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ANSWERS TO QUESTIONS

Q22.1 The charges are of opposite sign.

Q22.2 If the current is in a direction parallel  or antiparallel to the magnetic field, then there is no force.

Q22.3 Yes, if the magnetic field is perpendicular to the plane of the loop, then there is no torque.

Q22.4 The geographic North Pole is a magnetic South Pole.

Q22.5 Straight down.

Q22.6 Domain alignment creates a stronger magnetic field, which in turn can align domains in other iron
samples.

Q22.7 Yes, either pole. Domains inside the iron nail are aligned along the magnetic field lines of the magnet.

Q22.8 The shock misaligns the domains. Heating will also decrease magnetism.

Q22.9 No total force, but a torque. Let wire one carry current in the
y–direction, toward the top of the page. Let wire two be a
millimeter above the plane of the paper and carry current to
the right (in the x–direction). On the left–hand side of wire
one, it creates a magnetic field in the z–direction, which exerts
force in the   i k j× = −  direction on wire two. On the
right–hand side, wire one produces magnetic field in the   −( )k
direction and makes a   i k j× −( ) = +  force of equal magnitude
act on wire two. If wire two is free to move, its center section
will twist counterclockwise and then be attracted to wire one.

Q22.10 If you can hook a spring balance to the particle and measure the force on it in a known electric field,
then     q F E= /  will tell you its charge. You cannot hook a spring balance to an electron. Measuring the
acceleration of small particles by observing their deflection in known electric and magnetic fields can
tell you the charge–to–mass ratio, but not separately the charge or mass.

Q22.11 If the current loop feels a torque, it must be caused by a magnetic field. If the current loop feels no
torque, try a different orientation – the torque is zero if the field is along the axis of the loop.

Q22.12 The Earth’s magnetic field exerts force on a charged
incoming cosmic ray, tending to make it spiral around
a magnetic field line. If the particle energy is low
enough the spiral will be tight enough that the particle
will first hit some matter as it follows a field line down
into the atmosphere or to the surface at a high
geographic latitude.
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Q22.13 The magnetic field created by wire 1 at the position of wire
2 is into the paper. Hence, the magnetic force on wire 2 is in
direction down ×  into the paper = to the right, away from
wire 1. Now wire 2 creates a magnetic field into the page at
the location of wire 1, so wire 1 feels force up × into the
paper = left, away from wire 2.

Q22.14 Apply Ampere’s law to the circular path labeled 1 in the
picture. Since there is no current inside this path, the
magnetic field inside the tube must be zero. On the other
hand, the current through path 2 is the current carried by
the conductor. Therefore the magnetic field outside the
tube is nonzero.

Q22.15 The magnetic field inside a long solenoid is given by       B NI= µ0 /l. (a) If the length   l is doubled, the
field is cut in half. (b) If N is doubled, the magnetic field is doubled.

Q22.16 The magnetic field near the Earth’s equator is horizontally north.

(a) If the velocity is down, v × B is east and qv × B for the negative electron is west.

(b) If v is north, v × B is zero and the electron is not deflected.

(c) If v is west, v × B is west × north in direction, namely down, and the electron is deflected up by
the qv × B force.

(d) If v is southeast, v ×  B is in direction southeast × north = up, and qv ×  B deflects the electron
down.

Q22.17 If one of the bars has its magnetic moment along its length, its magnetic field will likely be strongest at
its ends. Its end may attract the center of the other bar, while one end of the unmagnetized bar does
not attract the center of the bar magnet.

Q22.18 Magnetic levitation is illustrated in Figure Q22.20. The Earth’s magnetic field is so weak that the floor
of his tomb should be magnetized as well as his coffin. Alternatively, the floor of his tomb could be
made of superconducting material, which exerts a force of repulsion on any magnet.

Q22.19 The medium for any magnetic recording should be a hard ferromagnetic substance, so that thermal
vibrations will not rapidly erase the information.
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Q22.20 (a) The magnets repel each other with a force equal to the weight of one of them.

(b) The pencil prevents motion to the side and prevents the magnets from rotating under their
mutual torques.  Its constraint changes unstable equilibrium into stable.

(c) Most likely, the disks are magnetized perpendicular to their flat faces, making one face a north
pole and the other a south pole.

(d) Then if either were inverted they would attract each other and stick firmly together.

Q22.21 See Figure 31.7 in the textbook.  A spiral of decreasing radius is the path of a charged particle that is
losing kinetic energy, as by collisions with atoms in the medium. Particles with positive and negative
charges make tracks curving in opposite directions. A straight line might be produced by an
uncharged particle, or by a particle with such high momentum that its deflection cannot be observed.

Q22.22 The q  v B×  force on each electron is down. Since electrons are negative,   v B×  must be up. With v to the
right, B must be (a) into the page, away from you. Reversing the current in the coils would reverse the
direction of B, making it toward you. Then   v B×  is in the direction right × toward you = down, and
q  v B×  will make the electron beam curve up.
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PROBLEM SOLUTIONS

22.1 (a) up

(b) out of the page, since the
charge is negative.

(c) no deflection

(d) into the page

22.2 (a)
    
F qvBB = = ×( ) ×( ) ×( ) °− −sin . . . sin .θ 1 60 10 3 00 10 3 00 10 37 019 6 1 C  m/s  T

  FB =
  

8 67 10 14. × − N

(b)
    
a

F
m

= = ×
×

=
−

−
8 67 10
1 67 10

14

27
.
.

 N
 kg   

5 19 1013. × m/s2

22.3 First find the speed of the electron.

    
∆ = = ∆ = ∆K mv e V U1

2
2 :    

    

v
e V
m

= ∆ =
×( )( )

×( ) = ×
−

−
2 2 1 60 10 2400

2 90
19.

.
 C  J/C

9.11 10  kg
10  m/s

31
7

(a)
    
F qvBB,max . . .= = ×( ) ×( )( ) =−1 60 10 2 90 10 1 7019 7 C  m/s  T

  
7 90 10 12. × − N

(b)     FB,min =
  

0  occurs when v is either parallel to or anti-parallel to B.

22.4 Gravitational force:
    
F mgg = = ×( )( ) =−9 11 10 9 8031. . kg  m/s2

  
8 93 10 30. × − N  down

Electric force:
    
F qEe = = − ×( )( ) =−1 60 10 10019.  C  N/C down

  
1 60 10 17. × − N  up

Magnetic force:
      
F v B E NB q= × = − ×( ) ×( ) × × ⋅

⋅






− −1 60 10 6 00 10 50 0 1019 6 6. . . C  m/s  
N s
C m

 

      FB = − × =−4 80 10 17.  N  up
  

4 80 10 17. × − N  down
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*22.5     F v BB q= ×

    

v ×B =
i j k

+2 −4 +1
+1 +2 −3

= 12 − 2( )i + 1+ 6( )j+ 4 + 4( )k = 10i + 7 j+ 8k

    v B× = + + = ⋅10 7 8 14 62 2 2 .  T m/s

      
F v BB q= × = ×( ) ⋅( ) =−1 60 10 14 619. . C  T m/s

  
2 34 10 18. × − N

*22.6 (a) We begin with 
    
qvB = mv2

R

or   qRB = mv

But     L = mvR = qR2B

Therefore,

    

R = L
qB

= 4.00 × 10−25  J ⋅ s
1.60 × 10−19  C( ) 1.00 × 10−3  T( ) = 0.0500 m =

  
5 0. 0 cm

(b) Thus,

    

v = L
mR

= 4.00 × 10−25  J ⋅ s
9.11× 10−31 kg( ) 0.0500 m( )

=
  

8 78 106. × m/s

*22.7
    
E mv e V= = ∆1

2
2

and
    
e vB

mv
R

sin90
2

° =

    
B

mv
eR

m
eR

e V
m R

m V
e

= = ∆ = ∆2 1 2

B 
  
=

×
× ×

×
=

−

−
1

5 80 10
2 1 67 10

10

27

.
( .

 m
 kg)(10.0 10  V)

1.60 10  C

6

19   
7 88 10 12. × − T

*22.8   F FB e=

so qvB = qE

where     v = 2K / m     and K is kinetic energy of the electron.

    
E vB

K
m

B= = =
( ) ×( )

×
( ) =

−

−
2 2 750 1 60 10

9 11 10
0 0150

19

31

.

.
.

  
244 kV/m
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*22.9 In the velocity selector:
    
v

E
B

= = = ×2500
0 0350

7 14 104 V/m
 T

 m/s
.

.

In the deflection chamber:

    

r
mv
qB

= =
×( ) ×( )

×( )( )
=

−

−

2 18 10 7 14 10

1 60 10 0 0350

26 4

19

. .

. .

 kg  m/s

 C  T   
0 278.  m

*22.10 Note that the “cyclotron frequency” is an angular speed.  The motion of the proton is described by

  Σ =F ma:

    
q vB

mv
r

sin90
2

° =

  
q B m

v
r

m= = ω

(a)

    

ω = =
×( ) ⋅ ⋅( )

×( )
⋅
⋅





 =

−

−
q B
m

1 60 10

1 67 10

19

27

.

.

 C 0.8 N s/C m

 kg

kg m
N s2   

7 66 107. × rad/s

(b)
    
v r= = ×( )( )


 =ω 7 66 10

1
1

7.  rad/s 0.350 m
 rad   

2 68 107. × m/s

(c)
    
K mv= = ×( ) ×( ) ×






=−

−
1
2

2 1
2

27 7 2

191 67 10 2 68 10
1

. . kg  m/s
 eV

1.6 10  J   
3 76 106. × eV

(d) The proton gains 600 eV twice during each revolution, so the number of revolutions is

  

3 76 10
2 600

6. ×
( ) = eV

 eV   
3 13 103. × revolutions

(e)   θ ω= t
    
t = = ×

×




 =

θ
ω

π3 13 10
7 66 10

23

7
.

.
 rev

 rad/s
 rad

1 rev   
2 57 10 4. × − s

*22.11
  
θ = 



 = °−tan

.

.
.1 25 0

10 0
68 2 and

    
R =

°
=1 00

1 08
.

sin
.

 cm
68.2

 cm

Ignoring relativistic correction, the kinetic energy of the electrons is

    
1
2

2mv q V= ∆ so
    
v

q V
m

= ∆ = ×2
1 33 108.  m/s

From Newton’s second law 
    

mv
R

qvB
2
= , we find the magnetic field

    

B
mv
q R

= =
×( ) ×( )
×( ) ×( ) =

−

− −

9 11 10 1 33 10

1 60 10 1 08 10

31 8

19 2

. .

. .

 kg  m/s

 C  m   
70 1.  mT
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*22.12 (a) If the charge carriers are negative, to carry current in the x direction they move with drift velocity

  vd  in the –x direction. The magnetic force     qv B×  is in the   − −( ) × =i j k  direction, so the negative
charges are deflected to the top of the ribbon, point c. Some accumulate there to make   Vc  negative
with respect to   Va , until ...

(b) ... an upward electric field 
    
E k=

−V V
d

c a  exerts a downward force on the other charge carries to

let them drift in equilibrium according to

    Σ =Fz 0:

      
q

V V
d

qc a
d

−
−( ) + =k v B k 0

  
v

V
dBd

H=
∆

Since the measured current is   I n q v t dd=

we have 
  
I n q

V
dB

t dH=
∆

  
n

IB
q V tH

=
∆

Since we have shown that   ∆VH  is negative if q is negative, this expression simplifies to

  

n
IB

q V tH
=

∆

22.13               F B i kB I= × = ( )( ) × ( ) =ll 2 40 0 750 1 60. . . A  m  T
    
−( )2 88.  Nj

*22.14
              

F BB mg I
l l l

= =
×ll

      
I

mg
B

= =
( )( )

=
l

0 0400 9 80

3 60

. .

.

 kg/m  m/s

 T

2

  
0 109.  A

The direction of I in the bar is 
  

to the right .
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22.15 The magnetic force on each bit of ring is       I d I ds B   s B× =
radially inward and upward, at angle θ above the radial
line. The radially inward components tend to squeeze the
ring but all cancel out as forces. The upward components

    I ds B  sinθ  all add to 
    

I rB   up2π θsin .

                     

22.16 For each segment,     I = 5 00.  A and     B j= ⋅0 0200.  N/A m 

Segment 1             F BB I= ×( )ll

ab –0.400 m j   
0

bc 0.400 m k
    

40 0.  mN( ) −( )i

cd –0.400 m i + 0.400 m j
    

40 0.  mN( ) −( )k

da 0.400 m i – 0.400 m k
    

40 0.  mN( )( )k + i

22.17     τ θ= NBAI sin

  
τ = 100 0.800 T( ) 0.400 × 0.300 m2( ) 1.20 A( )sin60°

τ = 
  

9 98.  N m⋅

Note that θ is the angle between the magnetic
moment and the B field. The loop will rotate so as
to align the magnetic moment with the B field.
Looking down along the y-axis, the loop will

rotate in a 
  

clockwise  direction.

*22.18 (a) 2π r = 2.00 m

so r = 0.318 m

    
µ = = ×( )[ ] =−I A 17 0 10 0 3183 2. ( . ) A  m2π

  
5 41.  mA m2⋅

(b)

so
  
τ = × ⋅( )( ) =−5 41 10 0 8003. . A m  T2

  
4 33.  mN m⋅
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22.19 (a) Let θ represent the unknown angle; L, the total length of the wire; and   d , the length of one side of
the square coil. Then, using the definition of magnetic moment and the right-hand rule in Figure
22.21, we find

  µ = NAI :
    
= 




L
d

d I
4

2 at angle θ with the horizontal.

At equilibrium,    = 0

    

ILBd mgd
4

90 0
2

0



 ° −( ) − 


 =sin . sinθ θ

and
    

mgd ILBd
2 4





 = 


sin cosθ θ

    
θ = tan−1 ILB

2mg





= tan−1 (3.40 A)(4.00 m)(0.0100 T)

2(0.100 kg)(9.80 m / s2)







=

  
3 97. °

(b)
    
τ θm

ILBd= 

 = ° =

4
3 40 4 00 0 0100 0 100 3 971

4
cos ( . )( . )( . )( . )cos . A  m  T  m

  
3 39.  mN m⋅

*22.20 Choose U = 0 when the dipole moment is at θ = 90.0° to the field.  The field exerts torque of
magnitude     µBsinθ  on the dipole, tending to turn the dipole moment in the direction of
decreasing θ .  According to equations 7.13 and 10.28, the potential energy of the dipole-field
system is given by

    
U − 0 = µBsinθ dθ

90.0°

θ
∫ = µB −cosθ( ) 90.0°

θ = −µBcosθ  + 0 or

22.21
    
B

I
R

q v R
R

= = ( ) =µ µ π0 0

2
2

2
/

  
12 5.  T

22.22 We use the Biot-Savart law. For bits of wire along the straight-line
sections, ds is at 0° or 180° to ~~~~, so ds × ~~~~ = 0. Thus, only the curved
section of wire contributes to B at P. Hence, ds is tangent to the arc
and ~~~~ is radially inward; so ds ×  ~~~~ =       ds dslsin90° = ⊗ . All points
along the curve are the same distance r = 0.600 m from the field
point, so

              
B d

I d

r
I

r
ds

I
r

s= =
×

= =∫ ∫ ∫B
s

all current

µ
π

µ
π

µ
π

0
2

0
2

0
24 4 4

~~

where s is the arc length of the curved wire,

    
s r= = ( ) °( )

°




 =θ π

0 600 30 0
2

360
0 314. . . m  m

Then, 
    
B = ⋅( ) ( )

( )
( )−10

3 00

0 600
0 3147

2 T m/A
 A

 m
 m

.

.
. B = 

  
261 nT  into the page
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*22.23
    
B

I
r

= =
×( )

=
−

µ
π

π

π
0

2

4 1 00

2 1 00

10  A)

 m)

7 ( .

( .   
2 00 10 7. × − T

*22.24 We can think of the total magnetic field as the superposition of the field due to the long straight
wire (having magnitude     µ0I 2πR and directed into the page) and the field due to the circular
loop (having magnitude     µ0I 2R  and directed into the page). The resultant magnetic field is:

      
B = +



 ( )1

1
2

0

π
µ I

R
 directed into the page

22.25 For leg 1, d s  ×  ~~~~ = 0, so there is no
contribution to the field from this segment.
For leg 2, the wire is only semi-infinite; thus,

    
B

I
x

=





=1

2
0

2
µ
π

    

µ
π
0

4
I
x

 into the paper

*22.26 Along the axis of a circular loop of radius R,

    

B
IR

x R
=

+( )
µ0

2

2 2 3 2
2

/

or

    

B
B x R0

2

3 2
1

1
=

( ) +











/

/

where     B0 ≡ µ0I 2R

x/R     B B/ 0
0.00 1.00
1.00 0.354
2.00 0.0894
3.00 0.0316
4.00 0.0143
5.00 0.00754
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*22.27 Label the wires 1, 2, and 3 as shown in Figure (a) and let the
magnetic field created by the currents in these wires be

    B B B1 2 3,   and ,  respectively.

(a) At Point A :

    
B1 = B2 =

µ0I
2π a 2( )

 and
    
B3 =

µ0I
2π 3a( )

The directions of these fields are shown in Figure (b). Observe
that the horizontal components of     B B1 2 and  cancel while their
vertical components both add to     B3.

Therefore, the net field at point A is:

    
B B B B

I
aA = ° + ° + = ° +



1 2 3

045 0 45 0
2

2
2

45 0
1
3

cos . cos . cos .
µ
π

    

BA =
× ⋅( )( )

×( ) ° +





−

−

4 10 2 00

2 1 00 10

2
2

45
1
3

7

2

π

π

 T m/A  A

 m

.

.
cos

  BA = 
  

53 3.  T toward the bottom of the pageµ

(b) At point B :     B B1 2 and  cancel,

leaving
    
BB = B3 =

µ0I
2π 2a( )

Figure (a)

Figure (b)

Figure (c)

    

BB =
× ⋅( )( )
( ) ×( ) =
−

−

4 10 2 00

2 2 1 00 10

7

2

π

π

 T m/A  A

 m

.

.   
20 0.  T toward the bottom of the pageµ

(c) At point C :
    
B1 = B2 =

µ0I
2π a 2( )

and 
    
B3 =

µ0I
2πa

 with the directions shown in Figure (c).  Again, the horizontal components of

    B B1 2 and  cancel. The vertical components both oppose     B3 giving

    

B
I

a
I
a

I
aC = ( ) °












− = ° −




=2

2 2
45 0

2 2
2
2

45 0 10 0 0µ
π

µ
π

µ
π

cos . cos .
  

0
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*22.28 Every element of current creates magnetic field in the same direction, into the page, at the center
of the arc. The upper straight portion creates one-half of the field that an infinitely long straight
wire would create. The curved portion creates one quarter of the field that a circular loop

produces at its center. The lower straight segment also creates field 
    

1
2

0

2
µ
π

I
r

.

The total field is

      
B = + +







=1
2

0 1
4

0 1
2

0

2 2 2
µ
π

µ µ
π

I
r

I
r

I
r

 into the page
    

µ
π

0

2
1 1

4
I

r
+



 into the plane of the paper

    = ( )0 28415. /µ0  into the pageI r

*22.29  (a) Above the pair of wires, the field  out of the page of the 50 A
current will be stronger than the (–k) field of the 30 A
current, so they cannot add to zero. Between the wires, both
produce fields into the page. They can only add to zero
below the wires, at coordinate   y y= − . Here the total field is

        
B = +µ

π
µ
π

0 0

2 2
I
r

I
r

F k:

      
0

2
50

0 28
300=

+( ) −( ) + ( )µ
π

 A
 m

 A
y y.

k k

    
50 30 0 28y y= +( ).  m

    50 30 0 28−( ) = −( )y y.  m

    − = ( )20 30 0 28y .  m  
    

at  my = −0 420.

(b) At     y = 0 1.  m the total field is
        
B = +µ

π
µ
π

0 0

2 2
I
r

I
r

F V:

    
B k k k= × ⋅

−( ) −( ) + −( )




= × −( )

−
−4 10

2
50

0 10
30

0 10
1 16 10

7
4π

π
 T m/A  A

0.28  m
 A
 m

 T
. .

.

The force on the particle is

      
F v B i k= × = − ×( ) ×( )( ) × × ⋅ ⋅( ) −( ) =− −q 2 10 150 10 1 16 106 6 4 C  m/s  N s/C m.

    
3 47 10 2. × −( )− N j

(c) We require
      
F j E Ee q= × +( ) = = − ×( )− −3 47 10 2 102 6.  N  C

So   E =
    
− ×1 73 104. j N/C
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22.30 Let both wires carry current in the x direction, the first at     y = 0
and the second at     y = 10 0.  cm.

(a)
      
B k k= =

× ⋅( )( )
( )

−
µ
π

π

π
0

7

2

4 10 5 00I
r

 T m/A  A

2 0.100 m

.

  B =
  
1 00 10 5. × − T  out of the page

(b)
              
F B i k jB I= × = ( ) ( ) × ×( )[ ] = ×( ) −( )− −

2
5 58 00 1 00 1 00 10 8 00 10ll . . . . A  m  T  N

      
FB = × −8 00 10 5. N  toward the first wire

(c)
      
B k k k= −( ) =

× ⋅( )( )
( ) −( ) = ×( ) −( )

−
−µ

π

π

π
0

7
5

2

4 10 8 00
1 60 10

I
r

 T m/A  A

2 0.100 m
 T

.
.

  B =
  
1 60 10 5. × − T  into the page

(d)
              
F B i . k j-

B I= × = ( ) ( ) × ×( ) −( )[ ] = ×( ) +( )−
1

5 55 00 1 00 1 60 10 8 00 10ll . . . A  m  T  N

    FB =
  

8 00 10 5. × − N towards the second wire

22.31 By symmetry, we note that the magnetic forces on the top and bottom
segments of the rectangle cancel. The net force on the vertical
segments of the rectangle is (using Equation 22.27)

        
F F F i i= + =

+
−



 = −

+( )




1 2

0 1 2 0 1 2

2
1 1

2
µ

π
µ

π
I I

c a c
I I a

c c a
l l

    
F i=

×( )( )( )( ) −
( )( )






−4 10 5 00 10 0 0 450 0 150
0 100 0 250

7π

π

 N/A  A  A  m

2
 m

 m  m

2 . . . .
. .

    
F i= − ×( )−2 70 10 5.  N

or   F =
  

2 70 10 5. × − N  toward the left
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*22.32 To attract, both currents must be to the right. The attraction is
described by

      
F I B I

I
r

= ° =2 2
090

2
l lsin

µ
π

So

      

I
F r

I2
0 1

6
7

2
320 10

4 10
40 0= = ×( ) ( )

× ⋅ ⋅( )( )










=−

−l

π
µ

π
π

 N/m
2 0.5 m

 N s/C m 20 A
 A.

Let y represent the distance of the zero-field point below the upper wire.

Then
        
B = +µ

π
µ
π

0 0

2 2
I
r

I
r

F I
    
0

2
20 400= ( ) +

−( ) ( )






µ
π

 A
 away

 A
0.5 m

 toward
y y

    20 0 5 40.  m −( ) =y y     20 0 5 60.  m( ) = y

  y =
  

0 167.  m below the upper wire

22.33 Each wire is distant from P by

  0 200 45 0 0 141. cos . . m  m( ) ° =

Each wire produces a field at P of equal magnitude:

    
B

I
aA = =

× ⋅( )( )
( ) =
−

µ
π

µ0
7

2

2 00 10 5 00

0 141
7 07

. .

.
.

 T m/A  A

 m
 T

Carrying currents into the page, A produces at P a
field of 7.07 µT to the left and down at –135°, while
B creates a field to the right and down at – 45°.
Carrying currents toward you, C produces a field
downward and to the right at – 45°, while D ’s
contribution is downward and to the left. The total
field is then

4(7.07 µT)sin 45.0° = 
  

20 0.  Tµ  toward the bottom of the page

22.34 Let the current I be to the right. It creates a field B =     µ0I 2π d  at the proton’s location.  And we
have a balance between the weight of the proton and the magnetic force

      
mg(− j) + qv(− i) × µ0I

2πd
(k) = 0 at a distance d from the wire

    

d
qv I

mg
= =

×( ) ×( ) × ⋅( ) ×( )
×( )( ) =

− − −

−
µ

π

π

π
0

19 4 7 6

272

1 60 10 2 30 10 4 10 1 20 10

2 1 67 10 9 80

. . .

. .

 C  m/s  T m/A  A

 kg  m/s2   
5 40.  cm
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*22.35 From Ampere’s law, the magnetic field at point a is given by     Ba = µ0Ia 2π ra , where   Ia  is the net
current through the area of the circle of radius   ra . In this case,     Ia = 1.00 A out of the page (the
current in the inner conductor), so

    

Ba =
× ⋅( )( )

×( ) =
−

−

4 10 1 00

2 1 00 10

7

3

π

π

 T m/A  A

 m

.

.   
200 T  toward top of pageµ

Similarly at point b : 
    
Bb =

µ0 Ib

2π rb
, where   Ib  is the net current through the area of the circle having

radius   rb .

Taking out of the page as positive,     Ib = 1.00 A − 3.00 A = −2.00 A, or     Ib = 2.00 A into the page.
Therefore,

    

Bb =
× ⋅( )( )

×( ) =
−

−

4 10 2 00

2 3 00 10

7

3

π

π

 T m/A  A

 m

.

.   
133 T  toward bottom of pageµ

22.36 (a)
    
B

NI
rinner

 T m/A  A

0.700 m
= =

× ⋅( )( ) ×( )
( ) =

−
µ
π

π

π
0

7 3

2

4 10 900 14 0 10

2

.

  
3 60.  T

(b)
    
B

NI
router

 T m/A  A

1.30 m
= =

× ⋅( )( ) ×( )
=

−
µ
π
0

7 3

2

2 10 900 14 0 10.

  
1 94.  T

22.37 (a) One wire feels force due to the field of the other ninety-nine.

    

B
I r
R

= =
× ⋅( )( )( ) ×( )

×( )
= ×

− −

−
−µ

π

π

π
0 0

2

7

2 2
3

2

4 10 99 2 00 0 200

2 0 500 10
3 17 10

 T m/A  A 10  m

 m
 T

2. .

.
.

This field points tangent to a circle of radius 0.200 cm and exerts force
            F B= ×Ill  toward the center of the bundle, on the single hundredth wire:

      
F IB/ sin . . sin .l= = ( ) ×( ) ° =−θ 2 00 3 17 10 90 6 343 A  T  mN/m

    

FB

l
=

  
6 34 10 3. × − N/m inward

(b)   B r∝ , so B is greatest at the outside of the bundle. Since each wire carries

the same current, F is 
  

greatest at the outer surface .

22.38 From 
        

B ⋅ d1= µ0I ,∫
    
I

rB= =
×( )( )
×

=
−

−
2 2 1 00 10 0 100

4 100

3

7
π
µ

π

π

. .

  
500 A
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*22.39 We assume the current is vertically upward.

(a) Consider a circle of radius r slightly less than R. It encloses no current so from

      
B s⋅ =∫ d Iµ0 inside     B r2 0π( ) =

we conclude that the magnetic field is zero.

(b) Now let the r be barely larger than R. Ampere’s law becomes     B R I2 0π µ( ) = ,

so  
    

B
I
R

= µ
π
0

2

The field’s direction is   J  
  

tangent to the wall of the cylinder in a counterclockwise sense

(c) Consider a strip of the wall of width dx and length l. Its width is so small compared to     2π R  that
the field at its location would be essentially unchanged if the current in the strip were turned off.

The current it carries is 
    
I

I dx
Rs = 2π

 up

The force on it is 
                
F B up into page radially inward= × =







× =I
I dx

R
I
R

I dx
Rs ll

2 2 4
0 0

2

2 2π
µ
π

µ
π

l
l

    

The pressure on the strip and everywhere on the cylinder is

      

P
F
A

I dx
R dx

I

R
= = =

( )
µ
π

µ
π

0
2

2 2
0

2

24 2

l

l
 inward

The pinch effect makes an effective demonstration when an aluminum
can crushes itself as it carries a large current along its length.

22.40 The resistance of the wire is 
      
Re =

ρl

π r2 , so it carries current
      
I

R
r

e
= =E E

l

π
ρ

2

If there is a single layer of windings, the number of turns per length is the reciprocal of the wire
diameter:     n r= 1 2/ .

So,

      

B n I
r
r

r= = ( ) = =
× ⋅( )( ) ×( )

× Ω ⋅( )( )
=

− −

−µ µ π
ρ

µ π
ρ

π π
0

0
2

0
7 3

82 2

4 10 20 0 2 00 10

2 1 70 10 10

E

l

E

l

 T m/A  V  m

 m .0 m

. .

.   
464 mT

22.41
      
B

N
I= µ0 l

so

    

I
B

n
= =

×( )
× ⋅( ) =

−

−µ π0

41 00 10 0 400

1000

. . T  m

4 10  T m/A7   
31 8.  mA
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22.42 Let the axis of the solenoid lie along the y–axis from     y = 0 to     y = l. We will determine the field at

  y a= . This point will be inside the solenoid if       0 < <a l and outside if     a < 0 or     a > l. We think of
solenoid as formed of rings, each of thickness dy. Now I is the symbol for the current in each turn
of wire and the number of turns per length is     N l( ) . So the number of turns in the ring is     N dyl( )
and the current in the ring is 

      
I I N dyring = ( )l . Now we use the result of Example 22.6 for the field

created by one ring:

    

B
I R

x R
ring

ring=
+( )

µ0
2

2 2 3 2
2

/

where x is the name of the distance from the center of the ring, at location y, to the field point

  x a y= − . Each ring creates field in the same direction, along our y–axis, so the whole field of the
solenoid is

      

B B
I R

x R

I
N

dy R

a y R

INR dy

a y R
= =

+( )
=

−( ) +( )
=

−( ) +( )∑ ∑ ∫ ∫ring
all rings

ring   
µ µ µ0

2

2 2 3 2

0
2

2 2
3 20

0
2

2 2
3 202 2 2 2

/ / /
l

l

l l

To perform the integral we change variables to   u a y= − .

      

B
INR du

u Ra

a
= −

+( )
−

∫µ0
2

2 2 3 22l

l

/

and then use the table of integrals in the appendix:

(a)
      
B

INR u

R u R a

a

= −

+
=

−
µ0

2

2 2 22l

l

      

µ0
2 2 2 22

IN a

a R

a

a Rl

l

l+
− −

−( ) +















(b) If   l is much larger than R and     a = 0,

we have
      
B

IN IN≅ − −







 =

µ µ0
2

0

2
0

2l

l

l l

This is just half the magnitude of the field deep within the solenoid. We would get the same result
by substituting     a = l to describe the other end.

22.43 (a)
    
I

e v
r

=
2π     

µ
π

π= =






=I A
e v

r
r

2
2

  
9 27 10 24. × ⋅− A m2

The Bohr model predicts the correct magnetic moment. However, the
“planetary model” is seriously deficient in other regards.

(b) Because the electron is (–), its [conventional] current is clockwise, as

seen from above, and µ points 
  

downward .
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*22.44 We model a sample of material magnetized to saturation as a collection of equal parallel magnetic
moments. The field B they together produce must be proportional to the value of each magnetic
moment µ. The field must be proportional to the magnetic permeability of space   µ0 , as in
equation 22.26. The uniform average field is finally proportional to the number density of the
magnetic moments. Although we do not prove it here, the proportionality constant is exactly 1.
We have     B xn= µ µ0  where n is the number of atoms per volume and x is the number of electrons
per atom contributing.

Then

    

x
B

n
= =

×( ) × ⋅( ) × ⋅( ) =− − −µ µ π0
24 7

2 00

9 27 10 4 10

.

.

 T

8.50 10  m  N m/T  T m/A28 3   
2 02.

*22.45 Let N be the number of charges. For the vehicle we want

    
Σ =Fy 0:     − + ° =mg NqvBsin90 0

    
N

mg
qvB

= =
× ( )

( )( )( ) ⋅ ⋅( )
=−

5 10

10 400 1000 1 3600 0 1

4

6

 kg 9.8 m/s

 C  km/h /k  h/  s  N s/C m

2

.   
4 1010×

*22.46 The energy per distance is the effective force required to propel the vehicle:

      

W
x

F
W t

x t v∆
= =

∆
=/

/
P

(a)
      

P

v
=

( )( )
×

= = ( )

 =

10 10 3600

400 10
900 900

2 3

3

 J/s  s/1 h

 m/h
 N  J/m

1609 m
1 mi   

1 4 106. × J/mi

(b) We call 20 mi/gal the fuel economy. Then 1 gal/20 mi is the measure of energy use in which we
are interested:

    

W
x∆
=


















×





=

−1 3 786 10
1

3 gal
20 mi

 L
1 gal

 m
 L

754 kg
m

40 10  J
kg

3

3

6.
  

5 7 106. × J/mi

(c) One automobile passenger uses chemical energy at the rate   5 7 106. ×  J/mi. One Transrapid
passenger uses electric energy at the rate

  

1 4 10
100

1 4 10
6

4.
.

× = × J/mi
 J/mi,  

  
smaller by 400 times .

If we suppose that electric energy must be generated by burning a fossil fuel with limited
efficiency, then a fair comparison is between the output energies propelling the vehicles, namely

  
0 20 5 7 10 1 1 106 6. . .×( ) = × J/mi  J/mi for the car and   1 4 104. ×  J/mi  for the maglev vehicle. The
latter is 80 times smaller.

The dependence of American society on gasoline is a dangerous and destructive addiction which
we cannot continue in the long run.
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22.47 (a) The element ds is a distance r from P. The direction of the
field at P due to this element is out of the page, since               ds × ~~  is
out of the page. In fact, al l elements give contributions
directly out of the page at P. Therefore we have only to
determine the magnitude of the field.

Since     d dxs = i  in this case,

we see that               d dxs× =~~ sinθ

using this in Equation 22.17,

we get
    
dB

I dx
r

= µ
π

θ0
24

sin
(1)

In order to integrate this expression, we must relate the variables θ , x, and r. One approach is to
express x and r in terms of θ . From the geometry in figure 22.47a and some simple differentiation,
we obtain the following relationships:

    
r

a
a= =

sin
csc

θ
θ (2)

Since 
    
tanθ = − a

x
 from the right triangle in Figure 22.47a, we have     x a= − cotθ , so

    dx a d= csc2θ θ (3)

Substitution of (2) and (3) into (1) gives

    
dB

I
a

d= µ
π

θ θ0

4
sin (4)

Thus, we have reduced the expression to one involving only the variable θ . We can now obtain
the total field at P by integrating (4) over all elements that subtend angles ranging from   θ1 to   θ2,
as defined in Figure 22.47. This gives

    
B

I
a

d
I
a

= = −( )∫µ
π

θ θ µ
π

θ θ
θ

θ0 0
1 24 41

2 sin cos cos

We can apply this result to find the magnetic field of any
straight wire — if we know the geometry and the hence the
angles   θ1 and   θ2.

(b) Consider the point P a distance a from the wire. Then for an
infinite wire,

  θ1 0→

and   θ π2 → −  radians

 and 
    
B

I
a

= µ
π
0

2
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22.48 (a) Define vector  h  to have the downward direction of the current,
and vector  L  to be along the pipe into the page as shown.  The

  
electric current experiences a magnetic force

I(h × B) in the direction of L.

(b) The sodium, consisting of ions and electrons, flows along the
pipe transporting no net charge. But inside the section of length
L, electrons drift upward to constitute downward electric
current J × (area) = JLw.

The current then feels a magnetic force         I LwhBh B× = °J sin90

This force along the pipe axis will make the fluid move,
exerting pressure

      

F LwhB
hwarea

= =J
    

JLB

22.49 The boundary between a region of strong magnetic
field and a region of zero field cannot be perfectly
sharp, but we ignore the thickness of the transition
zone. In the field the electron moves on an arc of a
circle:

  Σ =F ma:

    
q vB

mv
r

sin90
2

° =

    

v
r

q B
m

= = =
×( ) ⋅ ⋅( )

×( )
− −

−ω
1 60 10 1019 3

31

.  C  N s/C m

9.11 10  kg

  = ×1 76 108.  rad/s

The time for one half revolution is,

from   ∆ ∆θ ω= t

    
∆ ∆

t = =
×

=θ
ω

π rad
1.76 10  rad/s8   

1 79 10 8. × − s

(b) The maximum depth of penetration is the radius of the path.

Then
    
v r= = ×( )( ) = ×−ω 1 76 10 0 02 3 51 108 1 6. . . s  m  m/s

and
    
K mv= = ×( ) ×( ) = × = × ⋅

×
=− −

−

−
1
2

2 1
2

31 6 2 18
18

199 11 10 3 51 10 5 62 10
5 62 10
1 60 10

. . .
.
.

 kg  m/s  J
 J e
 C   

35 1.  eV
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22.50 The magnetic force on each proton,       F v BB q qvB= × = °sin90  downward
perpendicular to velocity, causes centripetal acceleration, guiding it into
a circular path of radius r, with

    
qvB

mv
r

=
2

and
  
r

mv
qB

=

We compute this radius by first finding the proton’s speed:

    
K mv= 1

2
2

    
v

K
m

= =
×( ) ×( )

×
= ×

−

−
2 2 5 00 10 1 60 10

3 10 10
6 19

7
. .

.
 eV  J/eV

1.67 10  kg
 m/s27

Now,

    

r
mv
qB

= =
×( ) ×( )
×( ) ⋅ ⋅( )

=
−

−

1 67 10 3 10 10

0 0500
6 46

27 7. .

.
.

 kg  m/s

1.60 10  C  N s/C m
 m

19

(b) From the figure, observe that

    
sin

.
 

 m 1 m
6.46 m

α = =1 00
r

  
α = °8 90.

(a) The magnitude of the proton momentum stays constant, and its final y component is

  
− ×( ) ×( ) ° =−1 67 10 3 10 10 8 9027 7. . sin . kg  m/s

  
− × ⋅−8 00 10 21. kg m/s

*22.51 (a) The net force is the Lorentz force given by

    F = qE + qv ×B = q E + v ×B( )

    
F i j k i j k i j k= ×( ) − −( ) + + −( ) × + +( )[ ]−3 20 10 4 1 2 2 3 1 2 4 119.  N

Carrying out the indicated operations, we find:

  F =
    

3 52 1 60 10 18. .i j−( ) × − N

(b)

    

θ = cos−1 Fx

F




 = cos−1 3.52

3.52( )2 + 1.60( )2











=

  
24 4. °
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*22.52 Let   vx  and   v⊥  be the components of the velocity of the positron
parallel to and perpendicular to the direction of the magnetic
field.

(a) The pitch of trajectory is the distance moved along x by the
positron during each period, T (see Equation 22.5)

    
p v T v

m
Bqx= = °( )





cos .85 0
2π

    

p =
×( ) °( )( ) ×( )

×( ) =
−

−

5 00 10 85 0 2 9 11 10

0 150 1 60 10

6 31

19

. cos . .

. .

π
  
1 04 10 4. × − m

(b) From Equation 22.3, 
    
r

mv
Bq

mv
Bq

= = °⊥ sin .85 0

    

r =
×( ) ×( ) °( )
( ) ×( ) =

−

−

9 11 10 5 00 10 85 0

0 150 1 60 10

31 6

19

. . sin .

. .   
1 89 10 4. × − m

22.53
    
Σ =Fy 0: +n – mg = 0

    Σ =Fx 0:     − + ° =µkn IBdsin .90 0 0

    
B

mg
I d
k= =

( )( )
( )( ) =µ 0 100 0 200 9 80

10 0 0 500

. . .

. .

 kg  m/s

 A  m

2

  
39 2.  mT

*22.54 (a) The magnetic force acting on ions in the blood stream will
deflect positive charges toward point A  and negative
charges toward point B. This separation of charges produces
an electric field directed from A toward B. At equilibrium,
the electric force caused by this field must balance the
magnetic force, so

  
qvB = qE = q

∆V
d







or

    

v
V

Bd
= =

×( )
( ) ×( ) =

−

−
∆ 160 10

0 0400 3 00 10

6

3

 V

 T  m. .   
1 33.  m/s

(b)
  

No . Negative ions moving in the direction of v would be deflected toward point B, giving A a
higher potential than B. Positive ions moving in the direction of v would be deflected toward A,
again giving A a higher potential than B. Therefore, the sign of the potential difference does not
depend on whether the ions in the blood are positively or negatively charged.
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*22.55 Suppose the input power is

    120 120 W  V= ( ) I :
    

I ~ 1 100A A=

Suppose
  
ω π= 








2000

1 2
200 rev/min

 min
60 s

 rad
1 rev

 rad/s~

and the output power is   20 200 W  rad/s= = ( )τ ω τ
  
τ ~ 10 1− ⋅N m

Suppose the area is about   ( ) ( )3 cm 4 cm× , or
    

A ~ 10 3−  m2

Suppose that the field is
    

B ~ 10 1− T

Then, the number of turns in the coil may be found from   τ ≅ NIAB :

    
0 1 1 10 103 1.  N m ~  C/s  m  N s/C m2⋅ ( )( ) ⋅ ⋅( )− −N

giving 
    

N ~ 103

22.56 (a) Use equation 22.23 twice:

    

B
IR

x R
x =

+( )
µ0

2

2 2 3 2
2

/

 

    

B B B
IR

x R R x R
x x= + =

+( )
+

−( ) +( )
















1 2
0

2

2 2 3 2 2 2 3 22
1 1µ

/ /

    

B
IR

x R R x xR
=

+( )
+

+ −( )
















µ0
2

2 2 3 2 2 2 3 22
1 1

2 2
/ /

If each coil has N turns, the field is just N times larger.

(b)
    

dB
dx

IR
x x R R x xR x R= − ( ) +( ) − + −( ) −( )





− −µ0
2

3
2

2 2 5 2 3
2

2 2 5 2

2
2 2 2 2 2

/ /

Substituting 
    
x

R=
2

 and canceling terms, 
    

dB
d x

= 0

    

d B
dx

2

2 =
    

− +( ) − +( ) + + −( ) − − + −( )





− − − −3
2

5 2 2 5 2 20
2

2 2 5 2 2 2 2 7 2 2 2 5 2 2 2 2 7 2µ IR
x R x x R R x xR x R R x xR( )

Again substituting 
    
x

R=
2

 and canceling terms, 
    

d B
dx

2

2 0=
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22.57 (a) Number of unpaired electrons = 
  

8.00 10  A m
9.27 10  A m

22 2

24 2
× ⋅
× ⋅

=−   
8 63 1045. ×

Each iron atom has two unpaired electrons, so the number of iron atoms required is

  
1
2

8.63 × 1045( ) .

(b)

  

Mass
 atoms  kg/m

 atoms/m

3

3
=

×( )( )
×( ) =

4 31 10 7900

8 50 10

45

28

.

.   
4 01 1020. × kg

22.58 Model the two wires as straight parallel wires (!)

(a)
      
F

I
aB = µ

π
0

2

2
l

 (Equation 22.27)

    

FB =
×( )( ) ( )( )

×( ) =
−

−

4 10 140 2 0 100

2 1 00 10

7 2

3

π π

π

.

.   
2 46.  N  upward

(b)
    
a

m g

mloop
loop

loop

 N
=

−
=

2 46.
  
107 m/s2  upward

22.59
    
B

I
R

= =
× ⋅( ) ×( )

( ) = × =
−

−µ
π

π

π
0

7 4
5

2

4 10 1 00 10

2 100
2 00 10

 T m/A  A

 m
 T

.
.

  
20 0.  Tµ

*22.60 (a)
    
B

I
r

= =
× ⋅( )( )

( ) =
−

µ
π

π

π
0

7

2

4 10 24 0 T m/A  A

2 0.0175 m

.

  
2 74 10 4. × − T

(b) At point C, conductor AB produces a field 
    
1
2

42 74 10. ×( ) −( )−  T j ,   e conductor DE produces a

field of 
    
1
2

42 74 10. ×( ) −( )−  T j ,   H BD produces no field, and AE produces negligible field. The

total field at C is
    

2 74 10 4. × −( )− T j

(c)
              
F B jB I= × = ( )( ) × ×( ) −( )[ ] =−ll 24 0 0 0350 5 2 74 10 4. . . A  m  Tk

    
1 15 10 3. ×





− N i    A

(d)
      
a

i
= Σ =

×( )
×

=
−

−
F

m

1 15 10

3 00 10

3

3

.

.

 N

 kg     
0 384.  m/s2( )i

(e) The bar is already so far from AE that it moves through nearly constant magnetic field. The force

acting on the bar is constant, and therefore the bar’s 
  

acceleration is constant

(f)
    
v v axf i

2 2 2 0 2 0 384 1 30= + = + ( )( ). . m/s  m2 , so
    
v f =

    
0 999.  m/s( )i
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22.61 (a) On the axis of a current loop, the magnetic field is given by

    

B
IR

x R
=

+( )
µ0

2

2 2 3 2
2

/

where in this case 
    
I

q= ( )2π ω/
. Therefore, 

    

B
R q

x R
=

+( )
µ ω

π
0

2

2 2 3 2
4

/

when 
    
x

R=
2

, then

    

B
R q

R
=

( )
=µ ω

π
0

2

5
4

2 3 2
4

/
    

µ ω
π

0

2 5 5
q

R.

22.62
    
J

ls
I=

From Ampere’s Law,
      

B s =⋅∫ d Iµ0

      B s⋅ =2 0l J lµ ∴
      

B s= µ0

2
J
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so
    

I = ×2 01 109. A  toward the west

22.64 Start with the force on a small segment of wire 2, given
by     d I dF B= ×s  (Equation 22.11), where, in this case,

    I I= 2 and B is the magnetic field due to wire 1 at the
position of the segment of wire 2 of length dx. From
Ampere’s law, the field at the distance x from wire 1 is

      
B k= −( )µ

π
0 1

2
I
x

where the field points into the page, as indicated by the
unit vector notation (–k). Taking the length of our
segment as     d dxs = i we find

      
d

I I
x

dx
I I dx

x
F i k j= × −( )[ ] =µ

π
µ

π
0 1 2 0 1 2

2 2

Integrating this equation between the limits   x a=  to   x a b= +  gives

      
F j j= [ ] = +





+µ
π

µ
π

0 1 2 0 1 2

2 2
1

I I
x

I I b
aa

a bln ln  .

The force points upward, as shown in Figure 22.64.
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22.65 Consider a longitudinal filament of the strip of width
dr as shown in the sketch.  The contribution to the field
at point P due to the current dI in the element dr is

    
dB

dI
r

= µ
π
0

2

where dI = I(dr/w)

      
B B k= = =

+

∫∫ d
I dr
wr

b

b w µ
π
0

2
      

µ
π

0

2
1

I
w

w
b

ln +



 k
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ANSWERS TO EVEN NUMBERED PROBLEMS

  2. (a)   8 67 10 14. × −  N (b)   5 19 1013. ×  m/s2

  4.   8 93 10 30. × −  N down,   1 60 10 17. × −  N up,   4 80 10 17. × −  N down

  6. (a) 5.00 cm (b)   8 78 106. ×  m/s

  8. 244 kV/m

10. (a)   7 66 107. ×  rad/s (b) 26.8 Mm/s (c) 3.76 MeV
(d)   3 13 103. ×  rev (e) 257 µs

12. (a) See the solution (b)     n IB qt VH= / ∆

14. 0.109 A  to the right

16. ab:  0,  bc:  –40.0 mN i,  cd:  –40.0  mN k,  da: (40.0 i + 40.0 k) mN

18. (a)   5 41.  mA m2⋅ (b) 4.33 mN⋅m

20. See the solution

22. 261 nT into the page

24.
    

1
1

2
0+



π
µ I

R
    directed into the page

26. See the solution

28.     µ π0 2 1 1 4I r/ / /( ) +( ) into the plane of the paper

30. (a) 10.0 µT   out of the page (b) 80.0 µN   toward the first wire
(c) 16.0 µT   into the page (d) 80.0 µN   toward the second wire

32. 0.167 m below the upper wire, 0.333 m above the lower wire

34. 5.40 cm
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36. (a) 3.60 T (b) 1.94 T

38. 500 A

40. 464 mT

42. (a)

      

µ0
2 2 2 22

IN a

a R

a

a Rl

l

l+
− −

−( ) +













(b) See the solution

44. 2.02

46. (a) 1.4 MJ/mi (b) 5.7 MJ/mi (c) 1/400

48. (a) The electric current feels a magnetic force. (b) See the solution

50. (a)   − × −8 00 10 21.   kg⋅m/s (b) 8.90°

52. (a)   1 04 10 4. × −   m (b)   1 89 10 4. × −   m

54. (a) 1.33 m/s
(b) No.  Positive ions moving toward you in magnetic field to the right feel upward magnetic force,

and migrate upward in the blood vessel.  Negative ions moving toward you feel downward
magnetic force and accumulate at the bottom of this section of vessel.  Thus both species can
participate in the generation of the same emf.

56. See the solution

58. (a) 2.46 N up (b)   107 m/s2 up

60. (a) 274 µT (b) –274 j µT (c) 1.15 i mN
(d)     0 384 2.   i m/s (e) acceleration is constant (f) 0.999 i m/s

62.
      
B k= µ0

2
Js   for x > 0  and  

      
B k= − µ0

2
Js   for x < 0

64. See the solution


