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ANSWERS TO QUESTIONS

Q27.1 (a) Two waves interfere constructively if their path difference is zero, or an integral multiple of the
wavelength.   δ λ= m ,       m =( )0 1 2 3, , , ... .

(b) Two waves interfere destructively if their path difference is a half wavelength, or an odd multiple

of   λ/2.  
    
δ λ= +( )m 1

2
,       m =( )0 1 2, , ... .

Q27.2 The light from the flashlights consists of many different wavelengths (that’s why it’s white) with
random time differences between the light waves; therefore there is no coherence between the two
sources; and no possibility of an interference pattern.

Q27.3 Underwater, the wavelength of the light would decrease,     λ λUW air water= /n . Since the positions of light
and dark bands are proportional to λ, (See Equations 27.5 and 27.6), the underwater fringe separation
will decrease.

Q27.4 Every color produces its own pattern, with a spacing between the maxima that is characteristic of the
wavelength. With several colors, the patterns are superimposed and it is difficult to pick out a single
maximum. Using monochromatic light can eliminate this problem.

Q27.5 As the soap bubble becomes very thin, the thickness of the bubble approaches zero. Since light
reflecting off the front of the soap surface is phase-shifted   180°  and light reflecting off the back of the
soap film is phase-shifted   0°, the reflected light meets the conditions for a minimum. Thus the soap
film appears black.

Q27.6 If the oil film is brightest where it is thinnest, then     n n nair oil water< < . This is the condition for
constructive reinforcement as the thickness of the oil film decreases toward zero.

Q27.7 Different colors with different wavelengths selectively reinforce for thicknesses of the soap film such

that 
    
2 1

2
nt m= +( )λ       m =( )0 1 2, , ... . In the very thinnest regions, where t is near zero, destructive

interference occurs and the film appears black.

Q27.8 Light passes between adjacent threads of the handkerchief. These regularly spaced meshes act like
grooves in a diffraction grating.

Q27.9 If the film is more than a few wavelengths thick, the interference fringes are so close together that you
cannot resolve them.

Q27.10 If R is large, light reflecting from the lower surface of the lens can interfere with light reflecting from
the upper surface of the flat. The latter undergoes phase reversal on reflection while the former does
not. Where there is negligible distance between the surfaces, at the center of the pattern you will see a
dark spot because of the destructive interference associated with the   180°  phase shift. Colored rings
surround the dark spot. If the lens is a perfect sphere the rings are perfect circles. Distorted rings reveal
bumps or hollows on the fine scale of the wavelength of visible light.

Q27.11 A camera lens will have more than one element, to correct (at least) for chromatic aberration. It will
have several surfaces, each of which would reflect some fraction of the incident light. To maximize
light throughput the surfaces need antireflective coatings.

Q27.12 One way to make an antireflective coating for perpendicularly incident radar waves is this: Measure
the radar-reflectivity of the metal of your airplane. Suppose it is 90%. Then choose a light durable
material that will reflect just about 45% of the radio wave energy incident on it. Measure its index of
refraction. Onto the metal plaster a coating equal in thickness to one quarter of 3 cm divided by that
index. Sell it quick and then you can sell to the supposed enemy new radars operating at 1.5 cm, which
the coated metal will reflect with extra-high efficiency.
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Q27.13 To do Young’s double-slit interference experiment with light from an ordinary source, you must first
pass the light through a prism or diffraction grating to disperse different colors into different
directions. With a single narrow slit you select a single color and make that light diffract to cover both
of the slits for the interference experiment. Thus you may have trouble lining things up and you will
generally have low light power reaching the screen. The laser light is already monchromatic and
coherent across the width of the beam.

Q27.14 If you are using an extended light source, the
gray area at the edge of the shadow is the
penumbra. A bug looking up from there would
see the light source partly but not entirely
blocked by the book. If you use a point source of
light, hold it and the book motionless, and look
at very small angles out from the geometrical
edge of the shadow, you may see a series of
bright and dark bands produced by diffraction of
light at the straight edge, as shown in the
diagram.

Q27.15 Audible sound has wavelengths on the order of meters or centimeters, while visible light has a
wavelength on the order of half a micrometer. In this world of breadbox-sized objects, λ/a is large for
sound, and sound diffracts around behind walls with doorways. But λ/a is a tiny fraction for visible
light passing ordinary-size objects or apertures, so light changes its direction by only very small angles
when it diffracts.

Another way of phrasing the answer: We can see by a small angle around a small obstacle or around
the edge of a small opening. The side fringes in Figure 27.12 and the Arago spot in the center of Figure
27.13 show this diffraction. We cannot always hear around corners. Out-of-doors, away from reflecting
surfaces, have someone a few meters distant face away from you and whisper. The high-frequency,
short-wavelength, information-carrying components of the sound do not diffract around his head
enough for you to understand his words.

Q27.16 We apply the equation     θ λm D= 1 22.  /  for the resolution of a circular aperture, the pupil of your eye.
Suppose your dark-adapted eye has pupil diameter     D = 5 mm . An average wavelength for visible
light is   λ = 550 nm. Suppose the headlights are 2 m apart and the car is a distance L away. Then

    θm L= = × × −2 1 22 1 1 10 4 m/ . .  so     L ~ 10 km. The actual distance is less than this because the variable-
temperature air between you and the car makes the light refract unpredictably. The headlights twinkle
like stars.

Q27.17 Consider incident light nearly parallel to the horizontal
ruler. Suppose it scatters from bumps at distance d apart
to produce a diffraction pattern on a vertical wall a
distance L away. At a point of height y, where     θ = y L/
gives the scattering angle θ , the character of the
interference is determined by the shift δ  between beams
scattered by adjacent bumps, where     δ θ= −d d/cos .
Bright spots appear for   δ λ= m , where   0 1 2 3, , , ,.... For
small θ , these equations combine and reduce to

    m y d Lmλ = 2 22 . Measurement of the heights   ym of bright
spots allows calculation of the wavelength of the light.

Q27.18 The fine hair blocks off light that would otherwise go through a fine slit and produce a diffraction
pattern on a distant screen.  The width of the central maximum in the pattern is inversely proportional
to the distance across the slit.  When the hair is in place, it subtracts the same diffraction pattern from
the projected disk of laser light.  The hair produces a diffraction minimum that crosses the bright circle
on the screen.  The width of the minimum is inversely proportional to the diameter of the hair.  The
central minimum is flanked by narrower maxima and minima.
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Q27.19 An AM radio wave has wavelength on the order of    ( )/( ) ~3 10 1 10 3008 6 1× × − m/s  s  m.  This is large
compared to the width of the mouth of a tunnel, so the AM radio waves can reflect from the
surrounding ground as if the hole were not there.  (In the same way, a metal screen forming the dish of
a radio telescope can reflect radio waves as if it were solid, and a hole-riddled screen in the door of a
microwave oven keeps the microwaves inside.)  The wave does not “see” the hole.  Very little of the
radio wave energy enters the tunnel, and the AM radio signal fades.  An FM radio wave has
wavelength a hundred times smaller, on the order of a few meters.  This is smaller than the size of the
tunnel opening, so the wave can readily enter the opening.  (On the other hand, the long wavelength of
AM radio waves lets them diffract more around obstacles.  Long-wavelength waves can change
direction more in passing hills or large buildings, so in some experiments FM fades more than AM.)

Q27.20 The intensity of the light coming through the slit decreases as you would expect. The central maximum
increases in width as the width of the slit decreases. In the condition     sin /θ λ= a for destructive
interference on each side of the central maximum, θ  increases as a decreases.

Q27.21 Suppose the coating is intermediate in index of refraction between vacuum and the glass. When the
coating is very thin, light reflected from its top and bottom surfaces will interfere constructively, so
you see the surface white and brighter. As the thickness reaches one quarter of the wavelength of violet
light in the coating, destructive interference for violet will make the surface look red. Next to interfere
destructively are blue, green, yellow, orange, and red, making the surface look red, purple, and then
blue. As the coating gets still thicker, we can get constructive interference for violet and then for other
colors in spectral order. Still thicker coating will give constructive and destructive interference for
several visible wavelengths, so the reflected light will start to look white again.

Q27.22 Light scattered by closely spaced melanin fibers interferes constructively only in certain directions that
depend on the wavelength and on the direction of the incident light. One section of a feather serves as
a diffraction grating for short wavelength light, sending different colors in different directions. The
color you see when viewing one section of a feather changes as the light source, the feather, or you
move to change the angles of incidence or diffraction.

Q27.23 It is shown in the correct orientation. If the horizontal width of the opening is equal to or less than the
wavelength of the sound, then the equation     asin ( )θ λ= 1  has the solution   θ = °90 , or has no solution.
The central diffraction maximum covers the whole seaward side. If the vertical height of the opening is
large compared to the wavelength, then the angle in     asin ( )θ λ= 1  will be small, and the central
diffraction maximum will form a thin horizontal sheet.
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PROBLEM SOLUTIONS

27.1
    
y

L
d

mbright = λ

For m = 1, 
    
λ = =

×( ) ×( )
=

− −
yd
L

3 40 10 5 00 10

3 30

3 4. .

.

 m  m

 m   
515 nm

27.2
    
λ = = =−

v
f

354
2000

0 1771
 m/s

 s
 m.

(a)     d msinθ λ= so   0 300 1 0 177. sin . m  m( ) = ( )θ and θ =
  

36 2. °

(b)     d msinθ λ= so     d sin . .36 2 1 0 0300° = ( ) m and d = 
  

5 08.  cm

(c)
  
1 00 10 36 2 16. sin . ( )×( ) ° =−  m λ so λ = 590 nm

    
f

c= = ×
×

=−λ
3 00 10
5 90 10

8

7
.
.

 m/s
 m   

508 THz

27.3 Note, with the conditions given, the small angle approximation
does not work well. That is,   sinθ ,   tanθ , and θ are significantly
different. The approach to be used is outlined below.

(a) At the m = 2  maximum,
  
tan .θ = =400

0 400
 m

1000 m

  θ = °21 8.

so
    
λ θ= = ( ) ° =d

m
sin sin .300 21 8

2
 m

  
55 7.  m

(b) The next minimum encountered is the m = 2 minimum;

and at that point,
    
d msinθ λ= +( )1

2

which becomes
    
d sinθ λ= 5

2

or
    
sin

.
.θ λ= = =











5
2

5
2

55 7
0 464

d
 m

300 m

and θ = 27.7°

so     y = ( ) ° =1000 27 7 524 m  mtan .

Therefore, the car must travel an additional 
  
124 m .
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27.4
  
λ = =340

2000
0 170

 m/s
 Hz

 m.

Maxima are at     d msinθ λ= :

m = 0 gives θ = 0°

m = 1 gives
    
sin

.θ λ= =
d

0 170 m
0.350 m

θ = 29.1°

m = 2 gives
    
sin .θ λ= =2

0 971
d

θ = 76.3°

m = 3 gives   sin .θ = 1 46 No solution.

Minima are at 
    
d msinθ λ= +( )1

2
:

m = 0 gives
    
sin .θ λ= =

2
0 243

d
θ = 14.1°

m = 1 gives
    
sin .θ λ= =3

2
0 729

d
θ = 46.8°

m = 2 gives   sin .θ = 1 21 No solution.

  
So we have maxima at 0 ,  29.1 ,  and 76.3 ;  minima at 14.1  and 46.8° ° ° ° °

27.5 In the equation
    
d msinθ λ= +( )1

2

The first minimum is described by     m = 0

 and the tenth by     m = 9 :
    
sinθ λ= +( )d

9 1
2

Also,     tan /θ = y L

 but for small θ ,   sin tanθ θ≈

Thus,
    
d

L
y

= =9 5 9 5.
sin

.λ
θ

λ

    
d =

×( )( )
×

= × =
−

−
−9 5 5890 10 2 00

7 26 10
1 54 10

10

3
3

. .

.
.

 m  m

 m
 m

  
1 54.  mm
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*27.6 At 30.0°,     d msinθ λ=

    (3.20 × 10− 4 m) sin 30.0°= m(500 × 10− 9 m) so m = 320

There are 320 maxima to the right, 320 to the left, and one for m = 0 straight ahead.

There are 
  

641 maxima .

*27.7 Observe that the pilot must not only home in on the airport, but must be headed in the right
direction when she arrives at the end of the runway.

(a)
    
λ = = ×

×
=−

c
f

3 108

1
 m/s

30 10  s6   
10 0.  m

(b) The first side maximum is at an angle given by     d sin ( )θ λ= 1 .

  40 10 m  m( ) =sinθ   θ = °14 5.     tan /θ = y L

    y L= = ( ) ° =tan tan .θ 2000 14 5 m
  

516 m

(c) The signal of 10-m wavelength in parts (a) and (b) would show maxima at 0°, 14.5°, 30.0°, 48.6°,
and 90°. A signal of wavelength 11.23-m would show maxima at 0°, 16.3°, 34.2°, and 57.3°. The
only value in common is 0°. If   λ1 and   λ2 were related by a ratio of small integers (a just musical
consonance!) in     λ λ1 2 1 2/ /= n n , then the equations     d nsinθ λ= 2 1 and     d nsinθ λ= 1 2 would both be
satisfied for the same nonzero angle.  The pilot could come flying in with that inappropriate
bearing, and run off the runway immediately after touchdown.

*27.8
    
φ π

λ
θ π

λ
= ≈ 





2 2
d d

y
L

sin

(a)

  

φ π=
×( ) ×( ) °( ) =−

−2

5 00 10
1 20 10 0 500

7
4

.
. sin .

 m
 m

  
13 2.  rad

(b)

  

φ π=
×( ) ×( ) ×





=−

−
−2

5 00 10
1 20 10

5 00 10
1 207

4
3

.
.

.
. m

 m
 m

 m   
6 28.  rad

(c) If 
    
φ π θ

λ
= =0 333

2
.

sin
 rad

d

    

θ λ φ
π π

=






=
×( )( )

×( )














− −
−

−sin sin
.

1 1
7

2

5 00 10

0d

 m 0.333 rad

2 1.2 10  m4

θ =
  
1 27 10 2. × − deg

(d) If 
    
d sinθ λ=

4
    

θ λ=






= ×
×( )















− −
−

−sin sin1 1
7

44
5 10

0d
 m

4 1.2 10  m

θ =
  

5 97 10 2. × − deg
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27.9
    
I I

d
av = 



max cos

sin2 π θ
λ

For small θ,
    
sinθ = y

L

and     I Iav = 0 750. max

    
y

L
d

I
I

av= −λ
π

cos
max

1

    

y
I

I
=

×( )( )
×( ) =
−

−
−6 00 10 1 20

2 50 10

0 750
7

3
1

. .

.
cos

. max

max

 m

 mπ   
48 0.  mµ

27.10 (a)
    

I
Imax

cos= 





2

2
φ

(Equation 27.8)

Therefore,
    
φ = = =− −2 2 0 6401 1cos cos .

max

I
I   

1 29.  rad

(b)
  
δ λ φ

π π
= = ( )( ) =

2
486 1 29

2
 nm  rad.

  
99 8.  nm

*27.11
    
I I

y d
L

=




max cos2 π

λ

    

I
Imax

cos
. .

. .
=

×( ) ×( )
×( )( )















=
− −

−
2

3 4

9

6 00 10 1 80 10

656 3 10 0 800

π  m  m

 m  m   
0 987.

27.12 Light reflecting from the first surface suffers phase reversal. Light reflecting from the second
surface does not, but passes twice through the thickness t of the film. So, for constructive
interference, we require

    

λ λn
nt

2
2+ =

where  
  
λ λ

n n
=  is the wavelength in the material.

Then
    
2

2 2
t

n
n= =λ λ

    λ = = ( )( ) =4 4 1 33 115nt .  nm
  

612 nm
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27.13 (a) The light reflected from the top of the oil film
undergoes phase reversal. Since 1.45 > 1.33, the
light reflected from the bottom undergoes no
reversal. For constructive interference of reflected
light, we then have

    
2 1

2
nt m= +( )λ

or

    

λm
nt

m m
=

+
= ( )( )

+
2 2 1 45 280

1
2

1
2

.  nm

Substituting for m  gives: m = 0,   λ0 1620=  nm  (infrared)

m = 1,   λ1 541=  nm (green)

m = 2,   λ2 325=  nm (ultraviolet)

Both infrared and ultraviolet light are invisible to the human eye, so the dominant color in

reflected light is 
  

green .

(b) The dominant wavelengths in the transmitted light are those that produce destructive interference
in the reflected light. The condition for destructive interference upon reflection is

    2nt m= λ

or
    
λm

nt
m m

= =2 812 nm

Substituting for m gives: m = 1,   λ1 812=  nm (near infrared)

m = 2,   λ2 406=  nm (violet)

m = 3,   λ3 271=  nm (ultraviolet)

Of these, the only wavelength visible to the human eye (and hence the dominate wavelength
observed in the transmitted light) is 406 nm. Thus, the dominant color in the transmitted light is

  
violet .

27.14 Treating the anti-reflectance coating like a camera-lens coating,

    
2 1

2
t m

n
= +( ) λ

Let m = 0:
    
t

n
= = =λ

4
3 00.  cm
4(1.50)   

0 500.  cm

This anti-reflectance coating could be easily countered by changing the wavelength of the radar —
to 1.50 cm — now creating maximum reflection!
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27.15 For destructive interference in the air,

    2t m= λ

For 30 dark fringes, including the one where the plates meet,

    
t = ( ) = × −29 600

2
8 70 10 6 nm

 m.

Therefore, the radius of the wire is

    
r

t= = =
2

8 70
2

.  mµ
  

4 35.  mµ

*27.16
    
2 1

2
nt m= +( )λ so

    
t m

n
= +( )1

2 2
λ

Minimum 
    
t = ( ) =1

2

500
2 1 30

(
( . )

 nm)
  

96 2.  nm

27.17
    
sin

.
.

.θ λ= = ×
×

= ×
−

−
−

a
6 328 10
3 00 10

2 11 10
7

4
3

    

y
1 00.

tan sin  )
 m

(for small = ≈ =θ θ θ θ

2y = 
  

4 22.  mm

27.18 The positions of the first-order minima are     y L a≈ = ±sinθ λ . Thus, the spacing between these
two minima is     ∆y a L= ( )2 λ  and the wavelength is

    
λ = ∆y

2






a
L





 = 4.10 × 10− 3  m

2







0.550 × 10− 3  m

2.06 m







=

  
547 nm

27.19
    

y
L

m
a

= =sinθ λ
    ∆ = × −y 3 00 10 3.  nm

    ∆ = − =m 3 1 2 and
  
a

m L
y

= ∆
∆

λ

    

a =
×( )( )

×( ) =
−

−

2 690 10 0 500

3 00 10

9

3

 m  m

 m

.

.   
2 30 10 4. × − m
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27.20 For destructive interference,

    
sin

.
.θ λ λ= = = =m

a a
5 00

0 139
 cm

36.0 cm

and   θ = °7 98.

    

d
L

= tanθ

gives     d L= = ( ) ° =tan . tan . .θ 6 50 7 98 0 912 m  m

d = 
  

91 2.  cm

27.21 If the speed of sound is 340 m/s,
    
λ = = =−

v
f

340
650

0 5231
 m/s
 s

 m.

Diffraction minima occur at angles described by     a msinθ λ=

  1 10 1 0 5231. sin . m  m( ) = ( )θ   θ1 28 4= °.

  1 10 2 0 5232. sin . m  m( ) = ( )θ   θ2 72 0= °.

  1 10 3 0 5233. sin . m  m( ) = ( )θ   θ3 nonexistent

Maxima appear straight ahead at 
  

0°  and left and right at an angle given approximately by

    1 10 1 5 0 523. sin . . m  m( ) = ( )θx   θx  
  

≈ °46

There is no solution to     asin .θ λ= 2 5 , so our answer is already complete, with 
  

three  sound
maxima.

27.22
    
sin

.
.

θ λ= = ×
×

=
−

−a
5 00 10

5 00 10

7

4
 m

  
1 00 10 3. × − rad

27.23 Following Equation 27.16 for diffraction from a circular opening, the beam spreads into a cone of
half-angle

    
θ λ

min . .
.
.

.= = ×





= ×

−
−1 22 1 22

632 8 10
0 00500

1 54 10
9

4

D
 m

 m
 rad

The radius of the beam ten kilometers away is, from the definition of radian measure,

    
rbeam  m  m= ×( ) =θmin . .1 00 10 1 5444

and its diameter is     d rbeam beam= =2
  

3 09.  m
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*27.24
    
θmin = 1.22

wavelength
pupil diameter







= (distance between sources)
L

so
    

1.22λ
d

= w
vt

  w =
    

1 22. ( )λ vt
d

where   λ ≈ 650 nm  is the average wavelength radiated by the red taillights.

27.25 By Rayleigh’s criterion, two dots separated center-to-center by 2.00 mm would overlap

 when
    
θmin = d

L
= 1.22

λ
D

Thus,

    

L
dD= =

×( ) ×( )
×( ) =

− −

−1 22

2 00 10 4 00 10

1 22 500 10

3 3

9.

. .

.λ

 m  m

 m   
13.1 m

27.26
    
1 22.

λ
D

d
L

=
    
λ = =c

f
0 0200.  m

D = 2.10 m L = 9000 m

    
d = ( )( ) =1 22

0 0200 9000
2 10

.
.

.
 m  m

 m   
105 m

*27.27 Apply Rayleigh’s criterion, 
    
θmin = x

D
= 1.22

λ
d

where   θmin =  half-angle of light cone,

  x =  radius of spot,

λ =  wavelength of light,

  d =  diameter of telescope,

  D =  distance to Moon.

Then, the diameter of the spot on the Moon is

    
2x = 2 1.22

λD
d





 =

2 1.22( ) 694.3 × 10− 9  m( ) 3.84 × 108  m( )
2.70 m

=
  

241 m
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*27.28 The concave mirror of the spy satellite is probably about 2 m in diameter, and is surely not more
than 5 m in diameter. That is the size of the largest piece of glass successfully cast to a precise
shape, for the mirror of the Hale telescope on Mount Palomar. If the spy satellite had a larger
mirror, its manufacture could not be kept secret, and it would be visible from the ground. Outer
space is probably closer than your state capitol, but the satellite is surely above 200-km altitude,
for reasonably low air friction. We find the distance between barely resolvable objects at a
distance of 200 km, seen in yellow light through a 5-m aperture:

    

y
L D

= 1 22.
λ

    
y = ( )( ) ×





=

−
200000 1 22

6 10
5

3
7

 m
 m

 m
 cm.

(Considering atmospheric seeing caused by variations in air density and temperature, the

distance between barely resolvable objects is more like 
  
200000 1 97 m  s

1
3600 s

 rad
180

 cm( )( ) °



 °




 =π

.)

Thus the snooping spy satellite cannot see the difference between III and II or IV on a license
plate. It cannot count coins spilled on a sidewalk, much less read the date on them.

27.29 The principal maxima are defined by

    d msinθ λ= m = 0, 1, 2, . . .

For m = 1,     λ θ= dsin

where θ is the angle between the central (m = 0) and the first
order (m = 1) maxima. The value of θ can be determined from the
information given about the distance between maxima and the
grating-to-screen distance.  From the figure,

  
tan

.
.θ = =0 488

0 284
 m

1.72 m

so   θ = °15 8.

and     sin .θ = 0 273

The distance between grating “slits” equals the reciprocal of the number of grating lines per
centimeter

    
d = = × = ×−

−1
5310

1 88 10 1 88 101
4 3

 cm
 cm  nm. .

The wavelength is
    
λ θ= = ×( )( ) =dsin . .1 88 10 0 2733  nm

  
514 nm

27.30   sin .θ = 0 350 :
    
d = = = ×λ

θsin
.
.

.
632 8

0 350
1 81 103 nm

 nm

Line spacing = 
  
1 81.  mµ
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27.31 The grating spacing is 
    
d = × = ×

−
−1 00 10

4500
2 22 10

2
6.

.
 m

 m

In the 1st-order spectrum, diffraction angles are given by

    
sinθ λ=

d
:

  
sin

.
.θ1

9

6
656 10
2 22 10

0 295= ×
×

=
−

−
 m
 m

so that for red   θ1 17 17= °.

and for violet
  
sin

.
.θ2

9

6
434 10
2 22 10

0 195= ×
×

=
−

−
 m
 m

so that   θ2 11 26= °.

The angular separation is in first-order,   ∆θ = ° − ° =17 17 11 26. .
  

5 91. °

In the second-order spectrum,
    
∆θ λ λ= 



 − 



 =− −sin sin1 1 1 22 2

d d   
13 2. °

Again, in the third order,
    
∆θ λ λ= 



 − 



 =− −sin sin1 1 1 23 3

d d   
26 5. °

Since the red does not appear in the fourth-order spectrum, the answer is complete.

*27.32 (a)     d msinθ λ=

or
    
d

m= =
×( )

°
=

−
λ
θ

µ
sin sin .

.
3 500 10

32 0
2 83

9  m
 m

Therefore, lines per unit length = 
    

1
 md

=
× −

1
2 83 10 6.

or lines per unit length   = × =−3 53 105 1.  m
  

3 53 103 1. × −cm .

(b)
    
sin

.
.θ λ= =

×( )
×

= ( )
−

−
m
d

m
m

500 10

2 83 10
0 177

9

6

 m

 m 

For   sin .θ ≤ 1 00, we must have     m 0 177 1 00. .( ) ≤

or     m ≤ 5 65.

Therefore, the highest order observed is m = 5

Total number primary maxima observed is     2m + 1 =
  
11
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27.33
    
d = = ×−

−1
800

1 25 101
6

 mm
 m.

The blue light goes off at angles 
    
sinθ λ

m
m
d

= :
  
θ1

1
7

6
1 5 00 10

1 25 10
23 6= × ×

×






= °−

−

−sin
.

.
.

 m
 m

  θ2
1 2 0 400 53 1= ×( ) = °−sin . .

  θ3
1 3 0 400= ×( ) =−sin . nonexistent

The red end of the spectrum is at
  
θ1

1
7

6
1 7 00 10

1 25 10
34 1= × ×

×






= °−

−

−sin
.

.
.

 m
 m

  θ2
1 2 0 560= ×( ) =−sin . nonexistent

So only the first-order spectrum is complete, and 
  

it does not overlap  the second-order
spectrum.

*27.34     d msinθ λ=

and, differentiating,     d d md(cos )θ θ λ=

or     d m1 sin2− ≈θ θ λ∆ ∆

    d m d m1 /2 2 2− ≈λ θ λ∆ ∆

so

    

∆ ≈ ∆

−
θ λ

λd m2 2 2/

*27.35
    
d = × = × =

−
−1 00 10

4 00 10 4000
3

6.
.

 m/mm
250 lines/mm

 m  nm
    
d m m

d
sin

sinθ λ θ
λ

= ⇒ =  

(a) The number of times a complete order is seen is the same as the number of orders in which the
long wavelength limit is visible.

    
m

d
max

maxsin sin .
.= = ( ) ° =θ

λ
4000 90 0

700
5 71

 nm
 nm

 or
  

5 orders is the maximum

(b) The highest order in which the violet end of the spectrum can be seen is:

    
m

d
max

maxsin sin .
.= = ( ) ° =θ

λ
4000 90 0

400
10 0

 nm
 nm

 or
  
10 orders in the short-wavelength region
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27.36     2d msinθ λ= :
    
λ θ= =

×( ) °
= × =

−
−2 2 0 353 10 7 60

1
9 34 10

9
11d

m
sin . sin .

.
 m

 m
  

0 0934.  nm

27.37     2d msinθ λ= :

    

sin
.

.
.θ λ= =

×( )
×( ) =

−

−
m

d2

1 0 140 10

2 0 281 10
0 249

9

9

 m

 m

and
  
θ = °14 4.

*27.38 Figure 27.25 of the text shows the situation.

    2d msinθ λ= or
    
λ θ= 2d

m
sin

    m = 1:
  
λ1

2 2 80 80 0
1

= ( ) ° =. sin . m
  

5 51.  m

    m = 2:
  
λ2

2 2 80 80 0
2

= ( ) ° =. sin . m
  

2 76.  m

    m = 3:
  
λ3

2 2 80 80 0
3

= ( ) ° =. sin . m
  
1.84 m

*27.39 (a) The several narrow parallel slits make a diffraction grating.
The zeroth- and first- order maxima are separated according to

    dsin ( )θ λ= 1
    
sin

.θ λ= = ×
×

−

−d
632 8 10 9

3
 m

1.2 10  m

  θ = ( ) =−sin . .1 0 000527 0 000527 rad

    y L= = =tan ( .θ 1 40 m)(0.000527)
  

0 738.  mm

Many equally spaced transparent lines appear on the film. It is itself a diffraction grating. When
the same light is sent through the film, it produces interference maxima separated according to

    dsin ( )θ λ= 1
    
sin

.
.θ λ= = ×

×
=

−

−d
632 8 10

0 000857
9

3
 m

0.738 10  m

    y L= =tan ( .θ 1 40 m)(0.000857) = 1.20 mm.

An image of the original set of slits appears on the screen.  If the screen is removed, light diverges
from the real images with the same wave fronts reconstructed as the original slits produced.
Reasoning from the mathematics of Fourier transforms, Gabor showed that light diverging from
any object, not just a set of slits, could be used. In the picture, the slits or maxima on the right are
separated by 1.20 mm. The slits or maxima on the left are separated by 0.738 mm. The length
difference between any pair of lines is an integer number of wavelengths. Light can be sent
through equally well toward the right or toward the left.
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*27.40 (a) The light in the cavity is incident perpendicularly on the
mirrors, although the diagram shows a large angle of
incidence for clarity. We ignore the variation of the index of
refraction with wavelength. To minimize reflection at a
vacuum wavelength of 632.8 nm, the net phase difference
between rays (1) and (2) should be 180°. There is
automatically a 180° shift in one of the two rays upon
reflection, so the extra distance traveled by ray (2) should
be one whole wavelength:

    2t n= λ/

    
t

n
= = ( ) =λ

2
632 8.  nm
2 1.458   

217 nm

(b) The total phase difference should be 360°, including contributions of 180° by reflection and 180°
by extra distance traveled:

    2 2t n= λ/

    
t

n
= = ( ) =λ

4
543 nm
4 1.458   

93 1.  nm

27.41 My middle finger has width d = 2 cm.

(a) Two adjacent directions of constructive interference for 600-nm light are described by

    d msinθ λ=

  θ0 0=

  
2 10 1 6 102

1
7×( ) = ×( )− − m  msinθ

Thus,   θ1
32 10= × −  degree

and   θ θ1 0−  
  

~ 10 3− degree

(b) Choose   θ1 20= °

  
2 10 20 12×( ) ° =−  m sin ( )λ

λ = 7 mm

Millimeter waves are 
  

microwaves .

  
f

c=
λ

:
    
f = ×

× −
3 10
7 10

8

3
 m/s

 m
 
  

~ 1011 Hz
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*27.42 No phase shift upon reflection from the upper surface (glass to air) of the film, but there will be a
shift of   λ 2 due to the reflection at the lower surface of the film (air to metal). The total phase
difference in the two reflected beams is

then      δ λ= +2 2nt

 For constructive interference,   δ λ= m

or     2 1 00 2( . )t m+ =λ λ

Thus, the film thickness for the     m
th  order bright fringe is:

    
t m mm = −( ) = 



 −1

2 2 2 4
λ λ λ

and the thickness for the m – 1 bright fringe is:

    
tm−1 = (m − 1)

λ
2





 − λ

4

Therefore, the change in thickness required to go from one bright fringe to the next is

    ∆t = tm − tm−1 = λ 2

To go through 200 bright fringes, the change in thickness of the air film must be:

  200 λ 2( ) = 100λ

Thus, the increase in the length of the rod is

    
∆L = 100λ = 100 5.00 × 10−7  m( ) = 5.00 × 10− 5  m

From   ∆L L Ti= ∆α

 we have:
    
α =

∆
= ×

( ) °( ) =
−∆L

L Ti

5 00 10
0 100 25 0

5.
. .

 m
 m C   

20 0 10 6 1. × °− −C

27.43 For destructive interference, the path length must differ by   mλ . We may treat this problem as a
double slit experiment if we remember the light undergoes a   π /2-phase shift at the mirror. The
second slit is the mirror image of the source, 1.00 cm below the mirror plane. Using Equation 27.5,

    

y
m L

ddark

 m  m

 m
= =

×( )( )
×( ) =
−

−
λ 1 5 00 10 100

2 00 10

7

2

.

.   
2 50.  mm

27.44     2 15 0 30 1752 2. . km  km( ) + =h

    15 0 227 632 2. . km( ) + =h

  h =
  
1 62.  km
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27.45 For dark fringes,     2nt m= λ

and at the edge of the wedge,
    
t = 84 500

2
( ) nm

.

When submerged in water,     2nt m= λ

    
m = 2(1.33)(42)(500 nm)

500 nm

so     m + =1
  
113 dark fringes

27.46 (a) Minimum:     2 2nt m= λ for m = 0, 1, 2, . . .

Maximum:
    
2 1

2 1nt m= ′ +( )λ for m’ = 0, 1, 2, . . .

for    λ λ1 2> ,
    

′ +( ) <m m1
2

so m’ = m – 1

Then
    
2 2

1
2 1nt m m= = −( )λ λ

    2 22 1 1m mλ λ λ= −

so
    

m =
−( )

λ
λ λ

1

1 22

(b)
    
m =

−( ) = →500
2 500 370

1 92 2.  (wavelengths measured to ± 5 nm)

Minimum:     2 2nt m= λ

2(1.40)t = 2(370 nm) t = 264 nm

Maximum:
    
2 1 1 51

2
nt m= − +( ) =λ λ.

2(1.40)t = 1.5(500 nm) t = 268 nm

Film thickness = 
  

266 nm
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*27.47 The shift between the two reflected waves is     δ λ= − −2 2na b
where a and b are as shown in the ray diagram, n is the index
of refraction, and the factor of   λ 2 is due to phase reversal at
the top surface. For constructive interference,   δ λ= m  where
m has integer values. This condition becomes

    
2 1

2
na b m− = +( )λ  (1)

From the figure’s geometry,
    
a

t=
cosθ2

    
c a

t= =sin
sin

cos
θ θ

θ2
2

2

    
b c

t= =2
2

1
2

2
1sin

sin
cos

sinφ θ
θ

φ

Also, from Snell’s law,     sin sinφ θ1 2= n

Thus,
    
b

nt= 2 2
2

2

sin
cos

θ
θ

With these results, the condition for constructive interference given in Equation (1) becomes:

    
2

2 2
1

2

2
2

2 2

2
2

1
2

n
t nt nt

m
cos

sin
cos cos

sin
θ

θ
θ θ

θ λ






− = −( ) = +( )

or
    

2 2
1
2

nt mcosθ λ= +( )

*27.48 (a) Bright bands are observed when 
    
2 1

2
nt m= +( )λ

Hence, the first bright band (m = 0) corresponds to     nt = λ 4

Since 
    

x
x

t
t

1

2

1

2
=

we have
    
x x

t
t

x2 1
2

1
1

2

1
3 00=







=






= ( )

 =λ

λ
.  cm

680 nm
420 nm   

4 86.  cm

(b)
    
t

n1
1

4
420= = =λ  nm
4(1.33)   

78 9.  nm

    
t

n2
2

4
680= = =λ  nm
4(1.33)   

128 nm

(c)
    
θ θ≈ = = =tan

.t
x
1

1

78 9
3 00

 nm
.  cm   

2 63 10 6. × − rad
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27.49 The first minimum is at     a sin ( )θ λ= 1

This has no solution if
  

λ
a

 > 1

or if a < λ = 
  

632 8.  nm

*27.50 Consider vocal sound moving at 340 m/s and of frequency 3000 Hz. Its wavelength is

    
λ = = =v

f
340
3000

0 113
 m/s

 Hz
 m.

If your mouth, for horizontal dispersion, behaves similarly to a slit 6.00 cm wide, then

    a msinθ λ=  predicts no diffraction minima. You are a nearly isotropic source of this sound. It
spreads out from you nearly equally in all directions. On the other hand, if you use a megaphone
with width 60.0 cm at its wide end, then     a msinθ λ=  predicts the first diffraction minimum at

    
θ λ= 



 = 



 = °− −sin sin

.

.
.1 1 0 113

0 600
10 9

m
a

 m
 m

This suggests that the sound is radiated mostly toward the front into a diverging beam of angular
diameter only about 20°. With less sound energy wasted in other directions, more is available for
your intended auditors. We could check that a distant observer to the side or behind you receives
less sound when a megaphone is used.

27.51
    
d = = ×−

−1
400

2 50 101
6

 mm
 m.

(a)     d msinθ λ= :
    
θa = × ×

×






=−

−

−sin
.

1
9

6
2 541 10

2 50 10
 m

 m   
25 6. °

(b)
  
λ = × = ×

−
−541 10

1 33
4 07 10

9
7 m

 m
.

.
    
θb = × ×

×






=−

−

−sin
.

.
1

7

6
2 4 07 10

2 50 10
 m

 m   
19 0. °

(c)     d asinθ λ= 2
    
d

nbsinθ λ= 2

    n b asin ( )sinθ θ= 1
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*27.52 (a)
  
λ = v

f
:

  
λ = ×

×
=−

3
1 40 10

0 2149
.00 10  m s

 s
 m

8

1.
.

    
θ λ

min .= 1 22
D

:
  
θmin .

.
.

=
×





 =1 22

0 214
3 60 104

 m
 m   

7 26.  radµ

  
θ µ

πmin  rad
 s= × ×



 =7 26

180 60 60
.

  
1.50 arc seconds

(b)
    
θmin = d

L
:

    
d = θminL = 7.26 × 10−6  rad( ) 26 000 ly( ) =

  
0 189.  ly

(c)
    
θ λ

min .= 1 22
D

  
θmin .

.
= ×

×






=

−

−1 22
500 10
12 0 10

9

3
 m
 m   

50 8.  radµ  (10.5 seconds of arc)

(d)
    
d = θminL = 50.8 × 10−6  rad( ) 30.0 m( ) = 1.52 × 10− 3  m =

  
1 52.  mm

*27.53 (a) We require
    
θ λ

min .= = =1 22
2D L
D
L

radius of diffraction disk
.

Then
    

D L2 2 44= . λ

(b)
    
D = ×( )( ) =−2 44 500 10 0 1509. . m  m

  
428 mµ
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ANSWERS TO EVEN NUMBERED PROBLEMS

  2. (a) 36.2° (b) 5.08 cm (c) 508 THz

  4. maxima at 0°, 29.1°, and 76.3°; minima at 14.1° and 46.8°

  6. 641

  8. (a) 13.2 rad (b) 6.28 rad
(c) 0.012 7 degree (d) 0.059 7 degree

10. (a) 1.29 rad (b) 99.8 nm

12. 612 nm

14. 0.500 cm

16. 96.2 nm

18. 547 nm

20. 91.2 cm

22. 1.00 mrad

24. 1.22 λvt/d   where λ is about 650 nm

26. 105 m

28. Neither.  It can resolve objects no closer than several centimeters apart.

30. 1.81 µm

32. (a)   3 53 103. ×  lines/cm (b) Eleven maxima

34. See the solution

36. 93.4 pm
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38. 5.51 m, 2.76 m, 1.84 m

40. (a) 217 nm (b) 93.1 nm

42.   20 0 10 6.  × °− −C 1

44. 1.62 km

46. (a) See the solution (b) 266 nm

48. (a) 4.86 cm   from the top (b) 78.9 nm and 128 nm (c)   2 63 10 6. × −  rad

50. See the solution

52. (a) 7.26 µrad  (1.50 seconds of arc) (b) 0.189 ly
(c) 50.8 µrad  (10.5 seconds of arc) (d) 1.52 mm


