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ANSWERS TO QUESTIONS

Q25.1 The three mirrors, two of which are shown as
M and N in the figure to the right, reflect any
incident ray back parallel to its original
direction. When you look into the corner you
see image     I3 of yourself.

Q25.2 The beam reflected from the corner reflector
goes directly back along the straight-line path
from which it came. Therefore, by measuring
the length of time   ∆t from transmission to
reception, one can determine the distance to
the moon as 

    
d c t= 1

2
∆ .

Q25.3 The right-hand fish image is light from the
right side of the actual fish, refracted toward
the observer, and the second image is light
from the left side of the fish refracted toward
the observer.

Q25.4 Yes. The wavelength decreases. The
frequency remains constant. The speed
diminishes by a factor equal to the index of
refraction.

Q25.5 Light coming up from underwater is bent away from the normal. Therefore the part of the oar that is
submerged appears bent upward.

Q25.6 A faceted diamond or a stone of cubic zirconia sparkles because the light entering the stone from above
is totally internally reflected and the stone is cut so the light can only escape back out the top. If the
diamond or the cubic zirconia is immersed in a high index of refraction liquid, then the total internal
reflection is thwarted and the diamond loses its “sparkle”. For an exact match of index of refraction
between cubic zirconia and corn syrup, the cubic zirconia stone would be invisible.

Q25.7 If a laser beam enters a sugar solution with a concentration gradient (density and index of refraction
increasing with depth) then the laser beam will be progressively bent downward (toward the normal)
as it passes into regions of greater index of refraction.

Q25.8 The ray approximation (sharp shadows) is valid for   λ << d . For     λ ~ d  diffraction effects become
important, and the light waves will spread out beyond the slit.

Q25.9 The index of refraction of water is 1.33, quite different from 1.00 for air. Babies learn that the refraction
of light going through the water indicates the water is there. On the other hand, the index of refraction
of liquid helium is close to that of air, so it gives little visible evidence of its presence.

Q25.10 Take a half-circular disk of plastic. Center it on a piece of polar-coordinate paper on a horizontal
corkboard. Slowly move a pin around the curved side while you look for it, gazing at the center of the
flat wall. When you can barely see the pin as your line of sight grazes the flat side of the block, the light
from the pin is reaching the origin at the critical angle   θc . You can conclude that the index of refraction
of the plastic is     1/sinθc .

Q25.11 The index of refraction of diamond varies with the frequency of the light. Different color-components
of the white light are refracted off in different directions by the jewel. The diamond disperses light to
form a spectrum, as any prism does.



Chapter 25

245

Q25.12 Diamond has higher index of refraction than glass and consequently a smaller critical angle for total
internal reflection. A brilliant-cut diamond is shaped to admit light from above, reflect it totally at the
converging facets on the underside of the jewel, and let the light escape only at the top. Glass will have
less light internally reflected.

Q25.13 The image is upside down. As is shown in the figure to the
right, ray B, from the upper part of the field of view, comes
out in the lower part of the image.

Q25.14 With a vertical shop window, streetlights and his own
reflection can impede the window shopper’s clear view
of the display. The tilted shop window can put these
reflections out of the way. Windows of airport control
towers are also tilted like this, as are automobile
windshields.

Q25.15 Refer to Figure 25.16 in the textbook. Suppose the Sun is low in the sky and an observer faces away
from the Sun toward a large uniform rain shower. A ray of light passing overhead strikes a drop of
water. The light is refracted first at the front surface of the drop, with the violet light deviating the
most and the red light the least. At the back of the drop the light is reflected and it returns to the front
surface where it again undergoes refraction with additional dispersion as it moves from water into air.
The rays leave the drop so that the angle between the incident white light and the most intense
returning violet light is 40°, and the angle between the white light and the most intense returning red
light is 42°. The observer can see a ring of raindrops shining violet, a ring with angular radius 40°
around her shadow. From the locus of directions at 42° away from the antisolar direction the observer
receives red light. The other spectral colors make up the rainbow in between.

Q25.16 Refer to the answer to question 15. An observer of a rainbow sees violet light at 40° angular separation
from the direction opposite the Sun, then the other spectral colors, and then red light on the outside the
rainbow, with angular radius 42°.

Q25.17 A mirage occurs when light changes direction as it moves between batches of air having different
indices of refraction because they have different densities at different temperatures. When the sun
makes a blacktop road hot, an apparent wet spot is bright due to refraction of light from bright sky.
The light, originally headed a little below the horizontal, always bends up as it first enters and then
leaves sequentially hotter, lower-density, lower-index layers of air closer to the road surface.

Q25.18 The light with the greater change in speed will have the larger deviation. If the glass has a higher index
than the surrounding medium, X travels slower in the glass.
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PROBLEM SOLUTIONS

25.1 Using Snell’s law,
    
sin sinθ θ2

1

2
1= n

n

  θ2 =
  

25 5. °

    
λ

λ
2

1

1
= =

n   
442 nm

25.2 (a)
    
f

c= = ×
×

=−λ
3 00 108

7
.  m/s

6.328 10  m   
4 74 1014. × Hz

(b)
    
λ

λ
glass

air  nm
1.50

= = =
n

632 8.
  

422 nm

(c)
    
v

c
nglass
air  m/s

1.50
 m/s= = × = × =3 00 10

2 00 10
8

8.
.

  
200 Mm/s

25.3     n n1 1 2 2sin sinθ θ=

  sin . sinθ1 1 333 45= °

  sin . . .θ1 1 33 0 707 0 943= ( )( ) =

  θ1 70 5= ° →.
  
19 5. ° above the horizon

25.4 (a)     n n1 1 2 2sin sinθ θ=

    1 00 30 0 19 24. sin . sin .° = °n

  n =
  
1 52.

(c)
    
f

c= = ×
×

=−λ
3 00 108

7
.  m/s

6.328 10  m   
4 74 1014. × Hz  in air and in syrup.

(d)
    
v

c
n

= = × = × =3 00 10
1 98 10

8
8.

.
 m/s

1.52
 m/s

  
198 Mm/s

(b)
    
λ = = ×

×
=v

f
1 98 10
4 74 10

8

14
.
. /

 m/s
s   

417 nm
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*25.5 (a) Flint Glass:
    
v

c
n

= = × = × =3 00 10
1 81 10

8
8.

.
 m/s

1.66
 m/s

  
181 Mm/s

(b) Water: 
    
v

c
n

= = × = × =3 00 10
2 25 10

8
8.

.
 m/s

1.333
 m/s

  
225 Mm/s

(c) Cubic Zirconia:
    
v

c
n

= = × = × =3 00 10
1 36 10

8
8.

.
 m/s

2.20
 m/s

  
136 Mm/s

*25.6     n n1 1 2 2sin sinθ θ= :     1 333 37 0 25 02. sin . sin .° = °n

    
n

c
v2 1 90= =. :

    
v

c= = × =
1 90

1 58 108

.
.  m/s

  
158 Mm/s

25.7     n n1 1 2 2sin sinθ θ= :
    
θ θ

2
1 1 1

2
=







−sin
sinn
n

  
θ2

1 1 00 30
1 50

= °






=−sin

. sin
.   

19 5. °

  θ2 and   θ3 are alternate interior angles formed by the ray
cutting parallel normals.

So,   θ θ3 2= =
  
19 5. °

  1 50 1 003 4. sin . sinθ θ=

  θ4 =
  

30 0. °

25.8     sin sinθ θ1 2= nw

  
sin

.
sin

.
sin( . . ) .θ θ2 1

1
1 333

1
1 333

90 0 28 0 0 662= = ° − ° =

  θ2
1 0 662 41 5= ( ) = °−sin . .

    
h

d= =
°
=

tan
.

tan .θ2

3 00
41 5

 m
  

3 39.  m
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25.9 (a) From geometry,     1 25 40 0. sin . m = °d

so   d =
  
1 94.  m

(b)
  

50 0. ° above the horizontal

or parallel to the incident ray

*25.10  (a) Method One:

The incident ray makes angle   α θ= ° −90 1

with the first mirror.  In the picture, the law of reflection implies
that

  θ θ1 1= ′

 Then   β θ θ α= ° − ′ = − =90 901 1

 In the triangle made by the mirrors and the ray passing between them,

  β γ+ ° + = °90 180

  γ β= ° −90

Further,    δ γ β α= ° − = =90

and   e = =δ α

Thus the final ray makes the same angle with the first mirror as did the incident ray. Its direction
is opposite to the incident ray.

Method Two:

The vector velocity of the incident light has a component 
  
vy  perpendicular to the first mirror and

a component   vx  perpendicular to the second. The 
  
vy  component is reversed upon the first

reflection, which leaves   vx  unchanged.  The second reflection reverses   vx  and leaves 
  
vy

unchanged.  The doubly reflected ray then has velocity opposite to the incident ray.

(b) The incident ray has velocity 
    
v v vx y zi j k+ + . Each reflection reverses one component and leaves

the other two unchanged. After all the reflections, the light has velocity 
    
− − −v v vx y zi j k , opposite

to the incident ray.



Chapter 25

249

25.11 The incident light reaches the left-hand mirror at distance

  1 00 5 00 0 0875. tan . . m  m( ) ° =

above its bottom edge. The reflected light first reaches the
right-hand mirror at height

  2 0 0875 0 175. . m  m( ) =

It bounces between the mirrors with this distance between points of contact with either.

Since 
  

1 00
0 175

5 72
.
.

.
 m
 m

=

the light reflects 
  

five times from the right-hand mirror and six times from the left.

*25.12 For   α β+ = °90

with   ′ + + + = °θ α β θ1 2 180

we have   ′ + = °θ θ1 2 90

Also,   ′ =θ θ1 1

and     1 1 2sin sinθ θ= n

Then,     sin sin cosθ θ θ1 1 190= −( ) =n n

    

sin
cos

tan
θ
θ

θ1

1
1= =n

    
θ1

1= −tan n

25.13 At entry,     n n1 1 2 2sin sinθ θ=

or   1 00 30 0 1 50 2. sin . . sin° = θ

  θ2 19 5= °.

The distance h the light travels in the medium is given by

    
cos

.θ2
2 00=  cm

h

or
    
h =

°
=2 00

19 5
2 12

.
cos .

.
 cm

 cm

The angle of deviation upon entry is   α θ θ= − = ° − ° = °1 2 30 0 19 5 10 5. . .

The offset distance comes from 
    
sinα = d

h
:     d = ( ) ° =2 21 10 5. sin . cm

  
0 388.  cm



Chapter 25

250

25.14 The distance, h, traveled by the light is
    
h =

°
=2 00

19 5
2 12

.
cos .

.
 cm

 cm

The speed of light in the material is
    
v

c
n

= = × = ×3 00 10
2 00 10

8
8.

.
 m/s

1.50
 m/s

Therefore,
    
t

h
v

= = ×
×

= × =
−

−2 12 10
2 00 10

1 06 10
2

8
10.

.
.

 m
 m/s

 s
  

106 ps

25.15 Applying Snell’s law at the air-oil interface,

    n nair oilsin sin .θ = °20 0

yields
  
θ = °30 4.

Applying Snell’s law at the oil-water interface

    n nw sin sin .′ = °θ oil 20 0

yields
  

′ = °θ 22 3.

25.16 Consider glass with an index of refraction of 1.5, which is 3 mm thick. The speed of light in the
glass is

  

3 10
1 5

2 10
8

8× = × m/s
 m/s

.

The extra travel time is
  

3 × 10−3  m
2 × 108  m / s

− 3 × 10−3  m
3 × 108  m / s

 
  

~ 10 11− s

For light of wavelength 600 nm in vacuum and wavelength  
  

600
400

 nm
1.5

 nm=   in glass,

the extra optical path, in wavelengths, is
  

3 10
4 10

3 10
6 10

3

7

3

7
×
×

− ×
×

−

−

−

−
 m
 m

 m
 m

 
  

~ 103 wavelengths
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*25.17 See the sketch showing the path of the light ray.
  α and γ  are angles of incidence at mirrors 1 and 2.

For triangle abca,

  2α + 2γ + β = 180°

or   β α γ= ° − +( )180 2 (1)

Now for triangle bcdb,

  90.0° − α( ) + 90.0° − γ( ) + θ = 180°

or θ = α + γ (2)

Substituting Equation (2) into Equation (1) gives
  
β θ= ° −180 2

Note: From Equation (2), γ = θ − α . Thus, the ray will follow a path like that shown only if α < θ .
For α > θ , γ  is negative and multiple reflections from each mirror will occur before the incident
and reflected rays intersect.

*25.18 Let n(x) be the index of refraction at distance x below the top of the atmosphere and   n x = h( ) = n
be its value at the planet surface.

Then,
    
n x( ) = 1.000 + n − 1.000

h




x

(a) The total time interval required to traverse the atmosphere is

    
∆t

dx
v

n x
c

dx
h h

= = ( )∫ ∫0 0
:

    
∆t

c
n

h
x dx

h
= + −









∫1

1 000
1 000

0
.

.

    
∆t

h
c

n
c h

h= + −( ) 





=1 000

2

2.

    

h
c

n +





1 000
2
.

(b) The travel time in the absence of an atmosphere would be     h / c .

Thus, the time in the presence of an atmosphere is
    

n +





1 000
2
.

times larger

25.19 From Fig 25.13     nv = 1 470.  at 400 nm and     nr = 1 458.  at 700 nm

Then     1 00 1 470. sin . sinθ θ= v and     1 00 1 458. sin . sinθ θ= r

    
δ δ θ θ θ θ

r v r v− = − = 



 − 





− −sin
sin
.

sin
sin
.

1 1

1 458 1 470

  
∆δ = °



 − °



 =− −sin

sin .
.

sin
sin .

.
1 130 0

1 458
30 0

1 470   
0 171. °
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25.20     n1 sin θ1 = n2 sin θ2:
    
θ2 = sin−1 n1 sin θ1

n2







  
θ2

1 1 00 30 0
1 50

= °



 =−sin

. sin .
.   

19 5. °

The surface of entry, the surface of exit, and the ray within the
prism form a triangle.  Inside the triangle the angles must add up
according to

  90 0 60 0 90 0 1802 3. . .° − + ° + ° − = °θ θ

  
θ3 90 0 19 5 60 0 180 90 0= ° − ° + °[ ] − °( ) + ° =( . . ) . .

  
40 5. °

    n n3 3 4 4sin sinθ θ= :
    
θ θ

4
1 3 3

4

1 1 50 40 5
1 00

=





= °



 =− −sin

sin
sin

. sin .
.

n
n   

77 1. °

25.21 For the incoming ray,
    
sin

sinθ θ
2

1=
n

Using the figure to the right, 
  
( ) sin

sin
.θ2

1 27 48violet
 50.0

1.66
= °



 = °−

  
( ) sin

sin
.θ2

1 28 22red
 50.0

1.62
= °



 = °−

For the outgoing ray,   θ θ3 260 0= ° −.

and     sin sinθ θ4 3= n :   ( ) sin . sinθ4
1 1 66violet 32.52 63.17= °[ ] = °−

  ( ) sin . sinθ4
1 1 62red 31.78 58.56= °[ ] = °−

The angular dispersion is the difference   ∆θ θ θ4 4 4 63 17 58 56= − = ° − ° =( ) ( ) . .violet red   
4 61. °

25.22 At the first refraction,     1 00 1 2. sin sinθ θ= n

The critical angle at the second surface is given by     n sin .θ3 1 00= :

or
  
θ3 = sin−1 1.00

1.50




 = 41.8°

But,   θ θ2 360 0= ° −.

Thus, to avoid total internal reflection at the second surface (i.e., have   θ3 < 41.8°)

it is necessary that   θ2 18 2> °.

Since     sin sinθ θ1 2= n , this becomes   sin . sin . .θ1 1 50 18 2 0 468> ° =

or   θ1 >
  

27 9. °
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25.23 At the first refraction,     1 00 1 2. sin sinθ θ= n

The critical angle at the second surface is given by

    n sin .θ3 1 00= , or
    
θ3

1 1 00= 





−sin
.
n

But   90 0 90 0 1802 3. .° −( ) + ° −( ) + = °θ θ Φ

which gives   θ2 = Φ − θ3

Thus, to have     θ3
1 1 00< ( )−sin . n  and avoid total internal reflection at the second surface,

it is necessary that 
    
θ2

1 1 00> − 





−Φ sin
.
n

Since     sin sinθ θ1 2= n , this requirement becomes
    
sin sin sin

.θ1
1 1 00> − 











−n
n

Φ

or   θ1 >
    

sin sin sin
.− −− 

















1 1 1 00
n

n
Φ

Through the application of trigonometric identities,   θ1 >
    

sin sin cos− − −





1 2 1n Φ Φ

*25.24 (a) For the diagrams of contour lines and wave fronts and rays, see figures (a) and (b) below.

As the waves move to shallower water, the wave fronts bend to become more nearly parallel to
the contour lines.

(b) For the diagrams of contour lines and wave fronts and rays, see figures (c) and (d) below.

We suppose that the headlands are steep underwater, as they are above water. The rays are
everywhere perpendicular to the wave fronts of the incoming refracting waves. As shown, the
rays bend toward the headlands and deliver more energy per length at the headlands.

(a) Contour lines (b) Wave fronts (c) Contour lines (d) Wave fronts
and rays and rays
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25.25     nsinθ = 1. From Table 25.1,

(a)
  
θ = 



 =−sin

.
1 1

2 419   
24 4. °

(b)
  
θ = 



 =−sin

.
1 1

1 66   
37 0. °

(c)
  
θ = 



 =−sin

.
1 1

1 309   
49 8. °

*25.26
    
sinθc

n
n

= 2

1
:

    
θc

n
n

=






−sin 1 2

1

(a) Diamond:
    
θc = 



 =−sin

.

.
1 1 333

2 419   
33 4. °

(b) Flint glass:
    
θc = 



 =−sin

.
.

1 1 333
1 66   

53 4. °

(c) Ice: Since     n n2 1> , 
  

there is no critical angle .

25.27
    
sinθc

n
n

= 2

1
 (Equation 25.8)

    n n2 1 88 8 1 0003 0 9998= ° = ( )( ) =sin . . .
  
1 00008.

*25.28 (a)
    

sin
sin

θ
θ

2

1

2

1
= v

v

and   θ2 90 0= °.  at the critical angle

    

sin .
sin

90 0 1850
343

° =
θc

 m/s
 m/s

so     θc = ( ) =−sin .1 0 185
  
10 7. °

(b) Sound can be totally reflected if it is traveling in the medium where it travels slower: 
  

air

(c)
  

Sound in air falling on the wall from most directions is 100% reflected , so the wall is a good
mirror.



Chapter 25

255

*25.29 For plastic with index of refraction 
    

n ≥ 1 42.  surrounded by air, the critical angle for total internal
reflection is given by

    
θc n

= 



 ≤ 



 = °− −sin sin

.
.1 11 1

1 42
44 8

In the gasoline gauge, skylight from above travels down the plastic. The rays close to the vertical
are totally reflected from the sides of the slab and from both facets at the lower end of the plastic,
where it is not immersed in gasoline. This light returns up inside the plastic and makes it look
bright. Where the plastic is immersed in gasoline, with index of refraction about 1.50, total
internal reflection should not happen. The light passes out of the lower end of the plastic with
little reflected, making this part of the gauge look dark. To frustrate total internal reflection in the

gasoline, the index of refraction of the plastic should be 
    

n < 2 12.

since
    
θc = 



 = °−sin

.

.
.1 1 50

2 12
45 0

25.30
    
sin

.

.
.θc

n
n

= = =air

pipe

1 00
1 36

0 735     θc = °47 3.

Geometry shows that the angle of refraction at the end is

    φ θ= ° − = ° − ° = °90 0 90 0 47 3 42 7. . . .c

Then, Snell’s law at the end,   1 00 1 36 42 7. sin . sin .θ = °

gives
  
θ = °67 2.

25.31 As the beam enters the slab,

  1 00 50 0 1 48 2. sin . . sin° = θ

giving   θ2 31 2= °.

The beam then strikes the top of the slab at     x1 1 55= °.  mm tan 31.2  from the left end. Thereafter,
the beam strikes a face each time it has traveled a distance of     2 1x  along the length of the slab.
Since the slab is 420 mm long, the beam has an additional     420 1 mm − x  to travel after the first
reflection.  The number of additional reflections is

    

420
2

420 1 55
3

81 51

1

 mm  mm  mm tan 31.2
.10 mm tan 31.2

− = − °
°

=x
x

.
. or  81 reflections

since the answer must be an integer. The total number of reflections made in the slab is then 
  

82 .
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*25.32 For total internal reflection,     n n1 1 2 90 0sin sin .θ = °

  1 50 1 33 1 001. sin . ( . )θ = or   θ1 =
  

62 4. °

*25.33  (a) A ray along the inner edge will escape if any ray escapes. Its angle of
incidence is described by     sin ( )θ = −R d R   and by      nsin sinθ > °1 90 .
Then

    

n R d
R
−( ) > 1   nR nd R− >   nR R nd− >   R >

    

nd
n − 1

(b) As     d → 0,     Rmin → 0. This is reasonable.

As n increases,     Rmin decreases. This is reasonable.

As n decreases toward 1,     Rmin  increases. This is reasonable.

(c)
    
Rmin

 m
=

×( )
=

−1 40 100 10

0 40

6.

.   
350 10 6× − m

25.34 (a)   ′ = =θ θ1 1   
30 0. °     n n1 1 2 2sin sinθ θ=

  1 00 30 0 1 55 2. sin . . sin° = θ

  θ2 =
  
18 8. °

(b)   ′ = =θ θ1 1   
30 0. °

    
θ θ

2
1 1 1

2
=







−sin
sinn
n   

= °



 =−sin

. sin .1 1 55 30 0
1   

50 8. °

(c) and (d) The other entries are computed similarly, and are shown in the table below.

(c) air into glass, angles in degrees (d) glass into air, angles in degrees

incidence reflection refraction incidence reflection refraction
0 0 0 0 0 0

10.0 10.0 6.43 10.0 10.0 15.6
20.0 20.0 12.7 20.0 20.0 32.0
30.0 30.0 18.8 30.0 30.0 50.8
40.0 40.0 24.5 40.0 40.0 85.1
50.0 50.0 29.6 50.0 50.0 none*
60.0 60.0 34.0 60.0 60.0 none*
70.0 70.0 37.3 70.0 70.0 none*
80.0 80.0 39.4 80.0 80.0 none*
90.0 90.0 40.2 90.0 90.0 none*

*total internal reflection
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25.35 For water,
    
sin

/
θc = =1

4 3
3
4

Thus     θc = = °−sin ( . ) .1 0 750 48 6

and     d c= [ ]2 1 00( .  m)tanθ

    d = ° =( . tan .2 00 48 6 m)
  

2 27.  m

25.36 Call   θ1 the angle of incidence and of reflection on
the left face and   θ2 those angles on the right face.
Let α represent the complement of   θ1 and β be the
complement of   θ2. Now α = γ and β = δ because
they are pairs of alternate interior angles. We have

  A = γ + δ = α + β

and   B = α + A + β = α + β + A =
    

2A

*25.37 (a) We see the Sun moving from east to west across the sky.  Its angular speed is

    
ω θ π= = = × −∆

∆ t
2

7 27 10 5 rad
86 400 s

 rad/s.

The direction of sunlight crossing the cell from the window changes at this rate, moving on the
opposite wall at speed

    
v r= = ( ) ×( ) = × =− −ω 2 37 7 27 10 1 72 105 4. . . m  rad/s  m/s

  
0 172.  mm/s

(b) The mirror folds into the cell the motion that would occur in a room twice as wide:

    v r= = ( ) =ω 2 0 174.  mm/s
  

0 345.  mm/s

(c) and (d)

As the Sun moves southward and upward at 50.0°, we may regard the corner of the window as

fixed, and both patches of light move 
  

northward and downward at 50.0° .

25.38 (a)
  

45 0. ° as shown in the first figure to the right.

(b)
  

Yes

If grazing angle is halved, the number of reflections from the side
faces is doubled.
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25.39 Horizontal light rays from the setting Sun
pass above the hiker. The  light rays are
twice refracted and once reflected, as in
Figure (b).  The most intense light reaching
the hiker, that which represents the visible
rainbow, is located between angles of 40°
and 42° from the hiker’s shadow.

The hiker sees a greater percentage of the
violet inner edge, so we consider the red
outer edge.  The radius R  of the circle of
droplets is

    R = ( ) ° =8 00 42 0 5 35. sin . . km  km

Then the angle φ, between the vertical and
the radius where the bow touches the
ground, is given by

    
cos

.
.

.φ = = =2 00
5 3

0 374
 km 2.00 km

5 kmR

or φ = 68.1°

Figure (a)

Figure (b)

The angle filled by the visible bow is 360° – (2 × 68.1°) = 224°

so the visible bow is
  

224
360

°
°
=

  
62 2. % of a circle

25.40 By Snell’s law,     n n1 1 2 2sin sinθ θ=

With 
  
v

c
n

=

    

c
v

c
v1

1
2

2sin sinθ θ=

or
    

sin sinθ θ1

1

2

2v v
=

This is also true for sound.

Here,
  

sin . sin12 0
340 1

2° =
 m/s 510 m/s

θ

  θ2
1 4 44 12 0= °( ) =−sin . sin .

  
67 4. °
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25.41 Entry:   1 00 45 1 52 2. sin . sin° = θ

  θ2 27 7= °.

    
tanθ2

10
10

= − cm
 cm

x

    10 10 27 7 cm  cm− = ( ) °x tan .

  x =
  

4 74.  cm

*25.42 (a)
    

′ = −
+









 = −

+






=S
S

n n
n n

1

1

2 1

2 1

2 21 52 1 00
1 52 1 00

. .

. .   
0 0426.

(b) If medium 1 is glass and medium 2 is air,
    

′ = −
+









 = −

+






=S
S

n n
n n

1

1

2 1

2 1

2 21 00 1 52
1 00 1 52

0 0426
. .
. .

.

There is 
  

no difference

*25.43 (a) With     n1 = 1

 and     n2 = n

the reflected fractional intensity is 
    

′ = −
+







S
S

n
n

1

1

21
1

 The remaining intensity must be transmitted:

    

S2

S1
= 1− n − 1

n + 1






2

= n + 1( )2 − n − 1( )2

n + 1( )2 = n2 + 2n + 1− n2 + 2n − 1

n + 1( )2 =
    

4

1 2
n

n +( )

(b) At entry,
    

S
S

n
n

2

1

2

21
1
1

4 2 419

2 419 1
0 828= − −

+




 = ( )

+( )
=.

.
.

At exit,
    

S3

S2
= 0.828

Overall,
    

S
S

S
S

S
S

3

1

3

2

2

1

20 828 0 685=










= ( ) =. .

or
  

68 5. %
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*25.44 Define     T n n= +( )4 1 2  as the transmission coefficient for one
encounter with an interface. For diamond and air, it is 0.828,
as in problem 43.

As shown in the figure, the total amount transmitted is

    T
2 + T2 1− T( )2 + T2 1− T( )4 + T2 1− T( )6 +

     . .  . . . .+ −( ) +T T n2 21

We have     1− T = 1− 0.828 = 0.172 so the total transmission is

  
0.828( )2 1+ 0.172( )2 + 0.172( )4 + 0.172( )6 + . . .[ ]

To sum this series, define      F = 1+ 0.172( )2 + 0.172( )4 + 0.172( )6 + . . .

Note that     0.172( )2 F = 0.172( )2 + 0.172( )4 + 0.172( )6 + . . .,

and     1+ 0.172( )2 F = 1+ 0.172( )2 + 0.172( )4 + 0.172( )6 + . . . = F .

Then,     1 = F − 0.172( )2 F

 or
    
F = 1

1− 0.172( )2

The overall transmission is then 
  

0.828 2( )
− ( )

=
1 0 172

0 7062.
. or

  
70 6. %

25.45 Define     n1 to be the index of refraction of the surrounding
medium and     n2  to be that for the prism material. We can
use the critical angle of 42.0° to find the ratio     n n2 1/ :

    n n2 142 0 90 0sin . sin .° = °

So,
    

n
n

2

1

1
42 0

1 49=
°
=

sin .
.

Call the angle of refraction   θ2 at the surface 1. The ray inside the prism forms a triangle with
surfaces 1 and 2, so the sum of the interior angles of this triangle must be   180° .

Thus,   90 0 60 0 90 0 42 0 1802. . . .° −( ) + ° + ° − °( ) = °θ

Therefore,   θ2 18 0= °.

Applying Snell’s law at surface 1,     n n1 1 2 18 0sin sin .θ = °

    
sin sin . sin .θ θ1

2

1
2 1 49 18 0=







= °n
n   

θ1 27 5= °.
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25.46 Light passing the top of the pole makes an angle of incidence

  φ1 = 90.0° − θ .  It falls on the water surface at distance from the
pole

    
s

L d
1 = −

tanθ

and has an angle of refraction   φ2 from     1 00 1 2. sin sinφ φ= n

Then     s d2 2= tanφ

and the whole shadow length is

    
s s

L d
d

n1 2
1 1+ = − + 











−
tan

tan sin
sin

θ
φ

    s1 + s2
    
= − + 











−L d
d

ntan
tan sin

cos
θ

θ1

  
=

°
+ ( ) °










=−2 0

40 0
2 00

40 0
1 33

1.
tan .

. tan sin
cos .

.
0 m

 m
  

3 79.  m

25.47 (a) For polystyrene surrounded by air, internal reflection requires

  
θ3

1 1 00
1 49

42 2= 



 = °−sin

.

.
.

Then from geometry,   θ θ2 390 0 47 8= ° − = °. .

From Snell’s law,   sin . sin . .θ1 1 49 47 8 1 10= ° =

This has no solution.

Therefore, total internal reflection 
  

always happens .

(b) For polystyrene surrounded by water,
  
θ3

1 1 33
1 49

63 2= 



 = °−sin

.

.
.

and   θ2 26 8= °.

From Snell’s law,    θ1 =
  

30 3. °

(c)
  

No internal refraction is possible

since the beam is initially traveling in a medium of lower index of refraction.
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*25.48 (a) As the mirror turns through angle θ , the angle of incidence increases
by θ  and so does the angle of reflection. The incident ray is
stationary, so the reflected ray turns through angle 2θ. The angular
speed of the reflected ray is     2ωm . The speed of the dot of light on the

circular wall is 
    

2ωmR .

(b) The two angles marked θ  in the figure to the right are equal because
their sides are perpendicular, right side to right side and left side to
left side.

We have
    
cosθ =

+
=d

x d

ds
dx2 2

and
    

ds
dt

x dm= +2 2 2ω

So
    

dx
dt

ds
dt

x d
d

= + =
2 2

    
2

2 2
ωm

x d
d
+

25.49
    
tan

.θ1
4 00=  cm

h

and
    
tan

.θ2
2 00=  cm

h

  tan tan tan2
1 2

2 2
24θ θ θ= ( ) =2.00 .00

  

sin
sin

.
sin

sin

2
1

2
1

2
2

2
21

4 00
1

θ
θ

θ
θ−

=
−







(1)

Snell’s law in this case is:     n n1 1 2 2sin sinθ θ=

  sin . sinθ θ1 21 33= 3

Squaring both sides,   sin . sin2
1

2
21 777θ θ=  (2)

Substituting (2) into (1),
  

1 777
1 1 777

4 00
1

2
2

2
2

2
2

2
2

. sin
. sin

.
sin

sin
θ
θ

θ
θ−

=
−








Defining     x = sin2θ , 
    

0 444
1 1 777

1
1

.
.−

=
−x x

Solving for x,     0 444 0 444 1 1 777. . .− = −x x and     x = 0.417

From x we can solve for   θ2:   θ2
1 0 417 40 2= = °−sin . .

Thus, the height is
    
h = =

°
=2.00 cm 2.00 cm

tan tan .θ2 40 2   
2 37.  cm
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25.50   δ θ θ= − = °1 2 10 0. and     n1 sin θ1 = n2 sin θ2

with     n1 = 1, 
    
n2

4
3

=

Thus,     θ θ θ1
1

2 2
1

2 1 10 0= = − °[ ]− −sin ( sin ) sin sin( . )n n

(You can use a calculator to home in on an approximate solution to this equation, testing different

values of   θ1 until you find that   θ1 =
  

36 5. ° . Alternatively, you can solve for   θ1 exactly, as shown
below.)

We are given that
  
sin sin( . )θ θ1

4
3 1 10 0= − °

This is the sine of a difference, so
  
3
4 1 1 110 0 10 0sin sin cos . cos sin .θ θ θ= ° − °

Rearranging,
  
sin . cos cos . sin10 0 10 01

3
4 1° = ° −( )θ θ

  

sin .
cos . .

tan
10 0

10 0 0 750 1
°

° −
= θ      and   θ1

1 0 740= ( ) =−tan .
  

36 5. °

*25.51 Observe in the sketch that the angle of incidence at point P is γ ,
and using triangle OPQ:

    sin /γ = L R .

Also,
    
cos sinγ γ= − = −

1 2
2 2R L
R

Applying Snell’s law at point P,     1 00. sin sinγ φ= n

Thus,  
    
sin

sinφ γ= =
n

L
nR

and
    
cos sinφ φ= − = −

1 2
2 2 2n R L

nR

From triangle OPS ,   φ + α + 90.0°( ) + 90.0° − γ( ) = 180° or the angle of incidence at point S is
α = γ − φ . Then, applying Snell’s law at point S

gives     1 00. sin sin sinθ α γ φ= = −( )n n

or     sin sin cos cos sinθ γ φ γ φ= −[ ]n

    

= 





− − − 

















n
L
R

n R L
nR

R L
R

L
nR

2 2 2 2 2

    
sinθ = − − −





L
R

n R L R L2
2 2 2 2 2

and θ =
    

sin− − − −











1
2

2 2 2 2 2L
R

n R L R L
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*25.52 As shown in the sketch, the angle of incidence at point A is:

    
θ = 



 = 



 = °− −sin

/
sin

.

.
.1 12 1 00

2 00
30 0

d
R

 m
 m

If the emerging ray is to be parallel to the incident ray,
the path must be symmetric about the centerline   CB  of
the cylinder. In the isosceles triangle   ABC ,

γ = α  and   β θ= ° −180

Therefore,   α + β + γ = 180°

becomes   2 180 180α θ+ ° − = °

or
  
α = θ

2
= 15.0°

Then, applying Snell’s law at point   A ,

    n sin . sinα θ= 1 00

or
    
n = = °

°
=sin

sin
sin .
sin .

θ
α

30 0
15 0   

1 93.

*25.53 (a) Given that   θ θ1 245 0 76 0= ° = °. . and 

 Snell’s law at the first surface gives

    n sin . sin .α = °1 00 45 0 (1)

Observe that the angle of incidence at the second surface is

   β α= ° −90 0.

Thus, Snell’s law at the second surface yields

      n nsin sin . . sin .β α= ° −( ) = °90 0 1 00 76 0

or     n cos sin .α = °76 0 (2)

Dividing Equation (1) by Equation (2), 
  
tan

sin .
sin .

.α = °
°
=45 0

76 0
0 729

or   α = 36.1°

Then, from Equation (1),
    
n = ° = °

°
=sin .

sin
sin .
sin .

45 0 45 0
36 1α   

1 20.

(b) From the sketch, observe that the distance the light travels in the plastic is 
    
d

L=
sinα

. Also, the

speed of light in the plastic is   v = c n , so the time required to travel through the plastic is

    

∆t
d
v

nL
c

= = = ( )
×( ) °

= × =−
sin

. .

. sin .
.

α
1 20 0 500

3 00 10 36 1
3 40 10

8
9 m

 m/s
 s

  
3 40.  ns
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  sinθ1   sinθ2   sin 1θ θ/sin 2
0.174 0.131 1.3304
0.342 0.261 1.3129
0.500 0.379 1.3177
0.643 0.480 1.3385
0.766 0.576 1.3289
0.866 0.647 1.3390
0.940 0.711 1.3220
0.985 0.740 1.3315

25.54

The straightness of the graph line demonstrates Snell’s proportionality.

The slope of the line is     n = ±1 3276 0 01. .

and   n =
  
1 328 0 8. . %±
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ANSWERS TO EVEN NUMBERED PROBLEMS

  2. (a) 474 THz (b) 422 nm (c) 200 Mm/s

  4. (a) 1.52 (b) 417 nm
(c) 474  THz (d) 198 Mm/s

  6. 158 Mm/s

  8. 3.39 m

10. See the solution

12.     tan−1 n

14. 106 ps

16.   ~ 10 11−  s,    ~ 103 wavelengths

18. (a)
    

h
c

n +





1 00
2

.
(b)

    

n +





1 00
2

.
 times longer

20. 30.0° and 19.5° at entry, 40.5° and 77.1° at exit

22. 27.9°

24. See the solution

26. (a) 33.4° (b) 53.4° (c) there is no critical angle

28. (a) 10.7° (b) air
(c) Sound in air falling on the wall from most directions is 100% reflected.

30. 67.2°

32. 62.4°

34. See the solution.  The angles for the first two parts of the problem are
(a)   ′ = °θ1 30 0. ,    θ2 18 8= °. (b)   ′ = ° = °θ θ1 230 0 50 8. ,  .
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36. See the solution

38. (a) 45.0° (b) Yes, such as 67.5°; see the solution

40. 67.4°

42. (a) 0.0426 or 4.26% (b) no difference

44. 70.6%

46. 3.79 m

48. (a)     2R mω (b)
    
2 2 2ωm x d d+( )/

50. 36.5°

52. 1.93

54. See the solution. n = slope = 1.328 ± 0.8%


