)
    
U

k q q
r

e= =
− ×( ) ×( )

×
= − × =

−

−
−1 2

9 19 2

9
18

8 99 10 1 60 10

0 0529 10
4 35 10

. .

.
.  J

  
−27 2.  eV

(b) U = 
    

k q q
r

e 1 2 =  

  

− ×( ) ×( )
×( )

−

−

8 99 10 1 60 10

2 0 0529 10

9 19 2

2 9

. .

.
 = 

  
−6 80.  eV

(c) U = 
    

k q q
r

k ee e1 2
2

= −
∞

 = 
  

0

20.15
      
U q V q V q V q

q
r

q
r

q
re = + + =







+ +




4 1 4 2 4 3 4

0

1

1

2

2

3

3

1
4π e

  Ue

  

= 10.0 × 10−6  C( )2 8.99 × 109  N ⋅m2/ C2( ) 1
0.600 m

+ 1
0.150 m

+ 1

0.600 m( )2 + 0.150 m( )2












  Ue =
  

8 95.  J

*20.16 (a)
    
V = keq1

r1
+ keq2

r2
= 2

keq
r







    

V =
× ⋅( ) ×( )

( ) + ( )













−

2
8 99 10 2 00 10

0 500

9 6

2 2

. .

.

 N m C  C

1.00 m  m

2 2

    V = 3.22 × 104  V =
  

32 2.  kV

(b)
    
U = qV = −3.00 × 10−6  C( ) 3.22 × 104  

J
C





 =   

− × −9 65 10 2. J
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20.17 U =     U U U U1 2 3 4+ + +

U = 0 +     U U U U U U12 13 23 14 24 34+ +( ) + + +( )

U 
    
= 0 + keQ

2

s
+ keQ

2

s
1
2
+ 1




+ keQ

2

s
1+ 1

2
+ 1





    
U = keQ

2

s
4 + 2

2





=

    
5 41

2
.

k Q
s

e

An alternate way to get the term 
  
4 2 2+( )/  is to recognize that there are 4 side pairs and 2 face

diagonal pairs.

*20.18 (a) Each charge separately creates positive potential everywhere. The total potential produced by the

three charges together is then the sum of three positive terms. There is 
  

no point  located at a
finite distance from the charges, at which this total potential is zero.

(b)
    
V = ke q

a
+ ke q

a
=

    

2k q
a
e

20.19 Consider the two spheres as a system.

(a) Conservation of momentum:       0 1 1 2 2= + −( )m v m vi i  or
    
v

m v
m2
1 1

2
=

By conservation of energy,
    
0 1 2 1

2 1 1
2 1

2 2 2
2 1 2

1 2
=

−( ) = + +
−( )
+

k q q
d

m v m v
k q q

r r
e e

and
    

k q q
r r

k q q
d

m v
m v

m
e e1 2

1 2

1 2 1
2 1 1

2 1
2

1
2

1
2

2+
− = +

    
v1 =

2m2keq1q2

m1 m1 + m2( )
1

r1 + r2
− 1

d






    
v1

9 2 6 6

3

2 0 700 8 99 10 2 10 3 10

0 100 0 800
1

8 10
1

1 00
=

( ) × ⋅( ) ×( ) ×( )
( )( ) ×

−



 =

− −

−

. . /

. . .

 kg  N m C  C  C

 kg  kg  m  m

2

  
10 8.  m/s

    
v

m v
m2
1 1

2
=  = 

  

0 100
0 700

.
.

 kg 10.8 m/s
 kg

( )
 = 

  
1 55.  m/s

(b) If the spheres are metal, electrons will move around on them with negligible energy loss to place
the centers of excess charge on the insides of the spheres. Then just before they touch, the effective
distance between charges will be less than     r r1 2+  and the spheres will really be moving

  
faster than calculated in (a) .
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*20.20 Consider the two spheres as a system.

(a) Conservation of momentum:       0 = m1v1 i + m2v2 (− i)

or
    
v

m v
m2
1 1

2
=

By conservation of energy,
    
0 1 2 1

2 1 1
2 1

2 2 2
2 1 2

1 2
=

−( ) = + +
−( )
+

k q q
d

m v m v
k q q

r r
e e

and
    

k q q
r r

k q q
d

m v
m v

m
e e1 2

1 2

1 2 1
2 1 1

2 1
2

1
2

1
2

2+
− = +

    v1 =
    

2 1 12 1 2

1 1 2 1 2

m k q q
m m m r r d

e

+( ) +
−







    
v

m
m

v2
1

2
1=







=
    

2 1 11 1 2

2 1 2 1 2

m k q q
m m m r r d

e

+( ) +
−







(b) If the spheres are metal, electrons will move around on them with negligible energy loss to place
the centers of excess charge on the insides of the spheres. Then just before they touch, the effective
distance between charges will be less than     r1 + r2 and the spheres will really be moving

  
faster than calculated in (a) .

*20.21 Using conservation of energy for the alpha particle-nucleus system,

we have   Kf +U f = Ki +Ui

But
    
U

k q q

ri
e

i
= α gold

and   ri ≅ ∞

Thus,     Ui = 0

Also     Kf = 0   (    vf = 0 at turning point),

 so   U f = Ki

or
    

k q q

r
m ve α
α α

gold

min
= 1

2
2

    

r
k q q

m v
e

min

. .

.
= =

× ⋅( )( )( ) ×( )
×( ) ×( )

−

−

2 2 8 99 10 2 79 1 60 10

2 00 10
2

9 19 2

27 7 2
α

α α

gold
2 2 N m /C  C

6.64 10  kg  m/s
  = 2.74 × 10−14  m =

  
27 4.  fm
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*20.22 In an empty universe, the 20-nC charge can be placed at its location with no energy investment.
At a distance of 4 cm, it creates a potential

    
V

k q
r
e

1
1

9 2 98 99 10 20 10

0 04
4 50= =

× ⋅( ) ×( )
=

−. /

.
.

 N m C  C

 m
 kV

2

To place the 10-nC charge there we must put in energy

    
U q V12 2 1

9 510 10 4 50 10= = ×( ) ×( ) = ×− − C 4.5 10  V  J3 .

Next, to bring up the –20-nC charge requires energy

    
U U q V q V q V V23 13 3 2 3 1 3 2 1

9 9
9 9

20 10 8 89 10
10 10

0 04
20 10

0 08
+ = + = +( ) = − × × ⋅





× − ×





−

− −
 C  

N m
C

 C
 m

 C
 m

2

2.
. .

  = − × − ×− −4 50 10 4 50 105 5. . J  J

The total energy of the three charges is

    U U U12 23 13+ + =
  
− × −4 50 10 5. J

(b) The three fixed charges create this potential at the location where the fourth is released:

    
V V V V= + + = × ⋅( ) ×

+
+ × − ×





− − −

1 2 3
9

9

2 2

9 9
8 99 10

20 10

0 04 0 03

10 10
0 03

20 10
0 05

. /
. . . .

 N m C  C/m2 2

    V = ×3 00 103.  V

Energy of the system of four charged objects is conserved as the fourth charge flies away:

    

1
2

2 1
2

2mv qV mv qV
i f

+( ) = +( )

    
0 40 10 2 00 10 09 1

2
13 2+ ×( ) ×( ) = ×( ) +− − C 3.00 10  V  kg3 . v

    
v =

×( )
×

=
−

−

2 1 20 10 4

13

.  J

2 10  kg   
3 46 104. × m/s

20.23     V a bx x= + = + −( )10 0 7 00. . V  V/m

(a) At x = 0, V = 
  
10 0.  V

At x = 3.00 m, V = 
  
−11 0.  V

At x = 6.00 m, V = 
  
−32 0.  V

(b)
    
E

dV
dx

b= − = − = − −( ) =7 00.  V/m
    

7 00.  N/C  in the    direction+ x
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*20.24 (a) For r < R
  
V

k Q
R
e=

  
E

dV
drr = − =

  
0

(b) For r ≥ R
  
V

k Q
r
e=

    
E

dV
dr

k Q
rr
e= − = − −


 =2

    

k Q
r
e
2

20.25 V =     5 3 22 2x x y yz− +

Evaluate E at (1, 0 – 2)

  
E

V
xx = − =∂
∂     

− +5 6xy  = – 5 + 6(1)(0) = – 5

  
E

V
yy = − =∂
∂     

+ −3 22 2x z  =   3 1 2 2 52 2( ) − −( ) = −

  
E

V
zz = − =∂
∂     

−4yz  = – 4(0)(–2) = 0

    
E = Ex

2 + Ey
2 + Ez

2 = −5( )2 + −5( )2 + 02 =
  

7 07.  N/C

20.26

    

∆V = V2R −V0 =
keQ

R2 + 2R( )2
− keQ

R
= keQ

R
1
5
− 1




=

    
−0 533.

k Q
R
e

20.27 (a)
    
α λ[ ] = 




= ⋅ 


 =x

C
m m

1

  

C
m2

(b)
    
V k

dq
r

k
dx
r

k
x dx
d xe e e

L

= = =
+

=∫ ∫ ∫
λ α

0     
k L d

L
deα − +











ln 1
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20.28

    

V
k dq

r
k

x dx

b L x

e
e= =

+ −( )∫ ∫
α

2 22/

Let 
    
z = L

2
− x .

Then
    
x = L

2
− z , and dx = –dz

    
V k

L z dz

b z

k L dz

b z
k

zdz

b z
e

e
e=

−( ) −
+

= −
+

+
+

∫ ∫ ∫α α α
2

22 2 2 2 2 2

( )

    
= − + +



 + +k L

z z b k z be
e

α α
2

2 2 2 2ln

    
V

k L
L x L x b k L x be

L

e

L
= − −( ) + −( ) +





+ −( ) +α α
2

2 2 22 2

0

2 2

0
ln / / /

    

V
k L L L L b

L L b
k L L b L be

e= −
− + ( ) +

+ ( ) +














+ −( ) + − ( ) +





α α
2

2 2

2 2
2 2

2 2

2 2

2 2 2 2ln
/ /

/ /
/ /

V = 

    

−
+ ( ) −
+ ( ) +

















k L b L L

b L L

eα
2

4 2

4 2

2 2

2 2
ln

/ /

/ /

20.29
      
V = dV∫ = 1

4π e0

dq
r∫

All bits of charge are at the same distance from O,

 So
      
V

Q
R

= 



 = × ⋅( ) − ×





=

−1
4

8 99 10
7 50 10

0

9
6

π πe
. /

.
 N m C

 C
0.140 m/

2 2
  
−1 51.  MV

*20.30 Substituting given values into V = 
  

k q
r
e ,

7.50 × 
    
10

8 99 10
0 300

3
9

 V
 N m /C

 m

2 2
= × ⋅( . )

.
q

Substituting     q = 2.50 × 10−7  C,

    
N = ×

×
=

−

− −
2 50 10

1 60 10

7

19
.

.
 C

 C/e   
1 56 1012. × electrons
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*20.31 (a) E = 
  

0 ;

    
V

k q
R
e= =

×( ) ×( )
=

−8 99 10 26 0 10

0 140

9 6. .

.   
1 67.  MV

(b)
    
E

k q
r
e= =

×( ) ×( )
( )

=
−

2

9 6

2

8 99 10 26 0 10

0 200

. .

.   
5 84.  MN/C  away

    
V

k q
R
e= =

×( ) ×( )
=

−8 99 10 26 0 10

0 200

9 6. .

.   
1 17.  MV

(c)
    
E

k q
R

e= =
×( ) ×( )
( )

=
−

2

9 6

2

8 99 10 26 0 10

0 140

. .

.   
11 9.  MN/C  away

  
V = keq

R
=

  
1 67.  MV

*20.32 (a) Both spheres must be at the same potential according to 
    

k q
r

k q
r

e e1

1

2

2
=

where also      q q1 2
61 20 10+ = × −.  C

Then      q q r r1 2 1 2= /

    q r r q2 1 2 2
61 20 10/ .+ = × −  C

    
q2

6
61 20 10

1 6 2
0 300 10= ×

+
= ×

−
−.

/
.

 C
 cm  cm

 C on the smaller sphere

    q1
6 6 61 20 10 0 300 10 0 900 10= × − × = ×− − −. . . C  C  C

    
V

k q
r
e= =

× ⋅( ) ×( )
×

=
−

−
1

1

9 6

2

8 99 10 0 900 10. . N m /C  C

6 10  m

2 2

  
1 35 105. × V

(b) Outside the larger sphere,

              
E1

1

1
2

1

1

51 35 10= = = × =k q
r

V
r

e ~~ ~~ ~~
.  V

0.06 m   
2 25 106. × V/m away

Outside the smaller sphere,

            
E2

51 35 10= × =.  V
0.02 m

~~
  

6 74 106. × V/m away

The smaller sphere carries less charge but creates a much stronger electric field than the larger
sphere.
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20.33 (a) Q = C ∆ V = 
  
4 00 10 12 0 4 80 106 5. . .×( )( ) = × =− − F  V  C

  
48 0.  Cµ

(b) Q = C ∆ V = 
  
4 00 10 1 50 6 00 106 6. . .×( )( ) = × =− − F  V  C

  
6 00.  Cµ

20.34 (a)
    
C

Q
V

=
∆

= × = × =
−

−10 0 10
10 0

1 00 10
6

6.
.

.
 C

 V
 F

  
1 00.  Fµ

(b)
    
∆V

Q
C

= = ×
×

=
−

−
100 10 C
1.00 10 F

6

6   
100 V

20.35 (a) ∆V = Ed

E = 
  

20 0
1 80 10 3

.
.

 V
 m×

=−   
11 1.  kV/m

(b)
      
E = σ

e0

  
σ = ×( ) × ⋅( ) =−1 11 10 8 85 104 12. . / N/C  C N m2 2

  
98 3.  nC/m2

(c)
      
C = e0A

d
=

8.85 × 10−12  C2 / N ⋅m2( ) 7.60 cm2( ) 1.00 m /100 cm( )2

1.80 × 10−3  m
=

  
3 74.  pF

(d) ∆V = 
  

Q
C

Q = 
  
20 0 3 74 10 12. . V  F( ) ×( ) =−

  
74 7.  pC

*20.36
    
E = keq

r2 :

    

q =
×( )( )

× ⋅( ) =
4 80 10 0 210

8 99 10
0 240

4 2

9

. .

.
.

 N/C  m

 N m /C
 C

2 2
µ

(a)
    
σ = q

A
= 0.240 × 10−6

4π(0.120)2 =
  
1 33.  C/m2µ

(b)
      
C r= = ×( )( ) =−4 4 8 85 10 0 1200

12π πe . .
  
13 3.  pF
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*20.37 With θ = π, the plates are out of mesh and the overlap
area is zero. With θ = 0, the overlap area is that of a semi-
circle,     π R2 2/ . By proportion, the effective area of a
single sheet of charge is     π θ−( )R2 2/ .

When there are two plates in each comb, the number of
adjoining sheets of positive and negative charge is 3, as
shown in the sketch. When there are N plates on each
comb, the number of parallel capacitors is 2N – 1 and the
total capacitance is

      
C N

A N R
d

= −( ) = −( ) −( ) =2 1
2 1 2

2
0 0

2e eeffective

distance
π θ /
/       

2 1 0
2N R

d
−( ) −( )e π θ

20.38 (a) C = 

      

l

2

50 0

2 8 99 10
7 27
2 58

9k
b
ae ln

.

. ln
.
.







=
×( ) 





=
  

2 68.  nF

(b) Method 1: ∆V = 
    
2k

b
aeλ ln



λ = q/l = 
  

8 10 10
50 0

1 62 10
6

7.
.

.
× = ×

−
− C

 m
 C/m

∆V = 
  
2 8 99 10 1 62 10

7 27
2 58

9 7. . ln
.
.

×( ) ×( ) 



 =

−
  

3 02.  kV

Method 2: ∆V = 
  

Q
C

 = 
  

8 10 10
2 68 10

6

9
.
.

×
×

−

−  = 
  

3 02.  kV

*20.39
    
ΣFy = 0 :     T mgcosθ − = 0

    ΣFx = 0:     T Eqsinθ − = 0

Dividing, 
    
tanθ =

Eq
mg

so
    
E

mg
q

= tanθ

and ∆V = Ed = 
    

mgd
q
tanθ
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20.40 The electric field created by the charges points radially
outward in the space between radius a and radius b. To find
it, use a spherical Gaussian surface of radius r. The
magnitude of the field must be uniform over this surface, so

        
E A⋅ =∫ d

qin

e0

gives
      
E r

Q
4 2

0
π( ) =

e

      
E

Q
r

k
Q
re= =

4 0
22π e

Now to find the difference in electric potential between the
conducting spheres, we use

    
V V db a a

b
− = − ⋅∫ E s

along a radius line

    
V V

k Q
r

dr k Q
r

b a
e

er a

b

a

b

− = − ( ) = −
−

−

=∫ 2

1
0

1
cos  

    
= −



 = − −



k Q

b a
k Q

a be e
1 1 1 1

  
= − −



k Q

b a
abe

  
V V k Q

b a
aba b e− = + −





Then the capacitance is       
  
C

Q
V Va b

=
−

=
  

ab
k b ae −( )

(b) As   b →∞ ,   b a b− → , to give       
  
C

ab
k be

→ =
  

a
ke

with 
      
ke =

1
4 0π e

, this is            C a= 4 0π e , in agreement with Equation 20.20.

20.41 (a) Capacitors in parallel add.  Thus, the equivalent capacitor has a value of

  
Ceq  =     C C1 2+  = 5.00 µF + 12.0 µF = 

  
17 0.  Fµ

(b) The potential difference across each branch is the same and equal to the voltage of the battery.

∆V = 
  

9 00.  V

(c)     Q5 = C ∆V = (5.00 µF)(9.00 V) = 
  

45 0.  Cµ

and     Q12 = C ∆ V  = (12.0 µF)(9.00 V) = 
  
108 Cµ
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20.42 (a) In series capacitors add as

    

1 1 1 1
5 00

1
12 01 2C C Ceq

= + = +
. . F  Fµ µ

and  
  
Ceq  = 

  
3 53.  Fµ

(c) The charge on the equivalent capacitor is

  
Qeq = 

  
Ceq∆V = (3.53 µF)(9.00 V) = 31.8 µC

Each of the series capacitors has this same charge on it.

So     Q Q1 2= =
  

31 8.  Cµ

(b) The potential difference across each is

    
∆ = = =V

Q
C1

1

1

31 8
5 00

.
.

 C
 F
µ
µ   

6 35.  V

and
    
∆ = = =V

Q
C2

2

2

31 8
12 0

.

.
 C
 F
µ
µ   

2 65.  V

20.43 (a)
    

1 1
15 0

1
3 00Cs

= +
. .

  Cs  = 2.50 µF

  
Cp  = 2.50 + 6.00 = 8.50 µF

    
Ceq = +







=
−

1
8 50

1
20 0

1

. . F  Fµ µ   
5 96.  Fµ

(b) Q = C∆V = (5.96 µF)(15.0 V) = 
  

89 5.  Cµ  on 20.0 µF

    
∆V

Q
C

= = =89 5
4 47

.
.

 C
20.0 F

 V
µ
µ

15.0 – 4.47 = 10.53 V

Q = C∆V = (6.00 µF)(10.53 V) = 
  

63 2.  Cµ  on 6.00 µF

89.5 – 63.2 = 
  

26 3.  Cµ  on 15.0 µF and 3.00 µF
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20.44     Cp = C1 +C2

and
    

1
Cs

= 1
C1

+ 1
C2

Substitute     C2 = Cp −C1:

    

1
Cs

= 1
C1

+ 1
Cp −C1

=
Cp −C1 +C1

C1 Cp− C1






Simplifying,
    
C C C C Cp p s1

2
1 0− + =

and
    
C

C C C Cp p p s
1

2 4

2
=

± −
=

    

1
2

1
4

2C C C Cp p p s+ −

where the positive sign was arbitrarily chosen (choosing the negative sign gives the same values
for the capacitances, with the names reversed).

Then, from     C2 = Cp −C1

    C2 =
    

1
2

1
4

2C C C Cp p p s− −

20.45 C = 
  

Q
V∆

so 6.00 × 
    
10

20 0
6− = Q

.

and Q = 
  
120 Cµ

    Q Q1 2120= − Cµ

and ∆V = 
  

Q
C

:
    

120 2

1

2

2

− =Q
C

Q
C

or
    

120
6 00 3 00

2 2− =Q Q
. .

(3.00)(120 –     Q2) = (6.00)    Q2

    Q2 = 
  

360
9 00.

 = 
  

40 0.  Cµ     Q1 = 120 µC – 40.0 µC = 
  

80 0.  Cµ

*20.46
    
Cs =

1
5.00

+ 1
7.00







−1

= 2.92 µF

  
Cp  = 2.92 + 4.00 + 6.00 = 

  
12 9.  Fµ
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*20.47

According to the hint, this combination of capacitors is equivalent to .

Then
    

1 1 1 1
C C C C C

C C C C C
C C C

= +
+

+ = + + + +
+( )0 0 0

0 0 0

0 0

    C C C C C C0 0
2

0+ = +2 2 3

    2 2 02C C C C2
0 0+ − =

    
C

C C C
=
− ± + ( )2 4 4 2

4

2 2
0 0 0

Only the positive root is physical

    
C

C= −( )0

2
3 1

20.48 (a)
    
U C V= ∆( ) = ( )( ) =1

2
2 1

2
23 00 12 0. . F  Vµ

  
216 Jµ

(b)
    
U C V= ∆( ) = ( )( ) =1

2
2 1

2
23 00 6 00. . F  Vµ

  
54 0.  Jµ

*20.49
    
U C V= 1

2
2∆

    
∆V

U
C

= = ( )
×

=−
2 2 300

30 10 6
 J
 C/V   

4 47 103. × V
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20.50
    
U C V= ( )1

2
2∆

The circuit diagram is shown at the right.

(a)
    
C C Cp = + = + =1 2 25 0 5 00 30 0. . . F  F  Fµ µ µ

    
U = ×( )( ) =−1

2
6 230 0 10 100.

  
0 150.  J

(b)
    
C

C Cs = +






= +






=
− −

1 1 1
25 0

1
5 00

4 17
1 2

1 1

. .
.

 F  F
 F

µ µ
µ

    
U C V= ( )1

2
2∆

    
∆V

U
C

= = ( )
×

=−
2 2 0 150

4 17 10 6
.

.   
268 V

20.51
  
W U F dx= = ∫

so F = 
      

dU
dx

d
dx

Q
C

d
dx

Q x
A

=






=







=

2 2

02 2e
      

Q
A

2

02e

*20.52 (a)
    
Q C V= = ×( ) ×( ) =−∆ 150 10 10 1012 3 F  V

  
1 50 10 6. × − C

(b)
    
U C V= ∆( )1

2
2

    
∆V

U
C

= = ×
×

=
−

−
2 2 250 10

150 10

6

12
( ) J

 F   
1 83 103. × V

20.53
      
u

U
V

E= = 1
2 0

2e

    

1 00 10
8 85 10 3000

7
1
2

12 2.
.

× = ×( )( )
−

−
V

V = 
  

2 51 10 3. × − m3  
  
= 2.51× 10−3  m3( ) 1000 L

m3




 =   

2 51.  L
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20.54 (a)
      
C

A
d

= κe0  = 
  

2 10 8 85 10 1 75 10

4 00 10
8 13 10

12 4 2

5
11

. . .

.
.

×( ) ×( )
×

= × =
− −

−
− F/m  m

 m
 F

  
81 3.  pF

(b)
    
∆ = = ×( ) ×( ) =−V E dmax max . .60 0 10 4 00 106 5 V/m  m

  
2 40.  kV

20.55     Q C Vmax max= ∆ ,

but     ∆ =V E dmax max

Also,
      
C

A
d

= κe0

Thus,
      
Q

A
d

E d AEmax max max= ( ) =κ κe
e0

0

(a) With air between the plates, κ = 1.00

and     Emax .= ×3 00 106  V/m.

Therefore,
      
Q AEmax max . . .= = ×( ) ×( ) ×( ) =− −κe0

12 4 68 85 10 5 00 10 3 00 10 F/m  m  V/m2
  

13 3.  nC

(b) With polystyrene between the plates, κ = 2.56 and     Emax .= ×24 0 106  V/m.

      
Q AEmax max . . . .= = ×( ) ×( ) ×( ) =− −κe0

12 4 62 56 8 85 10 5 00 10 24 0 10 F/m  m  V/m2
  

272 nC

*20.56
      
C

A
d

= κe0

or
    
95 0 10

3 70 8 85 10 0 0700

0 0250 10
9

12

3.
. . .

.
× =

×( )( )
×

−
−

−

l

  l=
  
1 04.  m

20.57 κ = 3.00,     E V dmax max. /= × = ∆2 00 108  V/m

For
      
C

A
d

= κe0  = 0.250 ×   10 6−  F,

      
A

C d C V
E

= =
κ κe e0 0

∆ max

max
 = 

  

0 250 10 4000

3 00 8 85 10 2 00 10

6

12 8

.

. . .

×( )( )
×( ) ×( ) =

−

−   
0 188.  m2
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*20.58 Originally, 
      
C

A
d

Q
V i

= =
∆( )

e0

(a) The charge is the same before and after immersion, with value 
      
Q

A V

d
i=

∆( )e0 .

  Q =
  

8 85 10 25 0 10 250

1 50 10

12 4

2

. / .

.

× ⋅( ) ×( )( )
×( ) =

− −

−

 C N m  m  V

 m

2 2 2

  
369 pC

(b) Finally,

      

C
A

d
Q
Vf

f

= =
∆( )

κe0

    

Cf =
× ⋅( ) ×( )

×( ) =
− −

−

80 0 8 85 10 25 0 10

1 50 10

12 4

2

. . / .

.

 C N m  m

 m

2 2 2

  
118 pF

      
( )

( ) ( )∆ ∆ ∆
V

Q d
A

A V d
Ad

V
f

i i= = = = =
κ κ κe

e

e0

0

0

250 V
80.0   

3 12.  V

(c) Originally,
      
U C V

A V
di i

i= =1
2

2 0
2

( )
( )∆ ∆e

2

Finally,
      
U C V

A V

d
A V

df f f
i i= ∆( ) =

∆( )
= ∆( )1

2
2 0

2

2
0

2κ
κ κ

e e

2 2

So,
      
∆U U U

A V

df i
i= − =

− ∆( ) −( )e0
2 1κ

κ2

    

∆ = −
× ⋅( ) ×( )( ) ( )

×( )( )
=

− −

−U
8 85 10 25 0 10 250 79 0

2 1 50 10 80 0

12 4 2

2

. / . .

. .

 C N m  m  V

 m

2 2 2

  
−45 5.  nJ

*20.59 (a)
    
E

k Q
r

k Q
r r

V
r

e e
max max.= × = = 



 =




3 00 10

1 16
2V/m

    Vmax = Emaxr = 3.00 × 106(0.150) =
  

450 kV

(b)
    

k Q
r

Ee max
max2 =

    
or   

k Q
r

Ve max
max=






     

Qmax = Emaxr2

ke
= 3.00 × 106(0.150)2

8.99 × 109 =
  

7 51.  Cµ

*20.60 The energy transferred is
    
H Q VET  C  V  J= ∆ = ( ) ×( ) = ×1

2
1
2

8 950 0 1 00 10 2 50 10. . .

and 1% of this (or     ∆Eint  J= ×2 50 107. ) is absorbed by the tree. If m is the amount of water boiled
away,

then
    
∆E m mint  J/kg C  C  C  J/kg  J= ⋅°( ) ° − °( ) + ×( ) = ×4186 100 30 0 2 26 10 2 50 106 7. . .

giving   m =
  

9 79.  kg
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*20.61 From Example 20.5, the potential at the center of the
ring is     V k Q Ri e= /  and the potential at an infinite
distance from the ring is 

    
Vf = 0. Thus, the initial and

final potential energies of the point charge-ring system
are:

    
U QV

k Q
Ri i

e= =
2

and
    
U QVf f= = 0

From conservation of energy,

  
K U K Uf f i i+ = +

 or
    
1
2

2
2

0 0Mv
k Q

Rf
e+ = +

giving 
  
vf =

    

2 2k Q
MR

e

*20.62 (a) To make a spark 5 mm long in dry air between flat metal plates requires potential difference

    
∆ = = ×( ) ×( ) = ×−V Ed 3 10 1 5 106 3 4 V/m 5 10  m  V.

  
~ 104 V

(b) The area of your skin is perhaps   1 5.  m2 , so model your body as a sphere with this surface area. Its
radius is given by     1 5 4 2.  m2 = π r ,     r = 0 35.  m . We require that you are at the potential found in
part (a):

  
V

k q
r
e=

    
q

Vr
ke

= = × ( )
× ⋅ ⋅







⋅





1 5 10
8 99 10

4

9
.

.
 V 0.35 m
 N m /C

J
V C

N m
J2 2

    q = × −5 8 10 7. C
  

~ 10 6− C

*20.63
    
W = V dq

0

Q

∫

where V = 
  

k q
R
e ;

Therefore,   W =
    

k Q
R

e
2

2
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*20.64 The original kinetic energy of the particle is

    
K mv= = ×( ) ×( ) = ×− −1

2
2 1

2
16 6 2 42 10 2 10 4 00 10 kg  m/s  J.

The potential difference across the capacitor is
    
∆ = = =V

Q
C

1000
100

 C
10 F

 V
µ
µ

For the particle to reach the negative plate, the particle-capacitor system would need energy

    
U q V= ∆ = − ×( ) −( ) = × −3 10 100 3 00 106 4 C  V  J.

Since its original kinetic energy is greater than this, 
  

the particle will reach the negative plate .

As the particle moves, the system keeps constant total energy

    
K U K U+( ) = +( )+ −at  plate at  plate:

    
4 00 10 3 10 100 2 10 04 6 1

2
16 2. × + − ×( ) +( ) = ×( ) +− − − J  C  V vf

    
vf =

×( )
×

=
−

−

2 1 00 10

2 10

4

16

.  J

 kg   
1 00 106. × m/s

20.65 (a) We use Equation 20.29 to find the potential energy of the capacitor. As we will see, the potential
difference   ∆V  changes as the dielectric is withdrawn. The initial and final energies are

    
U

Q
Ci

i
=







1
2

2
and

    
U

Q
Cf

f
=











1
2

2

But the initial capacitance (with the dielectric) is 
  
C Ci f=κ . Therefore,

    
U

Q
Cf

i
=







1
2

2
κ

Since the work done by the external force in removing the dielectric equals the change in potential
energy, we have

    
W U U

Q
C

Q
C

Q
Cf i

i i i
= − =







−







=







−( )1

2

2
1
2

2
1
2

2
1κ κ

To express this relation in terms of potential difference   ∆Vi, we substitute   Q C Vi i= ( )∆ , and
evaluate:

    
W C Vi i= ( ) −( ) = ×( )( ) −( ) =−1

2
2 1

2
9 21 2 00 10 100 5 00 1 00∆ κ . . . F  V

  
4 00 10 5. × − J

The positive result confirms that the final energy of the capacitor is greater than the initial energy.
The extra energy comes from the work done on the system by the external force that pulled out
the dielectric.

(b) The final potential difference across the capacitor is 
  
∆V

Q
Cf

f
= .

Substituting 
  
C

C
f

i=
κ

 and   Q C Vi i= ( )∆  gives
    
∆ ∆V Vf i= = ( ) =κ 5 00 100.  V

  
500 V

Even though the capacitor is isolated and its charge remains constant, the potential difference
across the plates does increase in this case.
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*20.66 (a)
      
C

d
x x= −( ) +[ ] =e

l l l0 κ
      

e
l l0 2 1

d
x+ −( )[ ]κ

(b)
    
U C V= ∆( ) =1

2
2

      

1
2

0
2

2 1
e

l l
( )∆





+ −( )[ ]V

d
x κ

(c)
    
F i= −


 =dU

dx
      

e
l0

2

2
1

∆( ) −( )V
d

κ  to the left    (out of the capacitor)

(d)

    

F =
( ) ×( )( ) −( )

×( ) =
−

−

2000 8 85 10 0 0500 4 50 1

2 2 00 10

2 12

3

. . .

.   
1 55 10 3. × − N

*20.67 The portion of the capacitor nearly filled by metal has

capacitance       κe l0 x d( ) → ∞/

and stored energy     Q C2 2 0/ → .

The unfilled portion has

capacitance       e l l0 −( )x d/

The charge on this portion is       Q x Q= −( )l l0 /

(a) The stored energy is

      
U

Q
C

x Q

x d
= =

−( )[ ]
−( ) =

2
0

2

02 2
l l

e l l

/
/

      

Q x d0
2

0
32

l

e l

−( )

(b)
      
F

dU
dx

d
dx

Q x d Q d= − = − −( )





= +0

2

0
3

0
2

0
32 2

l

e l e l

F = 
      

Q d0
2

0
32e l

to the right     (into the capacitor)

(c)
      
Stress = =F

dl
      

Q0
2

0
42e l

(d)
      
u E

Q= =






=






=1

2 0
2 1

2 0
0

2
1
2 0

0

0
2

2

e e
e

e
e l

σ

      

Q0
2

0
42e l
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*20.68 By symmetry, the potential difference across 3C is zero, so the circuit reduces to

    
C

C C
Ceq = +



 = =
−1

2
1

4

1
8
6     

4
3

C

*20.69 Gasoline:
  
126000 1054

1 00 1 00
5 25 107 Btu/gal  J/Btu

 gal
3.786 10 m

m
670 kg

 J/kg3 3

3

( )( )
×













= ×−

. .
.

Battery:
  

12 0 100 3600
2 70 105.

.
 J/C  C/s  s

16.0 kg
 J/kg

( )( )( )
= ×

Capacitor:
  

1
2

20 100 12 0
72 0

. .
.

 F  V

0.100 kg
 J/kg

( )( )
=

  
Gasoline has 194 times the specific energy content of the battery and 727000 times that of the capacitor

*20.70 The initial charge on the larger capacitor is

    Q C V= = ( ) =∆ 10 150 F 15 V  Cµ µ

An additional charge q is pushed through the 50-V battery, giving the smaller capacitor charge q
and the larger charge     150 Cµ + q.

Then
    
50

5
150

10
 V

 F
 C

 F
= + +q q

µ
µ
µ

    500 2 150 C  Cµ µ= + +q q

    q = 117 Cµ

So across the   5- Fµ  capacitor 
    
∆ = = =V

q
C

117 C
5 F

µ
µ   

23 3.  V

Across the   10- Fµ  capacitor 
    
∆ = + =V

150 117 C  C
10 F

µ µ
µ   

26 7.  V
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*20.71 Let C = the capacitance of an individual capacitor, and   Cs  represent the equivalent capacitance of
the group in series. While being charged in parallel, each capacitor receives charge

    
Q C V= ∆ = ×( )( ) =−

charge  F  V  C500 10 800 0 4004 .

While being discharged in series,

    
∆V

Q
C

Q
Cs

discharge
0 C

 F
= = =

×
=−/

.
.10

0 40
5 00 10 5   

8 00.  kV  (or 10 times the original voltage)

*20.72 (a)
    
V V dB A A

B
− = − ⋅∫ E s  and the field at distance r from a uniformly

charged rod (where r > radius of charged rod) is

      
E

r
k
r
e= =λ

π
λ

2
2

0e

In this case, the field between the central wire and the coaxial
cylinder is directed perpendicular to the line of charge so that

    
VB −VA = − 2keλ

r
dr

ra

rb∫ = 2keλ ln
ra

rb







,

or

    

∆ =






V k
r
re
a

b
2 λ ln

(b) From part (a), when the outer cylinder is considered to be at zero potential, the potential at a
distance   r  from the axis is

    
V = 2keλ ln

ra

r






The field at   r  is given by

    
E = − ∂V

∂r
= −2keλ

r
ra






− ra

r2




 =

2keλ
r

But, from part (a), 
    
2keλ = ∆V

ln ra rb( ) .

Therefore,
    

E
V

r r ra b
= ∆

( )



ln /

1
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*20.73
      
2

0
π r E

qinl
e

=

so
      
E

r
= λ

π2 0e

        
∆V d

r
dr

r
rr

r

r

r
= − ⋅ = =





∫ ∫E r

1

2

1

2

2 20 0

1

2

λ
π

λ
πe e

ln

      

λ
π
max

max inner2 0e
= E r

    
∆V = ×( ) ×( ) 





−1 20 10 0 100 106 3. . lnV/m  m
25.0

0.200

    ∆Vmax = 
  

579 V

*20.74 (a) From Problem 72,

    
E

V
r r ra b

= ( )
∆

ln /
1

We require just outside the central wire

    
5 50 10

50 0 10
0 850

16
3

.
.
.

× = ×
( )







 V/m
 V

ln  m/r rb b

or
    
110

0 850
11 m

 m−( ) 




=r

rb
b

ln
.

We solve by homing in on the required value

    rb (m) 0.0100 0.00100 0.00150 0.00145 0.00143 0.00142

    
110

0 8501 m
 m−( ) 





r
rb
b

ln
.

4.89 0.740 1.05 1.017 1.005 0.999

Thus, to three significant figures,

  rb =   
1 42.  mm

(b) At   ra,

    
E = ( )





 =

50 0 1
0 850

.
.

 kV
ln 0.850 m/0.00142 m  m   

9 20.  kV/m

20.75
    
U qV k

q q
re= = = ×( ) ( )( ) ×( )

+( ) ×
= ×

−

−
−1 2

12

9
19 2

15
118 99 10

38 54 1 60 10

5 50 6 20 10
4 04 10.

.

. .
.  J  = 

  
253 MeV
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*20.76  (a)
    
V

k q
r

k q
r

k q
r r

r re e e= − = −( )
1 2 1 2

2 1

From the figure, for r >> a,     r r a2 1 2− ≅ cosθ .

Then
    
V

k q
r r

a
k p

r
e e≅ ≅

1 2
22 cos

cosθ θ

(b)
  
E

V
rr = − =∂

∂     

2
3

k p
r

e cosθ

In spherical coordinates, the θ  component of the gradient is 
    

1
r

∂
∂θ




 .

Therefore,
    
E

r
V

θ
∂
∂θ

= − 



 =

1

    

k p
r

e sinθ
3

For   r a>> ,

    
E

k p
rr

e0
2

3°( ) =

and     Er 90 0°( ) = ,

    Eθ 0 0°( ) =

and
    
E

k p
r
e

θ 90 3°( ) =

These results are 
    

reasonable for r a>> . Their directions are as shown in Figure 20.8 (c).

However, for 
    

r E→ ( )→ ∞0 0,  .  This is unreasonable,  since r is not much greater than a if it is 0.

(c)

    

V
k py

x y

e=
+( )2 2 3 2/

 and

    

E
V
x

k pxy

x y
x

e= − =
+( )

∂
∂

3
2 2 5 2/

    

E
V
y

k p y x

x y
y

e
= − =

−( )
+( )

∂
∂

2 2 2

2 2 5 2/
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*20.77 (a)
      
C

A
d

Q
V0 = =e0 0

0∆

When the dielectric is inserted at constant voltage,

    
C C

Q
V

= =κ 0
0∆

;

    
U

C V
0

0 0= (∆ )
2

2

    
U

C V C V
=

∆( ) =
∆( )0

2
0 0

2

2 2

κ

and
    

U
U0

=κ

The extra energy comes from (part of the) electrical work done by the battery in separating the
extra charge.

(b)     Q C V0 0 0= ∆

 and     Q C V C V= =∆ ∆0 0 0κ

so
    

Q Q/ 0 =κ
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ANSWERS TO EVEN NUMBERED PROBLEMS

  2. 1.35 MJ

  4. (a) 81.6 Mm/s (b) 83.9 Mm/s, too large by 2.91%

  6. 1.67 MN/C

  8. (a) 59.0 V (b)   4 55 106. ×  m/s

10. (a)   1 44 10 7. × −  V (b)   − × −7 19 10 8.  V
(c)   − × + ×− −1 44 10 7 19 107 8. . V,  V

12. (a) –4.83 m (b) 0.667 m    and    –2.00 m

14. (a) –27.2 eV (b) –6.80 eV (c) 0

16. (a) 32.2 kV (b)   − × −9 65 10 2.  J

18. (a) no point at a finite distance from the charges (b)     2k q ae /

20. (a)
    
v

m k q q
m m m r r d

e
1

2 1 2

1 1 2 1 2

2 1 1=
+( ) +

−






   
    
v

m k q q
m m m r r d

e
2

1 1 2

2 1 2 1 2

2 1 1=
+( ) +

−






(b) Faster than calculated in (a)

22. (a) –45.0 µJ (b) 34.6 km/s

24. (a) 0 (b)     k Q re / 2

26.     −0 553.  /k Q Re

28.

    

V
k L L b L

L b L

e= −



( ) + −

( ) + +

















α
2

4 2

4 2

2 2

2 2
ln

/ /

/ /

30.   1 56 1012. ×  electrons removed

32. (a) 135 kV
(b) 2.25 MV/m  away for the large sphere and 6.74 MV/m  away for the small sphere

34. (a)   1 00.  Fµ (b) 100 V

36. (a)   1 33 2.  C/mµ (b) 13.3 pF



Chapter 20

136

38. (a) 2.68 nF (b) 3.02 kV

40. See the solution

42. (a) 3.53 µF (b) 6.35 V   and   2.65 V (c) 31.8 µC on each

44.
    
1
2

1
4

2C C C Cp p p s± −

46. 12.9 µF

48. (a) 216 µJ (b) 54.0 µJ

50. (a) stored energy = 0.150 J.  See solution for circuit diagram.
(b) potential difference = 268 V.  See solution for circuit diagram.

52. (a) 1.50 µC (b) 1.83 kV

54. (a) 81.3 pF (b) 2.40 kV

56. 1.04 m

58. (a) 369 pC (b) 118 pF, 3.12 V (c) –45.5 nJ

60. 9.79 kg

62. (a)   ~ 104 V (b) ~  10 5−  C  or    ~ 10 6−  C

64. Yes;   1 00 106. ×  m/s

66. (a)
      

e
l l0 2 1

d
x+ −( )( )κ (b)

      

e
l l0

2
2

2
1

∆V
d

x
( ) + −( )( )κ

(c)
      

e
l0

2

2
1

∆V
d

( ) −( )κ  to the left (d)   1 55 10 3. × −  N to the left

68.
    
4
3

C

70. 23.3 V,  26.7 V

72. See the solution

74. (a) 1.42 mm (b) 9.20 kV/m

76. (a) See the solution (b)     E k p rr e= 2 3cos /θ       E k p reθ θ= sin / 3 ; yes; no

(c)
    
V k py x ye= +( )−2 2 3 2/

   
      
E i j= +( ) + −( ) +( )− −

3 22 2 5 2 2 2 2 2 5 2
k pxy x y k p y x x ye e

/ /


