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ANSWERS TO QUESTIONS

Q28.1 A particle is represented by a wave packet of nonzero width.  The width necessarily introduces
uncertainty in the position of the particle.  The width of the wave packet can be reduced toward zero
only by adding waves of all possible wavelengths together.  Doing this, however, results in loss of all
information about the momentum and, therefore, the speed of the particle.

Q28.2 Any object of macroscopic  size — including a grain of sand — has an undetectably small wavelength
and does not exhibit quantum behavior.

Q28.3 If we set     p m q V2 2 = ∆ , which is the same for both particles, then we see that the electron has the
smaller momentum and therefore the longer wavelength     λ =( )h p/ .

Q28.4 The intensity of electron waves in some small region of space determines the  probability that there is an
electron in that region.

Q28.5 High-intensity light (with     f f> cutoff , of course) ejects more electrons from the surface of the metal.
Higher-frequency light ejects individual electrons of higher energy but not more of them.

Q28.6 Wave theory predicts that the photoelectric effect should occur at any frequency, provided the light
intensity is high enough. However, as seen in the photoelectric experiments, the light must have a
sufficiently high frequency for the effect to occur.

Q28.7 Light has both wave and particle characteristics.  In single- and double-slit experiments light behaves
like a wave. In the photoelectric effect light behaves like a particle.  Light may be characterized as an
electromagnetic wave with a particular wavelength or frequency, yet at the same time light may be
characterized as a stream of photons, each carrying a discrete energy, hf. Since light displays both wave
and particle characteristics, perhaps it would be fair to call light a “wavicle”.  It is customary to call a
photon a quantum particle, different from a classical particle.

Q28.8 An electron has both wave and particle characteristics. In single- and double-slit diffraction and
interference experiments, electrons behave like classical waves. An electron has mass and charge. It
carries kinetic energy and momentum in parcels of definite size, as classical particles do. At the same
time it has a particular wavelength and frequency. Since an electron displays characteristics of both
classical waves and classical particles, it is neither a classical wave nor a classical particle. It is
customary to call it a quantum particle, but another invented term, such as “wavicle”, would serve
equally well.

Q28.9 A few photons would only give a few dots of exposure, apparently randomly scattered.

Q28.10 Ultraviolet light has shorter wavelength and higher photon energy than visible light.

Q28.11 Most stars radiate nearly as blackbodies. Vega has a higher surface temperature than Arcturus. Vega
radiates most intensely at shorter wavelengths.

Q28.12 The x-ray photon transfers some of its energy to the electron. Thus, its frequency must decrease.

Q28.13 Your skin is a good approximation to a blackbody.  If a patch of your skin or clothing is at 30°C = 303 K,
you radiate with highest intensity at wavelength   2 898 10 9 63. .× ⋅ =−  m K/303 K  mµ .  You glow in the
infrared.  Snakes called pit vipers search for this radiation to locate their prey; so does the army.  To an
infrared-detector security alarm, a big hot pizza would look very much like you.
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Q28.14 The discovery of electron diffraction by Davisson and Germer was a fundamental advance in our
understanding of the motion of material particles. Newton’s laws fail to properly describe the  motion
of an object with small mass. It moves as a wave, not as a classical particle. Proceeding from this
recognition, the development of quantum mechanics  made possible describing the motion of electrons
in atoms; understanding molecular structure and the  behavior of matter at the atomic scale, including
electronics, photonics, and engineered materials; accounting for the motion of nucleons in nuclei; and
studying elementary particles.

Q28.15 A particle’s wave function represents its state, containing all the information there is about its location
and motion. The squared absolute value of its wave function tells where we would classically think of
the particle as a spending most its time;   Ψ

2 is the probability distribution function for the position of
the particle.

Q28.16 The motion of the quantum particle does not consist of moving through successive points. The particle
has no definite position. In can sometimes be found on one side of a node and sometimes on the other
side, but never at the node itself. There is no contradiction here, for the quantum particle is moving as
a wave. It is not a classical particle. In particular, the particle does not speed up to infinite speed to
cross the node.

Q28.17 As Newton’s laws are the rules which a particle of large mass follows in its motion, so the Schrödinger
equation describes the motion of a quantum particle, a particle of small or large  mass. In particular,
the  states of atomic electrons are confined-wave states with wave functions that are solutions to the
Schrödinger equation.

Q28.18 No. The second metal may have a larger work function than the first, in which case the incident
photons may not have enough energy to eject photoelectrons.
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PROBLEM SOLUTIONS

*28.1 (a) Using     λmax
3  2.898 10 m KT = × ⋅−

we get
  
λmax .= × = × =

−
−2.898 10  m

2900 K
 m

3
79 99 10

  
999 nm

(b) The 
  

peak wavelength is in the infrared  region of the electromagnetic spectrum, which is much
wider than the visible region of the spectrum.

*28.2 (a)       P = eAσT4 so
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3
7 m K  m K
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28.3 (a)
    
E = hf = 6.626 × 10− 34  J ⋅ s( ) 620 × 1012  s−1( ) 1.00 eV

1.60 × 10−19  J







=
  

2 57.  eV

(b)
    
E hf= = × ⋅( ) ×( ) ×







=− −
−6 626 10 3 10 10

1 00
1 60 10

34 9
19. .

.
.

 J s  s
 eV

 J
1

  
1 28 10 5. × − eV

(c)
    
E = hf = 6.626 × 10− 34  J ⋅ s( ) 46.0 × 106  s−1( ) 1.00 eV

1.60 × 10−19  J







=
  
1 91 10 7. × − eV

(d)
    
λ = = ×

×
= × =−c

f
3 00 10

4 84 10
8

7.
.

 m/s
620 10  Hz

 m12   
484 nm,  visible light (blue)

    
λ = = ×

×
= × =−c

f
3 00 10

10
9 68 10

8
2.

.
.

 m/s
3 10  Hz

 m9   
9 68.  cm,  radio wave

    
λ = = ×

×
=c

f
3 00 10
46 0

8.
.

 m/s
10  Hz6   

6 52.  m,  radio wave



Chapter 28

324

28.4 Energy of a single 500-nm photon:

    

E h f
hc

γ λ
= = =

× ⋅( ) ×( )
×( ) = ×

−

−
−6 626 10 3 00 10

500 10
3 98 10

34 8

9
19

. .
.

 J s  m/s

 m
 J

The energy entering the eye each second

      
E t I A t= = = ×( ) ×( )




( ) = ×− − −P∆ ∆ 4 00 10

4
8 50 10 1 00 2 27 1011 3 2 15. . . . W/m  m  s  J2 π

The number of photons required to yield this energy

    
n

E
E

= = ×
×

=
−

−
γ

2 27 10
3 98 10

15

19
.

.
 J

 J/photon   
5 71 103. × photons

28.5 Each photon has an energy
    
E h f= = ×( ) ×( ) = ×− −6 626 10 99 7 10 6 61 1034 6 26. . .  J

This implies that there are
  

150 10
6 61 10

3

26
×

×
=−

 J/s
 J/photon.   

2 27 1030. × photons/s

28.6 We take θ = 0.0300 radians. Then the pendulum’s total energy is

    E mgh mg L L= = −( )cosθ

    
E = ( )( ) −( ) = × −1 00 9 80 1 00 0 9995 4 41 10 3. . . . . kg  m/s  J2

The frequency of oscillation is
    
f

g
L

= = =ω
π π2

1
2

0 498.  Hz

The energy is quantized, E = nhf

Therefore,

    

n
E
h f

= = ×
× ⋅( )( ) =

−

− −
4 41 10

6 626 10 0 498

3

34 1
.

. .

 J

 J s  s   
1 34 1031. ×

28.7 (a)

    

λ
φc
hc= =

× ⋅( ) ×( )
( ) ×( ) =

−

−

6 626 10 3 00 10

4 20 1 60 10

34 8

19

. .

. .

 J s  m/s

 eV  J/eV   
296 nm

    
f

c
c

c
= = ×

×
=−λ

3 00 10
296 10

8

9
.  m/s

 m   
1 01 1015. × Hz

(b)
  

hc
e VSλ

φ= + ∆ :
    

6 626 10 3 00 10

180 10
4 20 1 60 10 1 60 10

34 8

9
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. .
. . .

×( ) ×( )
×

= ( ) ×( ) + ×( )∆
−

−
− − eV  J/eV VS

Therefore,
    

∆ =VS 2 71.  V
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28.8
    
K mvmax max . . . .= = ×( ) ×( ) = × =− −1

2
2 1

2
31 5 2 209 11 10 4 60 10 9 64 10 0 602 J  eV

(a)
    
φ = − = ⋅ − =E Kmax .

1240
625

0 602
 eV nm

 nm
 nm

  
1 38.  eV

(b)
    
f

hc = =
× ⋅

×





=−

−φ 1 38 1 60 10
134

19. . eV
6.626 10  J s

 J
 eV   

3 34 1014. × Hz

*28.9 (a)
    
e V

hc
S∆ = − → = ⋅ − =

λ
φ φ  

 nm eV
546.1 nm

 eV
1240

0 376.
  
1 90.  eV

(b)
    
e V

hc
S∆ = − = ⋅ −

λ
φ 1240

1 90
 nm eV

587.5 nm
 eV.  → 

    
∆VS = 0 216.  V

28.10 The energy needed is     E = = × −1 00 1 60 10 19. . eV  J

The energy absorbed in time interval   ∆t is     E t IA t= =P∆ ∆

so

    

∆t
E
IA

= = ×

⋅( ) ×( )





= × =
−

−

1 60 10

500 2 82 10
1 28 10

19

15 2
7.

.
.

 J

 J/s m  m
 s

2 π   
148 days

The gross failure of the classical theory of the photoelectric effect contrasts with the success of
quantum mechanics.

*28.11 Ultraviolet photons will be absorbed to knock electrons out of the sphere with maximum kinetic
energy     Kmax = hf − φ ,

 or
    
Kmax =

6.626 × 10− 34  J ⋅ s( ) 3.00 × 108  m s( )
200 × 10− 9  m

1.00 eV
1.60 × 10−19  J







− 4.70 eV = 1.51 eV

The sphere is left with positive charge and so with positive potential relative to     V = 0 at   r = ∞ . As
its potential approaches 1.51 V, no further electrons will be able to escape, but will fall back onto
the sphere. Its charge is then given by

  
V = keQ

r
or

    
Q

rV
ke

= =
×( ) ⋅( )

× ⋅
=

−5 00 10 1 512. .

/

 m  N m/C

8.99 10  N m C9 2 2   
8 41 10 12. × − C

28.12
    
E

hc= =
× ⋅( ) ×( )

×
= × =

−

−
−

λ
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700 10
2 84 10

34 8

9
19

. .
.
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1 78.  eV

    
p

h= = × ⋅
×

=
−

−λ
6 626 10

700 10

34

9
.  J s

 m   
9 47 10 28. × ⋅−  kg m/s
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28.13 (a)
    
∆λ θ= −h

m ce
( cos )1 :

  

∆λ = ×
×( ) ×( ) − °( ) =

−

−
6 626 10

9 11 10 3 00 10
1 37 0

34

31 8
.

. .
cos .

  
4 88 10 13. × − m

(b)     E0 = hc / λ0 :
  
300 × 103  eV( ) 1.60 × 10−19  J / eV( ) = 6.626 × 10−34( ) 3.00 × 108  m / s( ) λ0

  λ0
124 14 10= × −.  m

and   λ λ λ′ = + = × −
0

124 63 10∆ .  m

    
E

hc′ =
′

=
× ⋅( ) ×( )

×
= × =

−

−λ

6 626 10 3 00 10

4 63 10
4 30 10

34 8

12
14

. .

.
.

 J s  m/s

 m
 J

  
268 keV

(c)     K E Ee = − ′ = − =0 300 268 5 keV  keV.
  

31 5.  keV

28.14 This is Compton scattering through 180°:

    

E
hc

0
0

34 8

9 19

6 626 10 3 00 10

0 110 10 1 60 10
11 3= =

× ⋅( ) ×( )
×( ) ×( ) =

−

− −λ

. .

. .
.

 J s  m/s

 m  J/eV
 keV

    
∆λ θ= − = ×( ) − °( ) = ×− −h

m ce
( cos ) . cos .1 2 43 10 1 180 4 86 1012 12 m  m

  λ λ λ′ = + ∆ =0 0 115.  nm so
    

′ =
′

=E
hc
λ

10 8.  keV

By conservation of momentum for the photon-electron system,
      

h h
peλ λ0

i i i=
′

−( ) +

and
    
p he = −

′






1 1

0λ λ

    

pe = 6.626 × 10−34  J ⋅ s( ) 3.00 × 108  m / s( )/ c

1.60 × 10−19  J / eV











1
0.110 × 10−9  m

+ 1
0.115 × 10−9  m





 =

    
22 1.  keV/c

By conservation of system energy,     11 3 10 8. . keV  keV= + Ke

so that
    

Ke = 478 eV

Check:     E p c m ce
2 2 2 2 4= + or     (mec

2 + Ke )2 = (pc)2 + (mec
2 )2

  511 0 478 22 1 5112 2 2 keV  keV  keV  keV+( ) = ( ) + ( ). .

  2 62 10 2 62 1011 11. .× = ×
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28.15 With    K Ee = ′ ,      K E Ee = − ′0   gives     E E E′ = − ′0

    
E

E′ = 0

2
and

  
λ′ =

′
hc
E     

λ λ′ = = =hc
E

hc
E0 0

02
2 2

/

  λ λ λ θ′ = + −( )0 1C cos :   2 10 0λ λ λ θ= + −( )C cos

  
1

0 00160
0 00243

0− = =cos
.
.

θ λ
λC

    θ =  
  

70 0. °

*28.16 (a)
    
K m ve= 1

2
2 :

    
K = ×( ) ×( ) = × =− −1

2
31 6 2 199 11 10 1 40 10 8 93 10 5 58. . . . kg  m/s  J  eV

    
E0 = hc

λ 0
= 1240 eV ⋅ nm

0.800 nm
= 1550 eV

    E E K′ = −0  and
    

′ =
′

= ⋅
−

=λ hc
E

1240
1550 5 58

0 803
 eV nm

 eV  eV
 nm

.
.

  ∆λ λ λ= ′ − = =0  nm0 00288.
  

2 88.  pm

(b)
  
∆λ λ θ= C 1 −( )cos :

  
cos

.

.
.θ λ

λ
= − = − = −1 1

0 00288
0 00243

0 189
∆

C

 nm
 nm

,

so
  
θ = °101

28.17

    

λ = = = × ⋅
×( ) ×( ) =

−

−
h
p

h
mv

6 626 10

1 67 10 1 00 10

34

27 6
.

. .

 J s

 kg  m/s   
3 97 10 13. × − m

28.18 (a) Electron:
  
λ = h

p
   and

    
K m v

m v
m

p
me

e

e e
= = =1

2
2

2 2 2

2 2
so     p = 2meK

and

    

λ = = × ⋅

×( )( ) ×( )
−

− −

h
m Ke2

6 626 10

3 00 1 60 10

34

31 19

.

. .

 J s

2 9.11 10  kg  J

  λ = 7.09 × 10−10  m =
  

0 709.  nm

(b) Photon:     λ = c / f    and   E = hf so   f = E h

and

    

λ = =
× ⋅( ) ×( )

×( ) = × =
−

−
−hc

E

6 626 10 3 00 10

3 1 60 10
4 14 10

34 8

19
7

. .

.
.

 J s  m/s

 J
 m

  
414 nm
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28.19 From the Bragg condition (Eq 27.18),

    
m d dλ θ φ= = 



2 2

2
sin cos

But 
    
d a= 



sin

φ
2

where a is the lattice spacing.

Thus, with     m = 1,
    
λ φ φ φ= 









 =2

2 2
a asin cos sin

    
λ = =h

p
h
m Ke2

  

λ = × ⋅

×( ) × ×( )
= ×

−

− −
−6 626 10

54 0 1 60 10
1 67 10

34

31 19
10.

. .
.

 J s

2 9.11 10  kg  J
 m

Therefore, the lattice spacing is
    
a = = ×

°
= × =

−
−λ

φsin
.

sin
.

1 67 10
2 18 10

10
10 m

50.0   
0 218.  nm

*28.20 (a) The wavelength of the student is   λ = h p = h mv . If w is the width of the diffraction aperture,

then we need     w ≤ 10.0λ = 10.0 h mv( )

so that
    
v

h
mw

≤ = × ⋅





=

−
10 0 10 0. .

6.626 10  J s
(80.0 kg)(0.750 m)

34

  
1 10 10 34. × − m/s

(b) Using 
  
∆t

d
v

=  we get:
    
∆t ≥

×
=−

0.150 m
1.1 10  m/s340   

1 36 1033. × s

(c)
  

No . The minimum time to pass through the door is over   1015 times the age of the Universe.

28.21 (a)   λ ~ 10−14  m or less.
    
p

h= × ⋅ = ⋅
−

−
−

λ
~

.6 6 10
10

34
19 J s

10  m
 kg m/s14  or more.

The energy of the electron is
    
E p c m ce= + ( ) ×( ) + ×( ) ×( )− −2 2 2 4 19 2 8 2 31 2 8 4

10 3 10 9 10 3 10~

or     E ~ ~10 1011 8−  J  eV or more,

so that
    
K = E − mec

2 ~ 108  eV − 0.5 × 106  eV( )  
  

~ 108 eV  or more.

(b) The electric potential energy of the electron-nucleus system would be

    
U

k q q
r

e
e

e=
× ⋅( )( ) −( )

−
−

−
1 2

9 19

14
5

9 10 10

10
10~

/
~

 N m C  C

 m
 eV

2 2

With its     K Ue+ >> 0,
  

the electron would immediately escape the nucleus
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28.22 (a) From      E m ce= γ 2

  
γ = × =20 0 103.  MeV

0.511 MeV   
3 91 104. ×

(b)
  
p

E
c

≈  (for     m c pce
2 << )

    

p =
×( ) ×( )

×( ) =
−2 00 10 1 60 10

3 00 10

4 13

8

. .

.

 MeV  J/MeV

 m/s   
1 07 10 17. × ⋅− kg m/s

(c)
    
λ = = × ⋅

× ⋅
=

−

−
h
p

6 626 10
1 07 10

34

17
.

.
 J s

 kg m/s   
6 22 10 17. × − m

Since the size of a nucleus is on the order of   10 14−  m, the 20-GeV electrons would be small enough
to go through the nucleus.

*28.23 As a bonus, we begin by proving that the phase speed 
    
v kp = ω /  is not the speed of the particle.

      

v
k

p c m c
mv

m v c m c

m v
c

c
v

c
c
v

v
c

c
c
v

c
vp = =

+
=

+
= + = + −







= + − =ω

γ
γ

γ γ

2 2 2 4 2 2 2 2 2 4

2 2 2

2

2 2

2

2

2

2

2

2

2
1 1 1 1 1

h

h

In fact, the phase speed is larger than the speed of light. A point of constant phase in the wave
function carries no mass, no energy, and no information.

Now for the group speed:
      
v

d
dk

d
d k

dE
dp

d
dp

m c p cg = = = = +ω ωh

h
2 4 2 2

    
v m c p c pc

p c
p c m cg = +( ) +( ) =

+
−1

2
2 4 2 2 1 2 2

2 4

2 2 2 40 2
/

    

v c
m v

m v m c
c

v
v c

v
v c

c
c

v
v c

v c v
v c

vg =
+

= −

−
+

= −
+ −
−

=γ
γ

2 2 2

2 2 2 2 2

2

2 2

2

2 2
2

2

2 2

2 2 2

2 2

1

1

1

1

/

/

/

/

It is this speed at which mass, energy, and momentum are transported.

28.24 Consider the first bright band away from the center:

    d msinθ λ=
  
6 00 10

0 400
200

1 1 20 108 1 10. sin tan
.

( ) .×( ) 











= = ×− − − m  mλ

  
λ = h

m ve
so

  
m v

h
e =

λ

and
    
K m v

m v
m

h
m

e Ve
e

e e
= = = = ∆1

2
2

2 2 2

22 2 λ

    
∆V

h
eme

=
2

22 λ
    

∆V =
× ⋅( )

×( ) ×( ) ×( )
=

−

− − −

6 626 10

2 1 60 10 9 11 10 1 20 10

34 2

19 31 10 2

.

. . .

 J s

 C  kg  m   
105 V
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28.25 (a)

    

λ = = × ⋅
×( )( )

=
−

−
h

mv
6 626 10

0 400

34.

.

 J s

1.67 10  kg  m/s27   
9 92 10 7. × − m

(b) For destructive interference in a multiple-slit experiment, 
    
d msinθ λ= +( )1

2
, with     m = 0  for the

first minimum.

 Then,
    
θ λ= 



 = °−sin .1

2
0 0284

d

so  
    

y
L

= tanθ     y L= = ( ) °( ) =tan . tan .θ 10 0 0 0284 m
  

4 96.  mm

(c) We cannot say the neutron passed through one slit. We can only say it passed through the slits.

28.26
  
λ = h

p     
p

h= = × ⋅
×

= × ⋅
−

−
−

λ
6 626 10
1 00 10

6 63 10
34

11
23.

.
.

 J s
 m

 kg m/s

(a) electrons:

    

K
p
me

e
= =

× ⋅( )
×( ) =

−

−

2 34 2

312

6 63 10

2 9 11 10

.

.

 J s
 J

  
15 1.  keV

The relativistic answer is more precisely correct:

    K p c m c m ce e e= + − =2 2 2 4 2 14 9.  keV

(b) photons:
    
E pcγ = = ×( ) ×( ) =−6 63 10 3 00 1023 8. .

  
124 keV

28.27 For the electron,
    
∆ ∆p m ve= = ×( )( ) ×( ) = × ⋅− − −9 11 10 500 1 00 10 4 56 1031 4 32. . . kg  m/s  kg m/s

    

∆
∆

x
h

p
= = × ⋅

× ⋅( ) =
−

−4
6 626 10

4 56 10

34

32π π
.

.

 J s

4  kg m/s   
1 16.  mm

For the bullet,
    
∆ ∆p m v= = ( )( ) ×( ) = × ⋅− −0 0200 500 1 00 10 1 00 104 3. . . kg  m/s  kg m/s

    
∆

∆
x

h
p

= =
4π   

5 28 10 32. × − m

28.28 (a)       ∆ ∆ ∆ ∆p x m v x= ≥ h/2

so
    
∆

∆
v

h
m x

≥ = ⋅
( )( ) =

4
2

2 00 1 00π
π

π
  J s

4  kg  m. .   
0 250.  m/s

(b) The duck might move by   0 25 5 1 25. . m/s  s  m( )( ) = . With original position uncertainty of   1 0. 0 m,

we can think of   ∆x  growing to   1 00 1 25. . m  m+ =
  

2 25.  m
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*28.29
  

∆ ∆y
x

p

p
y

x
= and

    
d p hy∆ ≥ /4π

Eliminate 
  
∆py  and solve for x.

    
x p y

d
hx= ( )4π ∆  :

    

x = ×( )( ) ×( ) ×( )
× ⋅( )

− −
−

−4 1 00 10 100 1 00 10
2 00 10

6 626 10
3 2

3

34
π . .

.

.
 kg  m/s  m

 m

 J s

The answer ,  x =
  

3 79 1028. × m  , is 190 times greater than the diameter of the Universe!

*28.30 From the uncertainty principle       ∆ ∆E t ≥ h/2

or
      
∆ ∆mc t2 2( ) = h/

Therefore,
    

∆
∆ ∆

m
m

h
c t m

h
t ER

=
( )

= ( )4 42π π

    

∆m
m

= × ⋅
×( )( ) ×







=
−

−
6 626 10

4 8 70 10 135

134

17
.

.

 J s

 s  MeV

 MeV
1.60 10  J-13π   

2 81 10 8. × −

28.31 (a) At the top of the ladder, the woman holds a pellet inside a small region   ∆xi . Thus, the uncertainty
principle requires her to release it with typical horizontal momentum       ∆ ∆ ∆p m v xx x i= = h/2 . It

falls to the floor in a travel time given by 
    
H gt= +0 1

2
2  as     t H g= 2 , so the total width of the

impact points is

      
∆ ∆ ∆ ∆

∆
∆

∆
x x v t x

m x
H
g

x
A
xf i x i

i
i

i
= + ( ) = +







= +h

2
2

where
      
A

m
H
g

= h

2
2

To minimize 
  
∆xf , we require

    

d x

d x
f

i

∆( )
∆( ) = 0 or

    
1 02−

∆
=A

xi

so   ∆x Ai =

The minimum width of the impact points is

    

∆ ∆
∆

∆

x x
A
x

Af i
i x Ai

( ) = +






=
=

min

 

2  = 

      

2 2
1 4

h

m
H
g







/

(b)

    

∆xf( ) =
× ⋅( )

×















( )





=
−

−min

/
/.

.
.

.

2 1 0546 10

5 00 10
2 2 00
9 80

34

4

1 2
1 4 J s

 kg
 m

 m/s2   
5 19 10 16. × − m
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28.32 Probability

    

P x
a

x a
dx

a
a

x
aa

a

a

a

a

a
= ( ) =

+( ) = 














−

−

−−∫ ∫ψ
π π

2
2 2

11
tan

    
P = − −( )[ ] = − −











=− −1
1 1

1
4 4

1 1

π π
π π

tan tan
  

1
2

28.33 (a)
    
ψ π

λ
x A

x
A x( ) = 



 = ×( )sin sin .

2
5 00 1010

so 
  

2
5 00 1010π

λ
= × −.  m 1

  
λ π=

×
=2

5 00 1010.   
1 26 10 10. × − m

(b)
    
p

h= = × ⋅
×

=
−

−λ
6 626 10 34

10
.  J s
1.26 10  m   

5 27 10 24. × ⋅− kg m/s

(c)     m = × −9 11 10 31.  kg

    

K
p
m

= =
× ⋅( )

× ×( ) = × = ×
×

=
−

−
−

−

−

2 24 2

31
17

17

192

5 27 10

2 9 11 10
1 52 10

1 52 10
1 602 10

.

.
.

.
.

 kg m/s

 kg
 J

 J
 J/eV   

95 5.  eV

28.34 For an electron wave to “fit” into an infinitely deep potential well, an
integral number of half-wavelengths must equal the width of the well.

    

nλ
2

1 00 10 9= × −.  m so
    
λ = × =

−2 00 10 9.
n

h
p

(a) Since 

    

K
p
m

h

m
h
m

n
n

e e e
= =

( )
=

×( )
= ( )

−

2 2 2 2 2

9 2
2

2 2 2 2 10
0 377

/
.

λ
 eV

For
    
K ≅ 6 eV ,

    
n = 4

(b) With 
    
n = 4 ,

    
K = 6 03.  eV
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28.35 (a) We can draw a diagram that parallels our treatment of standing
mechanical waves. In each state, we measure the distance d
from one node to another (N to N), and base our solution upon
that:

Since 
    
dN to N = λ

2
and

  
λ = h

p

    
p

h h
d

= =
λ 2

Next,

    

K
p
m

h
m d de e

= = =
× ⋅( )
×( )

















−

−

2 2

2

34 2

312 8
1 6 626 10

8 9 11 10

.

.

 J s

 kg

Evaluating,
    
K

d
= × ⋅−6 02 10 38

2
.  J m2

    
K

d
= × ⋅−3 77 10 19

2
.  eV m2

In state 1,     d = × −1 00 10 10.  m     K1 37 7= .  eV

In state 2,     d = × −5 00 10 11.  m     K2 151=  eV

In state 3,     d = × −3 33 10 11.  m     K3 339=  eV

In state 4,     d = × −2 50 10 11.  m     K4 603=  eV

(b) When the electron falls from state 2 to state 1, it puts out energy

    
E h f

hc= − = = =151 37 7 113 eV  eV  eV.
λ

into emitting a photon of wavelength

    

λ = =
× ⋅( ) ×( )

( ) ×( ) =
−

−
hc
E

6 626 10 3 00 10

113 1 60 10
11 0

34 8

19

. .

.
.

 J s  m/s

 eV  J/eV
 nm

The wavelengths of the other spectral lines we find similarly:

Transition   4 3→   4 2→   4 1→   3 2→   3 1→   2 1→

    E eV( )   264   452   565   188   302   113

  λ nm( )   4 71.   2 75.   2 20.   6 60.   4 12.   11 0.
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28.36 The confined proton can be described in the same way as a standing wave on a string. At level 1,
the node–to–node distance of the standing wave is   1 00 10 14. × −  m, so the wavelength is twice this
distance:     h p/ .= × −2 00 10 14  m .

 The proton’s kinetic energy is

    

K mv
p
m

h
m

= = = =
× ⋅( )

×( ) ×( )
= ×

×
=

−

− −

−

−
1
2

2
2 2

2

34 2

27 14 2

13

192 2

6 626 10

2 1 67 10 2 00 10

3 29 10
1 60 10

2 05
λ

.

. .

.
.

.
 J s

 kg  m

 J
 J/eV

 MeV

In the first excited state, level 2, the node–to–node distance is half
as long as in state 1. The momentum is two times larger and the
energy is four times larger:     K = 8 22.  MeV .

The proton has mass, has charge, moves slowly compared to light
in a standing wave state, and stays inside the nucleus. When it
falls from level 2 to level 1, its energy change is

  2 05 6 16. . MeV 8.22 MeV  MeV− = −

Therefore, we know that a photon (a traveling wave with no mass and no charge) is emitted at the

speed of light, and that it has an energy of 
  

+6 16.  MeV .

Its frequency is
    
f

E
h

= =
×( ) ×( )

× ⋅
= ×

−

−

6 16 10 1 60 10

6 626 10
1 49 10

6 19

34
21

. .

.
.

 eV  J/eV

 J s
 Hz

And its wavelength is
    
λ = = ×

×
=−

c
f

3 00 10
1 49 10

8

21 1
.
.

 m/s
 s   

2 02 10 13. × − m

This is a gamma ray, according to Figure 24.13.

28.37 (a)
    

x x
L

x
L

dx
L

x
x

L
dx

LL
= 



 = −



∫∫ 2 2 2 42 1

2
1
200

sin cos
π π

    
x

L
x

L
L x

L
x

L
x

L

L L

= − +





=1
2

1
16

4 4 42

0

2

2
0π

π π π
sin cos  

    

L
2

(b) Probability
    
= 



 = −



∫  

2 2 1 1
4

42
0 490

0 510

0 490

0 510

L
x

L
dx

L
x

L
L x

LL

L

L

L

sin sin
.

.

.

.π
π

π

Probability
  
= − −( ) =0 020

1
4

2 04 1 96. sin . sin .
π

π π
  

5 26 10 5. × −

(c) Probability
    

x
L

x
L L

L

−





=1
4

4

0 240

0 260

π
π

sin
.

.

  
3 99 10 2. × −

(d) In the     n = 2 graph in Figure 28.21 (b), it is more probable to find the particle either near 
    
x

L=
4

 or

    
x

L= 3
4

 than at the center, where the probability density is zero.

Nevertheless, the symmetry of the distribution means that the average position is L/2.
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28.38 Normalization requires

    
ψ 2 1

all space∫ =dx or
    

A
n x

L
dx

L 2 2
0

1sin
π



 =∫

    
A

n x
L

dx A
LL 2 2 2

0 2
1sin

π



 = 



 =∫ or

    
A

L
= 2

*28.39 The desired probability is
    
P dx

L
x

L
dx

L L
= = 



∫ ∫ψ π2

0

4 2
0

42 2/ /
sin

where
  
sin

cos2 1 2
2

θ θ= −

Thus,
    
P

x
L

x
L

L

= −



 = − − +( ) =1

4
4

0 0 0
0

4
1
4π

π
sin

/

  
0 250.

28.40     ψ x A kx B kx( ) = +cos sin
    

∂ψ
∂ x

kA kx kB kx= − +sin cos

    

∂ ψ
∂

2

2
2 2

x
k A k x k B kx= − −cos sin

      
− −( ) = − +( )2 2

2 2
m

E U
mE

A kx B kx
h h

ψ cos sin

Therefore the Schrödinger equation is satisfied if

      

∂ ψ
∂

ψ
2

2 2
2

x
m

E U= −



 −( )

h
or

      
− +( ) = −



 +( )k A kx B kx

mE
A kx B kx2

2
2

cos sin cos sin
h

This is true as an identity (functional equality) for all x if 
      

E
k
m

= h2 2

2

28.41 We have   ψ
ω= −( )Aei kx t and

    

∂ ψ
∂

ψ
2

2
2

x
k= −

Schrödinger’s equation:
      

∂ ψ
∂

ψ ψ
2

2
2

2
2

x
k

m
E U= − = − −( )

h

Since
      
k

p

h
p2

2

2

2

2

2

2
2 2

= ( ) = ( ) =π
λ

π
h

and
    
E U

p
m

− =
2

2

  
Thus this equation balances
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*28.42 (a) With     ψ x A kx( ) = ( )sin ,

    

d
dx

A kx Ak kxsin cos= and
    

d
dx

Ak kx
2

2
2ψ = − sin

Then

      

− = + =
( )

( )( )
= = = =h h2 2

2

2 2 2 2

2 2

2 2 2
1
2

2

2 2

4

4 2 2 2m
d
dx

k
m

A kx
h

m

p
m

m v
m

mv K
ψ π

π λ
ψ ψ ψ ψ ψsin

(b) With 
    
ψ π

λ
x A

x
A kx( ) = 



 =sin sin

2
, the proof given in part (a) applies again.

28.43 (a)
    
ψ x A

x
L

( ) = −






1

2

2
    

d
dx

Ax
L

ψ = − 2
2

    

d
dx

A
L

2

2 2
2ψ = −

Schrödinger’s equation
      

d
dx

m
E U

2

2 2
2ψ ψ= − −( )
h

becomes

      

− = − −






+

−( ) −







−( )
2 2

1
2

1

2 2

2

2 2

2 2
2

2

2 2 2
A

L
m

EA
x
L

m
x

x
L

mL L xh h

h

      
− = − + −1

2 2

2

2 2

2

4L
mE mEx

L
x
Lh h

This will be true for all x if both 
      

1
2 2L

mE=
h

and
      

mE
L Lh2 2 4

1
0− =

both these conditions are satisfied for a particle of energy
      

E
L m

= h2

2

(b) For normalization,
    
1 1 1

22
2

2

2
2

2

2

4

4= −






= − +






−− ∫∫ A
x
L

dx A
x
L

x
L

dx
L

L

L

L

    
1

2
3 5 5 5

16
15

2
3

2

5

4
2 2

3
2
3

2= − +








 = − + + − +





= 





−

A x
x
L

x
L

A L L
L

L L
L

A
L

L

L

    

A
L

= 15
16

(c)

    

P dx
L

x
L

x
L

dx
L

x
x
L

x
L L

L L L
L

L

L

L

L

L

= = − +






= − +









 = − +



−−

−
∫∫ ψ 2

2

2

4

4

3

2

5

53

3

3

3

3

3
15

16
1

2 15
16

2
3 5

30
16 3

2
81 1215/

/

/

/

/

/

    
P = =47

81   
0 580.
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28.44
    
C =

×( ) −( ) ×( ) ⋅

× ⋅
= ×

− −

−
−

2 9 11 10 5 00 4 50 1 60 10
3 62 10

31 19
9 1

. . . .
.

 kg m/s

1.055 10  J s
 m34

    
T e CL= = − ×( ) ×( )[ ] = −( )− − −2 9 1 122 3 62 10 950 10 6 88exp . exp . m  m

  T =
  
1 03 10 3. × −

28.45     T e CL= −2      (Use Equation 28.36)

    
2

2 2 9 11 10 8 00 10

1 055 10
2 00 10 4 58

31 19

34
10CL =

×( ) ×( )
×

×( ) =
− −

−
−

. .

.
. .

(a)     T e= =−4 58.
  

0 0103. , a 1% chance of transmission.

(b)     R T= − =1
  

0 990. , a 99% chance of reflection.

*28.46 The radiation wavelength of   ′ =λ 500 nm  that is observed by observers on Earth is not the true
wavelength, λ , emitted by the star because of the Doppler effect. The true wavelength is related
to the observed wavelength using:

    

c c v c
v c′

=
− ( )
+ ( )λ λ

1
1

 :
    
λ λ= ′

− ( )
+ ( ) = ( ) − ( )

+ ( ) =
1
1

500
1 0 280
1 0 280

375
v c
v c

 nm  nm
.
.

The temperature of the star is given by     λ maxT = 2.898 × 10− 3  m ⋅ K:

    
T = × ⋅−2 898 10 3.

max

 m K
λ

:
    
T = × ⋅

×
=

−

−
2 898 10 3.  m K

375 10 9  
  

7 73 103. × K

*28.47 (a) Wien’s law:     λmax .T = × ⋅−2 898 10 3  m K

Thus,
    
λmax

. .
.

.= × ⋅ = × ⋅ = × =
− −

−2 898 10 2 898 10
2 73

1 06 10
3 3

3 m K  m K
 K

 m
T   

1 06.  mm

(b) This is a 
  

microwave .
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*28.48 We suppose that the fireball of the Big Bang is a black body.

    
I e T= = × ⋅( )( ) =−σ 4 8 41 5 67 10 2 73( ) . / . W m K  K2 4

  
3 15 10 6 2. /× − W m

As a bonus, we can find the current power of direct radiation from the Big Bang in the section of
the universe observable to us. If it is fifteen billion years old, the fireball is a perfect sphere of
radius fifteen billion light years, centered at the point halfway between your eyes:

      
P = = = ×( )( ) ×( ) ×





×( )−IA I r( ) . .4 3 15 10 4 15 10

3 10
3 156 102 6 9 2 8 2

7 2
π π W/m  ly

 m/s
1 ly/yr

 s/yr2

    P = ×7 98 1047.  W

28.49
  
∆VS = h

e




 f − φ

e

From two points on the graph
    
0 = h

e




 4.1 × 1014  Hz( ) − φ

e

and
    
3.3 V = h

e




 12 × 1014  Hz( ) − φ

e

Combining these two expressions we find:

(a) φ =
  
1 7.  eV

(b)
  

h
e

=
  

4 2 10 15. × ⋅− V s

(c) At the cutoff wavelength
  

hc h
e

e c

c cλ
φ

λ
= = 





    

λc = × ⋅( ) ×( ) ×( )
( ) ×( ) =− −

−4 2 10 1 6 10
3 10

1 7 1 6 10
15 19

8

19
. .

. .
 V s  C

 m/s

 eV  J/eV   
730 nm

*28.50 From the path the electrons follow in the magnetic field, the maximum kinetic energy is seen to
be:

    
Kmax = e2B2R2

2me

From the photoelectric equation,
    
Kmax = hf − φ = hc

λ
− φ

Thus, the work function is
    
φ = hc

λ
− Kmax =

    

hc e B R
meλ

−
2 2 2

2
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28.51 We want an Einstein plot of Kmax versus f

λ, nm f,   1014  Hz Kmax, eV
588 5.10 0.67
505 5.94 0.98
445 6.74 1.35
399 7.52 1.63

(a)
  
slope

 eV
 Hz

= ±0 402
10

814
.

%

(b)   e V h fS∆ = − φ

    
h = ( ) × ⋅





=

−
0 402

1 60 10
10

19

14.
.  J s

  
6 4 10 34. × ⋅ ±− J s 8%

(c)     Kmax = 0

at     f ≈ ×344 1012  Hz

    φ = = × =−h f 2 32 10 19.  J
  
1 4.  eV

      f   (Thz)

*28.52 Begin with momentum expressions:
  
p = h

λ
and

  
p = γ mv = γ mc

v
c







Equating these expressions,
    
γ v

c




 = h

mc






1
λ

=
λ C

λ

Thus,

    

v c

v c

( )
− ( )

= 





2

2

2

1

λ
λ
C

or

    

v
c

v
c





 = 



 − 









 = ( )

+ ( )
=

( ) +

2 2 2 2

1

λ
λ

λ
λ

λ λ

λ λ λ λ
C C C

2

C
2

C
21

1

 

giving

    

v
c=

+ ( )1 2λ λC
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28.53
    
p mv mE= = = ×( )( ) ×( )− −2 2 1 67 10 0 0400 1 60 1027 19. . . kg  eV  J/eV

    
λ = = × =−h

mv
1 43 10 10.  m

  
0 143.  nm

This is of the same order of magnitude as the spacing between atoms in a crystal so diffraction
should appear.

28.54 (a)     λ = =2L
  

2 00 10 10. × − m

(b)
    
p

h= = × ⋅
×

=
−

−λ
6 626 10 34

10
.  J s
2.00 10  m   

3 31 10 24. × ⋅− kg m/s

(c)
    
E

p
m

= =
2

2   
0 172.  eV

28.55 (a)
  

See the first figure to the right .

(b)
  

See the second figure to the right .

(c) ψ is continuous

and   ψ → 0

 as   x → ±∞

(d) Since ψ is symmetric,

    
ψ ψ2 2

0
2 1dx dx= =

∞

−∞

∞
∫∫

or
    
2

2
2

12 2
0

2
0A e dx

A
e ex−∞ −∞∫ =

−






−( ) =α

α

This gives   A = α

 

      

(e)
    
P e dx e ex

( / ) ( / )
/ /

− →
− − −= ( ) =

−






−( ) = − =∫1 2 1 2
2 2

0

1 2 2 2 12
2
2

1 1α α
αα α αα α

α   
0 632.
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28.56 (a) Use Schrödinger’s equation

      

∂ ψ
∂

ψ
2

2 2
2

x
m

E U= − −( )
h

with solutions

    ψ1
1 1= + −Ae Beik x ik x [region I]

    ψ 2
2= Ceik x [region II]

Where 
      
k

mE
1

2=
h

and
      
k

m E U
2

2
=

−( )
h

Then, matching functions and derivatives at     x = 0:

  
ψ ψ1 0 2 0( ) = ( ) gives   A B C+ =

and
    

d
dx

d
dx

ψ ψ1

0

2

0





 = 



 gives     k A B k C1 2−( ) =

Then
    
B

k k
k k

A= −
+

1
1

2 1

2 1

and
    
C

k k
A=

+
2

1 2 1/

Incident wave   Aeikx  reflects   Be ikx− , with probability
    
R

B
A

k k

k k
= =

−( )
+( )

=
2

2
2 1

2

2 1
2

1

1

/

/
    

k k

k k
1 2

2

1 2
2

−( )
+( )

(b) With     E = 7 00.  eV

 and     U = 5 00.  eV

    

k
k

E U
E

2

1

2 00
7 00

0 535= − = =.
.

.

The reflection probability is
    
R = −( )

+( )
=1 0 535

1 0 535

2

2
.

.   
0 0920.

The probability of transmission is     T R= − =1
  

0 908.
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*28.57 (a)
    
mgy mvi f= 1

2
2

    
v gyf i= = ( )( ) =2 2 9 80 50 0 31 3. . . m/s  m  m/s2

    
λ = = × ⋅

( )( ) =
−h

mv
6 626 10

31 3

34.
.

 J s
75.0 kg  m/s   

2 82 10 37. × − m      (not observable)

(b)       ∆ ∆E t ≥ h/2

so

    

∆E ≥ × ⋅
×( ) =

−

−
6 626 10

5 00 10

34

3
.

.

 J s

4  sπ   
1 06 10 32. × − J

(c)

    

∆E
E

= ×
( )( )( )

=
−1 06 10

75 0 9 80 50 0

32.

. . .

 J

 kg  m/s  m2   
2 87 10 35. %× −

*28.58
    
x x dx2 2 2=

−∞

∞
∫ ψ

For a one-dimensional box of width   L , 
    
ψ π

n L
n x

L
= 





2
sin

Thus,
    
x

L
x

n x
L

dx
L2 2 2
0

2= 



 =∫ sin

π

    

L L
n

2 2

2 23 2
−

π
(from integral tables)

*28.59 For a particle with wave function

    
ψ x

a
e x a( ) = −2 / for x > 0

and 0 for x < 0

(a)     ψ x( ) =2 0 ,     x < 0 and
    
ψ 2 22

x
a

e x a( ) = − / ,     x > 0

(b)
    
Prob x x dx dx<( ) = ( ) = ( ) =

−∞ −∞∫ ∫0 020 0
ψ

  
0

(c) Normalization
    

ψ ψ ψx dx dx dx( ) = + =
−∞

∞

−∞

∞
∫ ∫ ∫2 20 2

0
1

    
0 2 0 1 1

0 2 2
00

dx a e dx e ex a x a
−∞

− − ∞∞ −∞∫ ∫+ ( ) = − = − −( ) =/ / /

    
Prob 0 2 12

0
2

0
2

0
2< <( ) = = ( ) = − = − =∫ ∫ − − −x a dx a e dx e e

a x aa x a a
ψ / / /

  
0 865.
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ANSWERS TO EVEN NUMBERED PROBLEMS

  2. (a)   5 75 103. ×  K (b) 504 nm

  4.   5 71 103. ×  photons

  6.   1 32 1031. ×

  8. (a) 1.38 eV (b) 334 THz

10. 148 days; absurdly large

12. 1.78 eV,    9 47 10 28. × −  kg⋅m/s

14. 22.1 keV/c,  478 eV

16. (a) 2.88 pm (b) 101°

18. (a) 0.709 nm (b) 414 nm

20. (a)   1 10 10 34. × −  m/s (b)   1 36 1033. ×  s
(c) No. The time is over    1015  times the age of the universe.

22. (a)   3 91 104. × (b)   1 07 10 17. × −  kg⋅m/s
(c)   6 22 10 17. × −  m, much smaller than   10 14−  m

24. 105 V

26. (a) 15.1 keV (b) 124 keV

28. (a) 0.250 m/s (b) 2.25 m

30.   2 81 10 8. × −

32. 1/2

34. (a) n = 4 (b) 6.03 eV
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36. 6.16 MeV, 202 fm, a gamma ray

38. See the solution

40. See the solution;       E k m= h2 2 2/

42. See the solution

44.   1 03 10 3. × −

46.   7 73 103. ×  K

48.   3 15.  W/m2µ

50.
    

hc e B R
meλ

−
2 2 2

2

52. See the solution

54. (a)   2 00 10 10. × −  m (b)   3 31 10 24. × −   kg⋅m/s (c) 0.172 eV

56. (a) See the solution (b) R = 0.0920, T = 0.908

58. See the solution


