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ANSWERS TO QUESTIONS

Q23.1 The magnetic flux is     ΦB BA= cosθ . Therefore the flux is maximum when B is perpendicular to the loop
of wire and zero when there is no component of magnetic field perpendicular to the loop.

Q23.2 The force on positive charges in the bar is     F v B= ×( )q . If the bar is moving to the left, positive charge
will move downward and an electric field will be established upwards.

Q23.3 No. The magnetic force acts within the bar, but has no influence on the forward motion of the bar.

Q23.4 Moving magnetic fields create electric fields that, if strong enough, can cause static or communications
drop – outs.

Q23.5 A current could be set up in the bracelet by moving the bracelet through a magnetic field.

Q23.6 As water falls, it gains velocity and kinetic energy. It then pushes against turbine blades, transferring
its energy to the rotor of a large AC generator. The rotor of the generator has a DC current which
powers electromagnets in the rotor. Because the rotor is spinning, the electromagnets create a magnetic
flux that changes in time,     ΦB BA t= cosω . Coils of wire that are placed near the rotor experience an
induced EMF of     E = −N d dtBΦ . This induced EMF is the voltage source for the current in our electric
power lines.

Q23.7 Yes. The induced eddy currents on the surface of the aluminum will slow the descent of the aluminum.
It will fall very slowly.

Q23.8 By the magnetic force law     F v B= ×( )q : the positive charges in the moving bar will flow downward and
therefore clockwise in the circuit. If the bar is moving to the left, the positive charge in the bar will flow
upward and therefore counterclockwise in the circuit.

Q23.9 When the nonmagnetic but conducting sheet moves in the magnetic field, eddy currents are induced in
the aluminum. These currents feel forces due to the same magnetic field, contributing to a net force
opposite in direction to the motion of the sheet. The force is strong if the sheet is moving fast,
efficiently damping its motion, but the force goes to zero as the speed approaches zero. The magnetic
damping force cannot affect the equilibrium position of the balance beam.

Q23.10 The counterclockwise current in the solenoid
coil produces a magnetic field that increases
rapidly. The increasing upward flux of this
field through the ring induces an emf to
produce clockwise current in the ring. The
magnetic field of the solenoid has a radially
outward component at each point on the ring.
This field component exerts upward force on
the current in the ring there. The whole ring
feels a total upward force larger than its
weight.
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Q23.11 Oscillating current in the solenoid produces an always — changing magnetic field. Vertical flux
through the ring, alternately increasing and decreasing, produces current in it with a direction that is
alternately clockwise and counterclockwise. The current through the ring’s resistance produces
internal energy at the rate     I R2 .

Q23.12 The inductance of the series combination of inductor     L1 and inductor     L2  is     L L M1 2 12+ + ,  where     M12
is the mutual inductance of the two coils. It can be defined as the emf induced in coil two when the
current in coil one changes at one ampere per second, due to the magnetic field of coil one producing
flux through coil two.

Q23.13 (a) The south pole of the magnet produces an upward magnetic field that increases as the magnet
approaches. The loop opposes change by making its own downward magnetic field; it carries
current clockwise, which goes to the left through the resistor.

(b) The north pole of the magnet produces an upward magnetic field. The loop sees decreasing
upward flux as the magnet falls away, and tries to make an upward magnetic field of its own by
carrying current counterclockwise, to the right in the resistor.

Q23.14 (a) The battery makes counterclockwise current

    I1 in the primary coil, so its magnetic field     B1
is to the right and increasing just after the
switch is closed. The secondary coil will
oppose the change with a leftward field     B2,
which comes from an induced clockwise
current     I2 that goes to the right in the resistor.

(b) At steady state the primary magnetic field is
unchanging, so no emf is induced in the
secondary.

(c) The primary’s field is to the right and
decreasing as the switch is opened. The
secondary coil opposes this decrease by
making its own field to the right, carrying
counterclockwise current to the left in the
resistor.

Q23.15 The energy stored in a capacitor is proportional to the square of the electric field, and the energy stored
in an induction coil is proportional to the square of the magnetic field. The capacitor’s energy is
proportional to its capacitance, which depends on its geometry and the dielectric material inside. The
coil’s energy is proportional to its inductance, which depends on its geometry and the core material.
On the other hand, we can think of Henry’s discovery of self-inductance as fundamentally new. Before
a certain school vacation at the  Albany Academy in 1831, one could visualize the universe as
consisting of only one thing, matter. All the forms of energy then known (kinetic, gravitational, elastic,
internal, electrical) belonged to chunks of matter. But the energy that temporarily maintains a current
in a coil after the battery is removed is not energy that belongs to any bit of matter. This energy is
vastly larger than the kinetic energy of the drifting electrons in the wires. This energy belongs to the
magnetic field around the coil. Beginning in 1831, Nature has forced us to admit that the universe
consists of matter and also of fields, massless and invisible, known only by their effects.

Q23.16 The energy stored in the magnetic field of an inductor is proportional to the square of the current.
Doubling I makes 

    
U LI= 1

2
2 get four times larger.

Q23.17 The current decreases not instantaneously but over some span of time. A spark can appear at the
switch as it is opened because the self-induced voltage is maximum at this instant.  The voltage can
therefore cause breakdown of the air between the contacts.
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Q23.18 The motional emf between the wingtips cannot be used to run a light bulb. To connect the light, an
extra insulated wire would have to be run out along each wing, making contact with the wing tip. The
wings with the extra wires and the bulb constitute a single-loop circuit. As the plane flies through a
uniform magnetic field, the magnetic flux through this loop is constant and zero emf is generated. On
the other hand, if the magnetic field is not uniform, a large loop towed through it will generate pulses
of positive and negative emf. This phenomenon has been demonstrated with a cable unreeled from the
space shuttle.

Q23.19 An object cannot exert a net force on itself. An object cannot create momentum out of nothing. A coil
can induce an emf in itself. When it does so, the actual forces acting on charges in different parts of the
loop add as vectors to zero.

Q23.20 A physicist’s list of constituents of the universe in 1829 might include matter, light, heat, the stuff of
stars, charge, momentum, and several other entries. Our list today might include quarks, electrons,
muons, tauons, and the neutrinos of matter; gravitons of gravitational fields; photons of electric and
magnetic fields; W and Z particles; gluons; energy; momentum; angular momentum; charge; baryon
number; three different lepton numbers; upness; downness; strangeness; charm; topness; and
bottomness.  Alternatively, the relativistic interconvertability of mass and energy, and of electric and
magnetic fields, can be used to make the list look shorter.  Some might think of the conserved
quantities energy, momentum, … bottomness as properties of matter, rather than as things with their
own existence.  The idea of a field is not due to Henry, but rather to Faraday, to whom Henry
personally demonstrated self-induction.  Still the thesis stated in the question has an important germ of
truth.  Henry precipitated a basic change if he did not cause it.  The biggest difference between the two
lists is that the 1829 list does not include fields and today’s list does.
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PROBLEM SOLUTIONS
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23.3 Noting unit conversions from F = qv × B and U = qV, the induced voltage is
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23.5 (a)
    
E = − = − =d

dt
A

dB
dt

BΦ

    

AB
e tmax /

τ
τ−

(b)
      
E = ( ) ( ) =−0 160 0 350

2 00

2
4 00 2 00. .

.
. / . m  T

 s
e

  
3 79.  mV

(c) At t = 0, E = 
  

28 0.  mV
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The long wire produces magnetic flux into the page through the
rectangle, shown by the first hand in the figure to the right.

As the magnetic flux increases, the rectangle produces its own magnetic

field out of the page, which it does by carrying 
  

counterclockwise

current (second hand in the figure).
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23.9 (a)     B iext extB=  and   Bext  decreases; therefore, the
induced field is       B i0 0= B  (to the right) and the

current in the resistor is directed 
  

to the right .

(b)     B iext extB= −( ) increases; therefore, the induced
field       B i0 0= +( )B  is to the right, and the current in

the resistor is directed 
  

to the right  .

(c)     B kext extB= −( )  into the paper and   Bext  decreases;
therefore, the induced field is       B k0 0= −( )B  into the
paper, and the current in the resistor is directed

  
to the right

(d) By the magnetic force law,     F qB = ×( )v B .
Therefore, a positive charge will move to the top

of the bar if B is 
  

into the paper .
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23.12     FB = IlB and     E l= B v
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23.13 (a) For maximum induced emf, with positive charge at the top of the antenna,
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*23.15 (a) Suppose, first, that the central wire is long and straight. The enclosed current of unknown
amplitude creates a circular magnetic field around it, with the magnitude of the field given by
Ampere’s Law.
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at the location of the Rogowski coil, which we assume is centered on the wire. This field passes
perpendicularly through each turn of the toroid, producing flux
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π
0

2
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The toroid has     2π Rn  turns. As the magnetic field varies, the emf induced in it is
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This is an alternating voltage with amplitude       Emax max= µ ω0nA I . Measuring the amplitude
determines the size     Imax  of the central current. Our assumptions that the central wire is long and
straight and passes perpendicularly through the center of the Rogowski coil are all unnecessary.

(b) If the wire is not centered, the coil will respond to stronger magnetic fields on one side, but to
correspondingly weaker fields on the opposite side. The emf induced in the coil is proportional to
the line integral of the magnetic field around the circular axis of the toroid. Ampere’s Law says
that this line integral depends only on the amount of current the coil encloses. It does not depend
on the shape or location of the current within the coil, or on any currents outside the coil.
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*23.16 (a) The force on the side of the coil entering the field (consisting of
N wires) is

F = N(ILB) = N(IwB)

The induced emf in the coil is

    
E = = ( ) =N

d
dt

N
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F N

NBwv
R

wB= 



 =

    

N B w v
R

2 2 2
 to the left

(b) Once the coil is entirely inside the field,     ΦB NBA= = constant ,

so E = 0, I = 0, and F = 
  

0

(c) As the coil starts to leave the field, the flux decreases at the rate

  Bw v , so the magnitude of the current is the same as in part (a),
but now the current is clockwise. Thus, the force exerted on the
trailing side of the coil is:
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23.17 (a) At terminal speed,
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(b) The emf is directly proportional to   vT , but the current is
inversely proportional to R. A large R means a small current at
a given speed, so the loop must travel faster to get   F mgB = .

(c) At a given speed, the current is directly proportional to the
magnetic field. But the force is proportional to the product of
the current and the field. For a small B, the speed must increase
to compensate for both the small B and also the current, so

    v BT ∝ 2 .
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*23.18 Observe that the homopolar generator has no commutator and
produces a voltage constant in time: dc with no ripple. In time dt,
the disk turns by angle   d dtθ ω= . The outer brush slides over
distance   r dθ .

The radial line to the outer brush sweeps over area
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2
1
2

2θ ω

The emf generated is 
      
E = − ⋅N

d
dt

B A

      
E = −( ) ° = − ( )1 0 1

2
2B

dA
dt

B rcos ω

(We could think of this as following from the result of Example 23.3.)
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A free positive charge q shown, turning with the disk, feels a magnetic force         qv B×  Z  radially

outward. Thus the 
  

outer contact is positive .
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(b)       E t NBA t NBA( ) = ⋅ =ω ω ω θsin sin
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plane of coil is parallel to B

*23.20
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23.21
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*23.24 Treating the telephone cord as a solenoid, we have:
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23.27 From 
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23.31 At time t,
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(b) Similarly, to reach 90% of     Imax ,     0 900 1. /= − −e t τ
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23.32 Taking τ = L/R ,     I = I0e−t/τ :
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*23.34
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23.35 (a)     ∆VR = IR = (8.00 Ω)(2.00 A) = 16.0 V

and       ∆ ∆V VL R= = − =−E 36 0 16 0 20 0. . . V  V  V

Therefore,
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20.0 V
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0 800.

(b)     ∆VR = IR = (4.50 A)(8.00 Ω) = 36.0 V

    ∆ ∆V VL R= − =E
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*23.36 Name the currents as shown. By Kirchhoff’s laws:

    I1 = I2 + I3 (1)

    + − − =10 0 4 00 4 00 01 2. . . V I I (2)

    
+ − − − ( ) =10 0 4 00 8 00 1 00 01 3

3. . . . V I I
dI
dt

(3)

From (1) and (2),     +10.0 − 4.00 I1 − 4.00 I1 + 4.00 I3 = 0

and     I1 = 0.500 I3 + 1.25 A

Then (3) becomes
    
10 0 4 00 0 500 1 25 8 00 1 00 03 3

3. . . . . . V  A− +( ) − − ( ) =I I
dI
dt

    1 00 10 0 5 003 3. / . . H   V( )( ) + ( ) =dI dt IΩ

We solve the differential equation using Equations 23.13 and 23.14:
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 −[ ] =− Ω( ). . / . V

10.0 
  H

    
0 500 1 10.  A /s( ) −[ ]−e t

    I1 = 1.25 + 0.500 I3 =
    
1 50 0 250 10. . / A  A s− ( ) −e t
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*23.37
    
τ = = =L

R
0 140
4 90

28 6
.
.

.  ms

      
I

Rmax
.

.= = =E 6 00
1 22

 V
4.90 

 A
Ω

(a)
    
I = Imax 1− e−t/τ( ) so

    
0.220 = 1.22 1− e−t/τ( )

    e
−t/τ = 0.820:     t = −τ ln(0.820) =

  
5 66.  ms

(b)
    
I = Imax 1− e

− 10.0
0.0286









 = (1.22 A) 1− e−350( ) =   

1 22.  A

(c)     I = Imaxe−t/τ and     0 160 1 22. . /= −e t r

so     t = − ( ) =τ ln .0 131
  

58 1.  ms

23.38 (a)
      
I

R
= =

Ω
=E 12 0.  V

12.0   
1 00.  A

(b) Initial current is 1.00 A:     ∆ = ( ) Ω( ) =V12 1 00 12 00. . A  
  
12 0.  V

    ∆ = ( ) Ω( ) =V1200 1 00 1200.  A  
  
1 20.  kV

  ∆ =VL   
1 21.  kV

(c)     I I e Rt L= −
max

/ :
    

dI
dt

I
R
L

e Rt L= − −
max

/

and  
    
− = ∆ = −L

dI
dt

V I ReL
Rt L

max
/

Solving     12 0 1212 1212 2 00. / . V  V= ( ) −e t

so     9 90 10 3 606. × =− −e t

Thus,
    

t = 7 62.  ms

*23.39
      
L

N A= =
×[ ]

=
−

µ µ
π

µ0

2

0

2 2 268 0 0 600 10

0 0800
8 21

l

( . ) ( . )

.
.  H

    
U LI= = ×( )( ) =−1

2
2 1

2
6 28 21 10 0 770. . H  A

  
2 44.  Jµ
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23.40 (a) The magnetic energy density is given by

    

u
B= =

× ⋅( ) =−

2

0
62

4 50

2 1 26 10µ
( .

.

 T)

 T m/A

2

  
8 06 106. × J/m3

(b) The magnetic energy stored in the field equals u times the volume of the solenoid (the volume in
which B is non-zero).

    
U uV= = ×( )8 06 106.  J/m3

  
(0.260 m)π(0.0310 m)2[ ] =   

6 32.  kJ

23.41
      
u

E= =e0

2

2   
44 2.  nJ/m3

    
u

B= =
2

02µ   
995 J/m3µ

23.42 (a)
    
U LI= = ( )( )1

2
2 1

2
24 00 0 500. . H  A   U =

  
0 500.  J

(b) When the current is  1.00 A,

Kirchhoff’s loop rule reads     + − ( )( ) − =22 0 1 00 5 00 0. . . V  A  Ω ∆VL

Then ∆VL = 17.0 V

The power being stored in the inductor is     I VL∆ = ( )( ) =1 00 17 0. . A  V  
  
17 0.  W

(c)       P = ∆ = ( )( )I V 0 500 22 0. . A  V   P =
  
11 0.  W

*23.43 The induced emf in the leading edge of the loop is

      
E l= = ( )( )







 = ( )B v B B0 2 400

1000
22 2. . / m  km/h

 m
km

h
3600 s

 m s2

The induced current is
      
I

R

B
= =

( )
⋅

E 22 2

25

.  m

 s

2

Ω

The magnetic force on the lower section of one loop is       F BB I= ×l :

        
F upB B B B=

⋅






( ) ° = ⋅ ⋅( )22 2
0 1 90 0 0889 2.
. sin .

 m A
25 V s

 m  m C /J s  
2

3 2 2J

We require 
    
Σ =Fy 0:     100 0F mgB − =

    
B2 48 89 5 10 9 80. / . m C N s  N2 2 2⋅ ⋅( ) = × ( )

    B = ⋅ ⋅ =235 N s/C m
  

2 102× T
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*23.44 (a)
      
B

NI= =
× ⋅( )( )( )

=
−

µ π
0

74 10 1400 2 00

1 20l

 T m/A  A

 m

.

.   
2 93 3. × −10 T  (upward)

(b)

    

u
B= =

×( )
× ⋅( ) = ( ) ⋅




= =

−

−

2

0

3 2

72

2 93 10

2 4 10
3 42

1
3 42

µ π

.
. .

 T

 T m/A
 J/m

 N m
1 J

 N/m3 2
  

3 42.  Pa

(c) To produce a downward magnetic field, the surface of the superconductor must carry a

  
clockwise  current.

(d) The vertical component of the field of the solenoid exerts an inward force on the superconductor.
The total horizontal force is zero. Over the top end of the solenoid, its field diverges and has a
radially outward horizontal component. This component exerts upward force on the clockwise

superconductor current. The total force on the core is 
  

upward . You can think of it as a force of
repulsion between the solenoid with its north end pointing up, and the core, with its north end
pointing down.

(e)
    
F = PA = 3.42 Pa( ) π 1.10 × 10−2  m( )2




=

  
1 30 10 3. × − N

Note that we have not proven that energy density is pressure.  In fact, it is not in some cases;
Equation 16.13 shows that the pressure is two-thirds of the translational energy density in an ideal
gas.

*23.45
      
E = − ( ) = − ( ) °







N
d
dt

BA N r
dB
dt

cos cosθ π 2 0

  E =
    
−( ) ×( )




( ) + ( ) [ ]( )[ ]− −30 0 2 70 10 1 50 0 3 20 2 5233 2 1. . . . sinπ π m  mT  mT  s

d
dt

t

  E =
    
−( ) ×( )





×( ) ( ) [ ]( )[ ]− − − −30 0 2 70 10 3 20 10 2 523 2 5233 2 3 1 1. . . cosπ π π m  T  s  st

  E =
    
− ×( ) ( )[ ]− −7 22 10 2 523 1. cos V 3  sπ t

23.46 (a) Doubling the number of turns.

  
Amplitude doubles :  period unchanged

(b) Doubling the angular velocity.

  
doubles the amplitude :  cuts the period in half

(c) Doubling the angular velocity while reducing the number of turns to one half the original value.

  
Amplitude unchanged :  cuts the period in half
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23.47 We are given
    
ΦB t t= −( ) ⋅6 00 18 03 2. .  T m2

and
      
E = − = − +d

dt
t tBΦ

18 0 36 02. .

Maximum E occurs when 
      

d
dt

t
E = − + =36 0 36 0 0. .

which gives t = 1.00 s

Therefore, the maximum current (at t = 1.00 s) is
      
I

R
= = − +

Ω
=E ( . . )

.
18 0 36 0

3 00
 V

   
6 00.  A

*23.48 The enclosed flux is     ΦB BA B r= = π 2

 The particle moves according to     Σ =F am :
    
qvB

mv
r

sin90
2

° =

  
r

mv
qB

=

Then
    
ΦB

B m v
q B

= π 2 2

2 2

(a)

    

v
q B

m
B= =

× ⋅( ) ×( ) ( )
×( )

− −

−

Φ 2

2

6 9 2

16 2

15 10 30 10 0 6

2 10π π

 T m  C  T

 kg

2 .
=

  
2 54 105. × m/s

(b) Energy for the particle-electric field system is conserved in the firing process:

  
U Ki f= :

    
q V mv∆ = 1

2
2

    

∆V
mv

q
= =

×( ) ×( )
×( ) =

−

−

2 16 5 2

92

2 10 2 54 10

2 30 10

 kg  m/s

 C

.

  
215 V
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23.49
      
I

R
= +E Einduced and

      
Einduced = − d

dt
BA( )

  
F m

dv
dt

IBd= =

      

dv
dt

IBd
m

Bd
mR

= = +( )E Einduced

    

dv
dt

Bd
mR

Bv d= −( )E

To solve the differential equation, let     u Bv d= −E

  

du
dt

Bd
dv
dt

= −

    
− =1

Bd
du
dt

Bd
mR

u

so
    

du
u

Bd
mR

dt
u

u t

0

2

0∫ ∫= − ( )

Integrating from t = 0 to t = t,
    
ln

u
u

Bd
mR

t
0

2

= − ( )

or
    

u
u

e B d t mR

0

2 2
= − /

Since v = 0  when  t = 0,       u0 = E

and u = E – Bvd

      E E− = −Bv d e B d t mR2 2 /

Therefore,
      

v
Bd

e B d t mR= −





−E
1

2 2 /
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*23.50 (a) Consider an annulus of radius r, width dr, height b, and resistivity ρ. Around its circumference, a
voltage is induced according to

        
E = − ⋅ = − ( )N

d
dt

d
dt

B t rB A 1 2
max cosω π     = +B r tmaxπ ω ω2 sin

The resistance around the loop is 
      

ρ ρ πl

A
r

bdrx
= ( )2

The eddy current in the ring is
      
dI

B r t bdr
r

B rb dr t= = ( ) =E

resistance
max maxπ ω ω

ρ π
ω ω
ρ

2

2 2
sin

( )
sin

The instantaneous power is
      
d dI

B r b dr t
iP E= = max sin2 3 2 2

2
π ω ω

ρ

The time average of the function
    
sin cos2 1

2
1
2

2ω ωt t= −  is    
  
1
2

1
2

0− =

so the time-averaged power delivered to the annulus is

      
d

B r b dr
P = max

2 3 2

4
π ω

ρ

The power delivered to the disk is
      
P P= =∫ ∫d

B b
r dr

R max
2 2

3
0 4

π ω
ρ

      
P = −







=B b Rmax

2 2 4

4 4
0

π ω
ρ

    

π ω
ρ

B R bmax
2 4 2

16

(b) When     Bmax  gets two times larger,     Bmax
2  and P get 

  
4  times larger.

(c) When f and     ω π= 2 f  double,   ω 2  and P get 
  

4  times larger.

(d) When R doubles,     R
4 and P become   2

4 =
  
16  times larger.

*23.51
    
I

R
B
R

A
t

= =E ∆
∆

so
    
q I t= = =∆

Ω
( . )( . )

.
15 0 0 200

0 500

2 T  m
 

µ
  
1 20.  Cµ

*23.52
    
ε θ= − = − ( )N

d
dt

N
d
dt

BABΦ
cos

      
E = −






= − ×( ) °( ) ×





=−

−
NB

A
t

cos . cos .
.θ ∆

∆
200 50 0 10 62 0

39 0 106
4

 T
 m

1.80 s

2

  
−10 2.  Vµ
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23.53 (a)
      
E = − = − = − ( )N

d
dt

NA
dB
dt

NA
d
dt

nIBΦ µ0   where A = area of coil

N = number of turns in coil

  and n = number of turns per unit length in solenoid.

Therefore,
      
E = ( )[ ] = ( ) ( )N An

d
dt

t N An tµ π µ π π0 04 120 480 120sin cos

      
E = ×( ) ( )[ ] ×( )( ) ( )−40 4 10 0 0500 2 00 10 480 1207 2 3π π π π. . cos m t

  E =
    

1 19 120. cos V( ) ( )π t

(b)
  
I

V
R

= ∆
and

      
P = ∆ =

( ) ( )
Ω

VI
t1 19 120

8 00

2 2. cos
.

 V
 

π

From 
  
cos cos2 1

2
1
2

2θ θ= +

the average value of   cos2θ  is 
  
1
2

,  so
    
P = 1

2
1.19 V( )2

8.00 Ω( ) =
  

88 5.  mW

*23.54 Suppose the field is vertically down. When an electron is moving away
from you the force on it is in the direction given by

    q cv B×  as     − × = − = − =(away)  down left rightj
Therefore, the electrons circulate clockwise.

(a) As the downward field increases, an emf is induced to produce some
current that in turn produces an upward field. This current is directed

  J  counterclockwise, carried by negative electrons moving clockwise.
Therefore the original electron motion speeds up.

(b) At the circumference, we have   Σ =F mac c :
    
q vB

mv
rc sin90

2
° =

  mv q rBc=

The increasing magnetic field     Bav  in the area enclosed by the orbit produces a tangential electric
field according to

    
E s B A⋅ = − ⋅∫ d

d
dt av

    
E r r

dB
dt

av( )2 2π π=
    
E

r dB
dt

av=
2

An electron feels a tangential force according to   Σ =F mat t :
  
q E m

dv
dt

=

Then
    
q

r dB
dt

m
dv
dt

av

2
=

    
q

r
B mv q rBav c2

= =

and     B Bav c= 2
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23.55 The magnetic field produced by the current in the straight wire is
perpendicular to the plane of the coil at all points within the coil.  The
magnitude of the field is     B = µ0I 2πr . Thus, the flux linkage is

    
N

NIL dr
r

NI L h w
h

tB h

h w
Φ = = +



 +

+
∫µ

π
µ

π
ω φ0 0

2 2
max ln sin( )

Finally, the induced emf is

      
E = − +



 +µ ω

π
ω φ0

2
1

N I L w
h

tmax ln cos( )

      
E = −

×( ) ( )
+



 +

− −4 10 100 50 0 0 200 200

2
1

5 00
5 00

7π π

π
ω φ

( )( . )( . )
ln

.

.
cos( )

 m  s  cm
 cm

1

t

  E =
    
−( ) +( )87 1 200. cos mV π φt

The term     sin( )ω φt +  in the expression for the current in the straight wire does not change
appreciably when  ω t  changes by 0.10 rad or less. Thus, the current does not change appreciably
during a time interval

    

∆t < ( ) = ×−
−0 10

200
1 6 10 4.
.

π s
 s

1

We define a critical length, 
    
c t∆ = ×( ) ×( ) = ×−3 00 10 1 6 10 4 8 108 4 4. . .   m/s s m equal to the distance

to which field changes could be propagated during an interval of   1 6 10 4. × −  s. This length is so
much larger than any dimension of the coil or its distance from the wire that, although we
consider the straight wire to be infinitely long, we can also safely ignore the field propagation
effects in the vicinity of the coil. Moreover, the phase angle can be considered to be constant along
the wire in the vicinity of the coil.

If the frequency ω were much larger, say,   200π × 105  s−1, the corresponding critical length would
be only 48 cm. In this situation propagation effects would be important and the above expression
for E would require modification. As a “rule of thumb” we can consider field propagation effects
for circuits of laboratory size to be negligible for frequencies,     f = ω π/2 , that are less than about

  106 Hz.

*23.56 Equation 22.31:
    
B = µ0NI

2πr

(a)
    
ΦB = BdA∫ = µ0NI

2πr
hdr

a

b

∫ = µ0NIh
2π

dr
r

a

b

∫ = µ0NIh
2π

ln
b
a







  
L = NΦB

I
=

    

µ
π

0
2

2
N h b

a
ln




(b)
    
L = µ0(500)2(0.0100)

2π
ln

12.0
10.0





 =

  
91 2.  Hµ

(c)
    
Lappx = µ0N2

2π
A
R





 = µ0(500)2

2π
2.00 × 10−4  m2

0.110







=

  
90 9.  Hµ , only 0.3% different.
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23.57 (a) At the center,

    

B
N IR

R

N I
R

=
+( )

=µ µ0
2

2 2 3 2
0

2 0 2/

So the coil creates flux through itself
    
ΦB BA

N I
R

R N IR≈ = ° =cos cosθ π πµ µ0 2
02

0
2

When the current it carries changes,
      
EL

BN
d
dt

N N R
dI
dt

L
dI
dt

= − ≈ − 



 = −Φ π µ

2 0

so
    

L N R≈ π µ
2

2
0

(b)     2 3 0 3π r ≈ ( ).  m so r ≈ 0.14 m

    
L ≈ ( ) × ⋅( )( ) = ×− −π π

2
1 4 10 0 14 2 8 102 7 7 T m/A  m  H. .

    
L ~ 100 nH

(c)
    

L
R

= × ⋅ = ×
−

−2 8 10
270

1 0 10
7

9.
.

 V s/A
 V/A

 s 
    

L
R

~ 1 ns

*23.58 When the switch is closed, as shown in
figure (a), the current in the inductor is I :

12.0 –     7 50. I  – 10.0 = 0 → I = 0.267 A

When the switch is opened, the initial
current in the inductor remains at
0.267 A.

IR = ∆V: (0.267 A)R ≤ 80.0 V
(a) (b)

    
R ≤ Ω300 

*23.59 For an RL circuit,

    I(t) = Imaxe
− R

L
t
:

    

I(t)
Imax

= 1− 10−9 = e
− R

L
t
≅ 1− R

L
t

    

R
L

t = 10−9 so

    

Rmax

.

. .
=

×( )( )
( ) ×( ) =

− −3 14 10 10

2 50 3 16 10

8 9

7 yr  s/yr   
3 97 10 25. × Ω−

(If the ring were of purest copper, of diameter 1 cm, and cross-sectional area   1 mm2, its resistance
would be at least   10 6−  Ω).
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23.60 (a)
    
U LIB = = ( ) ×( ) =1

2
2 1

2
3 2

50 0 50 0 10. . H  A
  

6 25 1010. × J

(b) Two adjacent turns are parallel wires carrying current in the same direction. Since the loops have
such large radius, a one-meter section can be regarded as straight.

Then one wire creates a field of
    
B

I
r

= µ
π
0

2

This causes a force on the next wire of       F I B= l sinθ

giving
      
F I

I
r

I
r

= ° =l
lµ

π
µ

π
0 0

2

2
90

2
sin

Solving for the force 
    
F = ×( ) ( ) ×( )

( ) =−4 10
1 00 50 0 10

2 0 250
7

3 2

π
π

 N/A
 m  A

 m
2

. .

.   
2000 N

*23.61 P = I∆V
      
I

V
= = ×

×
= ×P

∆
1 00 10

5 00 10
9

3.
.

 W
200 10  V

 A3

From Ampere’s law,     B r I2 0π µ( ) = enclosed    or
    
B

I
r

= µ0

2
enclosed

π

(a) At     r = a = 0.0200 m,     Ienclosed  A= ×5 00 103.

and
    
B =

× ⋅( ) ×( )
( ) = =

−4 10 5 00 10

2 0 0200
0 0500

7 3π

π

 T m/A  A

 m
 T

.

.
.

  
50 0.  mT

(b) At     r = b = 0.0500 m,     I Ienclosed  A= = ×5 00 103.

and
    
B =

× ⋅( ) ×( )
( ) = =

−4 10 5 00 10

2 0 0500
0 0200

7 3π

π

 T m/A  A

 m
 T

.

.
.

  
20 0.  mT

(c)
      
U udV

B r r dr I dr
r

I b
aa

b

a

b
= =

( )[ ] ( ) = = 



∫ ∫ ∫

2

0

0
2

0
22

2 4 4
π

µ
µ

π
µ

π
l l l

ln

    
U =

× ⋅( ) ×( ) ×( ) 





−4 10 5 00 10 1000 10

4
5 00
2 00

7 3 2 3π

π

 T m/A  A  m  cm
 cm

.
ln

.

.
  = × =2 29 106.  J

  
2 29.  MJ

(d) The magnetic field created by the inner conductor exerts a force of repulsion on the current in the
outer sheath. The strength of this field, from part (b), is 20.0 mT. Consider a small rectangular
section of the outer cylinder of length   l and width   w .

It carries a current of
    
5 00 10

2 0 0500
3.

.
×( ) ( )







 A
 m

w
π

and experiences an outward force 
      
F I B

w
= =

×( )
( ) ×( ) °−l lsin

.

.
. sin .θ

π

5 00 10

2 0 0500
20 0 10 90 0

3
3

 A

 m
 T

The pressure on it is 
      
P = F

A
= F

wl
=

5.00 × 103  A( ) 20.0 × 10−3  T( )
2π 0.0500 m( ) =

  
318 Pa
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ANSWERS TO EVEN NUMBERED PROBLEMS

  2. 9.82 mV

  4. (a)
    

µ π0 2
2

2
n r

R
I
t

∆
∆





 (b)

    

µ π0
2

2
2

14
n r
r R

I
t

∆
∆





 (c) upward

  6. (a)     µ π0 2 1IL w h/ ln /( ) +( ) (b) – 4.80 µV; current is counterclockwise

  8. –(14.2 mV) cos (120 t)

10. 1.00 m/s

12. (a) 0.500 A (b) 2.00 W (c) 2.00 W

14. 2.83 mV

16. (a)     F N B w v R= 2 2 2 /   to the left (b) 0
(c)     F N B w v R= 2 2 2 /   to the left

18. 24.1 V with the outer contact positive

20. (28.6 mV) sin (4.00π t)

22. (a)   8 00 10 21. × −  N, clockwise (b) 1.33 s

24. 1.36 µH

26. 100 V

28. (a) 360 mV (b) 180 mV (c) 3.00 s

30. 1.92 Ω

32. See the solution

34. 7.67 mH
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36.
    
500 1 10 mA s( ) −( )−e t/ ,       1 50 0 250 10. . /A  A s− ( ) −e t

38. (a) 1.00 A (b) 12.0 V, 1.20 kV, 1.21 kV (c) 7.62 ms

40. (a)   8 06 106. ×  J/m3 (b) 6.32 kJ

42. (a) 0.500 J (b) 17.0 W (c) 11.0 W

44. (a) 2.93 mT up (b) 3.42 Pa (c) clockwise
(d) up (e) 1.30 mN

46. See the solution. (a)  Doubling N doubles amplitude.
(b) Doubling ω doubles amplitude and halves period.
(c) Doubling ω and halving N leaves the amplitude the same and cuts the period in half.

48. (a) 254 km/s (b) 215 V

50. (a)
    

π ω
ρ

B R bmax
2 4 2

16
(b) 4

(c) 4 (d) 16

52. –10.2  µV

54. See the solution

56. (a) See the solution (b) 91.2 µH (c) 90.9 µH

58. 300 Ω

60. (a) 62.5 GJ (b) 2000 N


