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CHAPTER 28
ANSWERS TO QUESTIONS

A particle is represented by a wave packet of nonzero width. The width necessarily introduces
uncertainty in the position of the particle. The width of the wave packet can be reduced toward zero
only by adding waves of all possible wavelengths together. Doing this, however, results in loss of all
information about the momentum and, therefore, the speed of the particle.

Any object of macroscopic size — including a grain of sand — has an undetectably small wavelength
and does not exhibit quantum behavior.

If we set p?/2m=gAV, which is the same for both particles, then we see that the electron has the
smaller momentum and therefore the longer wavelength (A =h/p).

The intensity of electron waves in some small region of space determines the probability that there is an
electron in that region.

High-intensity light (with f> f. s of course) ejects more electrons from the surface of the metal.
Higher-frequency light ejects individual electrons of higher energy but not more of them.

Wave theory predicts that the photoelectric effect should occur at any frequency, provided the light
intensity is high enough. However, as seen in the photoelectric experiments, the light must have a
sufficiently high frequency for the effect to occur.

Light has both wave and particle characteristics. In single- and double-slit experiments light behaves
like a wave. In the photoelectric effect light behaves like a particle. Light may be characterized as an
electromagnetic wave with a particular wavelength or frequency, yet at the same time light may be
characterized as a stream of photons, each carrying a discrete energy, hf. Since light displays both wave
and particle characteristics, perhaps it would be fair to call light a “wavicle”. It is customary to call a
photon a quantum particle, different from a classical particle.

An electron has both wave and particle characteristics. In single- and double-slit diffraction and
interference experiments, electrons behave like classical waves. An electron has mass and charge. It
carries kinetic energy and momentum in parcels of definite size, as classical particles do. At the same
time it has a particular wavelength and frequency. Since an electron displays characteristics of both
classical waves and classical particles, it is neither a classical wave nor a classical particle. It is
customary to call it a quantum particle, but another invented term, such as “wavicle”, would serve
equally well.

A few photons would only give a few dots of exposure, apparently randomly scattered.
Ultraviolet light has shorter wavelength and higher photon energy than visible light.

Most stars radiate nearly as blackbodies. Vega has a higher surface temperature than Arcturus. Vega
radiates most intensely at shorter wavelengths.

The x-ray photon transfers some of its energy to the electron. Thus, its frequency must decrease.

Your skin is a good approximation to a blackbody. If a patch of your skin or clothing is at 30°C=303 K,

you radiate with highest intensity at wavelength 2.898 x10™> m-K/303 K =9.6 um. You glow in the
infrared. Snakes called pit vipers search for this radiation to locate their prey; so does the army. To an
infrared-detector security alarm, a big hot pizza would look very much like you.
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Chapter 28

The discovery of electron diffraction by Davisson and Germer was a fundamental advance in our
understanding of the motion of material particles. Newton’s laws fail to properly describe the motion
of an object with small mass. It moves as a wave, not as a classical particle. Proceeding from this
recognition, the development of quantum mechanics made possible describing the motion of electrons
in atoms; understanding molecular structure and the behavior of matter at the atomic scale, including
electronics, photonics, and engineered materials; accounting for the motion of nucleons in nuclei; and
studying elementary particles.

A particle’s wave function represents its state, containing all the information there is about its location
and motion. The squared absolute value of its wave function tells where we would classically think of

the particle as a spending most its time; \‘I’\zis the probability distribution function for the position of
the particle.

The motion of the quantum particle does not consist of moving through successive points. The particle
has no definite position. In can sometimes be found on one side of a node and sometimes on the other
side, but never at the node itself. There is no contradiction here, for the quantum particle is moving as
a wave. It is not a classical particle. In particular, the particle does not speed up to infinite speed to
cross the node.

As Newton’s laws are the rules which a particle of large mass follows in its motion, so the Schrodinger
equation describes the motion of a quantum particle, a particle of small or large mass. In particular,
the states of atomic electrons are confined-wave states with wave functions that are solutions to the
Schrodinger equation.

No. The second metal may have a larger work function than the first, in which case the incident
photons may not have enough energy to eject photoelectrons.
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PROBLEM SOLUTIONS
*281 (a) Using AmaxT =2.898x107% m - K
2.898x107° m - P
we get lmax = W =999x%x10 7 m = 999 nm

(b) The| peak wavelength is in the infrared | region of the electromagnetic spectrum, which is much
wider than the visible region of the spectrum.

1/4

P 3.77 x10%° W

1/4
Ao J i 1[4n(6.96x108 m)z](5.67><10_8 W/m?-K*)

*282 (@) P= eAcT*  so T =(

T=575%x10° K

2.898x107° m-K 2.898x107° m-K
(b) lmax = = 3
T 5.75x10° K

=5.04x107 m = 504 nm

1.00 eV
1.60x107"° ]

283 (a) E=hf=(6.626x10">*J-s)(620x10" s_l)( J: 257 eV

1.00 eV

(b) E=hf=(6626x10"*J-5)(3.10x10’ S_l)(160x10_19]

J= 1.28x107° eV

1.00 eV
1.60x107" ]

() E=hf=(6.626x10">*J-s)(46.0x10° s_l)( ): 1.91x107 eV

/1_5_3.00><108 m/s

£ 60X 107 Hy - 4.84x1077 m =| 484 nm, visible light (blue)
X z

8
A= % = %Oogn;l/s =9.68%x1072 m = 9.68 cm, radio wave
J10x z

8
== M =| 6.52 m, radio wave
f  46.0x10° Hz
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(a)

Chapter 28

Energy of a single 500-nm photon:

_pphe (6:626x107* J-5)(3.00x10° m/s) 308109 ]

By A (500 x107° m)

The energy entering the eye each second
11 2\ 7 -3 _\? -15
E=PAt=1AAt=(400x10"" W/m )[4(8.50><10 m) }(1.00 s)=227x107° ]

The number of photons required to yield this energy

-15
ne £ 227x10 7] :‘ 5.71x10% photons ‘

E, 398x10" ]/photon

Each photon has an energy E=hf= (6.626 X 10_34)(99.7 X 106) =6.61x107% ]

150% 103 J/s
6.61x107%° J/photon

This implies that there are =‘ 2.27 x10%° photons/s ‘

We take 6 = 0.0300 radians. Then the pendulum’s total energy is MALHARRRRRRRNSY

E =mgh=mg(L-L cosb)

E=(1.00 kg)(9.80 m/s?)(1.00 - 0.9995) = 4.41x 10 ]

The frequency of oscillation is _o_ 1 '8 =0.498 Hz
2r 27 \L
The energy is quantized, E =nhf
-3 ——
Therefore, n= E = 4.41<10 ° = 1.34x10%

hf (6.626 x1074 7. s)(0.498 s_l)

L _he_ (6:626x107 J-5)(3.00x10° m/s) o
o (4.20 ev)(1.60 x1077 ] /ev) “ nm ‘

¢ 3.00x10%° m/s
fc_ —_

== W:‘ 1.01x10" Hz
" X m

(6.626 x 10‘34)(3.00 x 108)
180x 1077

% oAV = (420 eV)(1.60x 1077 J/eV)+(1.60x 1077 AV

Therefore, ‘ AVg =271V ‘
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2
Ko=imo, 2= %(9.11 X 10‘31)(4.60 x 105) =9.64x1072 ] =0.602 eV

max 2 max
p=E—K,, —220eVnm_,e0 nm =\ 1.38 eV ‘
625 nm
-19
fof 13V (160x107]) gy,
h 6.626x10°% .5 leV

_ 1240 nm-eV

~0.376 eV =‘ 1.90 eV ‘
546.1 nm L

eAVS=%—¢ .

he | 1240 nm-eV

eAVs = —¢= ~1.90eV — AVs=0216V
A 587.5 nm
The energy needed is E=1.00eV=160x10"7]
The energy absorbed in time interval Af is E=PAt=1AAt
-19 —
50 at=E - 160x10 7] -1=1.28x107 s = 148 days

IA (500]/s-m2)[7r(2.82><10_15 m) }

The gross failure of the classical theory of the photoelectric effect contrasts with the success of
quantum mechanics.

Ultraviolet photons will be absorbed to knock electrons out of the sphere with maximum kinetic
energy Kmax = hf_ o,

_ (6-626x107%* 1-5)(3.00x 10° m/s)( 1.00 eV

or K = —-4.70 eV =151 eV
max 200x1077 m 1.60x107% ])

The sphere is left with positive charge and so with positive potential relative to V =0 at r =eo. As
its potential approaches 1.51 V, no further electrons will be able to escape, but will fall back onto
the sphere. Its charge is then given by

5.00x1072 m)(1.51 N -m/C
vk or Q=ﬁ=( 9)( I ) satx102
r k 8.99%x10° N-m~/C

e

p_he_ (6.626 x 1073 ]-s)(S.OO x 108 m/s)
A 700x10™ m

—284x107" ]=‘ 1.78 eV ‘

_h_6.626x107*J-s

" 7004107 9.47x1078 kg-m/s
m
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_ho o 6.626 x 107> ~ o 13
28.13 (a) AA= oy (1-cosB): AL = (9‘11 » 10_31)(3‘00 » 108) (1-c0s37.0°)= 4.88x107" m
(b) Eg=hc/ Ay: (300x10° eV)(1.60x 107 J / eV} =(6.626 x107**)(3.00x 10° m / 5) /4

Ao =414x1072 m

and A=Ay +AA=463x10"2 m

he (6:626x107 J-5)(3.00x10° m/s)
T 463x102 m

() K,=Ey—E =300keV-268.5keV = 31.5keV

e

28.14 This is Compton scattering through 180°:

Che (6:626x107*7:5)(3.00x10° m/s)

"% (0110x107° m)(1.60x107" J/eV) =113 keV

h

m,c

AL =

(1-cos) = (243x 107" m)(1- cos180°) = 4.86 x 107> m
A =2y +AA=0.115 nm S0

By conservation of momentum for the photon-electron system,

and

=4.30x10" J = 268 keV

Incident
Photon

Lo~
Scattered Recoiling
Photon  Electron

(3.00x10° m /) / ¢ 1
1.60x1077 ]/ eV (

p. =(6.626x107* . s)[

By conservation of system energy,
so that
Check: E? = p*c* + m,c* or
(511 keV +0.478 keV)” = (22.1 keV)” + (511 keV)?

2.62x10"1 =2.62x 10!

326

- 1 )_
0.110x10° m 0.115x10° m

K, =478 eV

22.1keV/c

11.3 keV =10.8 keV + K,

(mec2 + Ke)2 = (pc)2 + (mecz)

2
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28.15 With K, =F, K,=E,—E’ gives E'=E,-E
E’=& and l’=hc A= he =2E=210
2 E E,/2 K
A=Ay + Ac(1—cosB): 29 =Ag + Ac(1-cosh)
1-cosf= A = 0.00160 6=| 70.0°
Ac 0.00243
2
*28.16 (a) K= %mevzz K= %(9.11 x 1073 kg)(1.40 %10° m/ s) =8.93x1071° =558 eV
; =E= 1240 eV - nm 1550 oV
Ao 0.800 nm
E=E-K and e 1240eVenm 05500
E' 1550 eV —5.58 eV
AA=A" -5 =0.00288 nm = 2.88 pm
(b) Ad=Ac(1-cos): cosg=1-24 o1 000288 nm _ 400
Ac 0.00243 nm
SO 6=101°
-34
28.17 A=t b 6‘6236 X107 ] s - =‘ 3.97x107°% m
p mo (1.67x107 kg)(1.00x10° m/s)
2.2 2
28.18 (a) Electron: A= h and K= lmevz =% P Ele) p=-2m,K
p 2 2m,  2m,
-34
nd pe 6.626x107* J.s
v 2m.K \52(9.11>< 107" kg)(3.00)(1.60x 1077 )
A =7.09%107"" m =/ 0.709 nm
(b) Photon: A=c/f and E=hf SO f=E/h
he (6:626x1077:5)(3.00x10° m/s) ,
and =—= o =4.14%x107" m=| 414 nm
E 3(1.60x107 J)
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(a)

Chapter 28

From the Bragg condition (Eq 27.18), Electron

Scattered
electrons

mA=2dsin@=2d cos(z)

But d=a sin(¢)
2
where 7 is the lattice spacing. d
Thus, with m=1, A=2a sin(q;) cos(g) =asing
34 1
=E= | h A=— 6.626 107" J-s —167%x10°10 m
p~2mK \;2(9.11 x 10731 kg)(54.o x1.60x107% J)

-10
Therefore, the lattice spacingis a= ,l = 1'67,X 10~ m
sin¢g sin50.0°

~2.18x1071° =‘ 0.218 nm ‘

The wavelength of the student is A = h/p = h/mv. If w is the width of the diffraction aperture,

then we need w<10.04 =10.0(h/mv)
—34
so that v< 10.0L =10.0 6.626x10 " J-s | | 1 1095107 m/s
muw (80.0 kg)(0.750 m)

Using At _4 we get: At > 0'15931:1 = 1.36x10% s ‘
v 1.10x107* m/s

No |. The minimum time to pass through the door is over 10'° times the age of the Universe.

_h _66x107*]s

A ~10"" m or less.
or less 1 0% m

=107" kg-m/s or more.

The energy of the electron is E= \;““pZCz +m,2c* ~ \‘3‘3(10_19)2(3 X 108)2 + (9 X 10_31)2(3 X 108)4

or E~10"" ]~ 10® eV or more,

so that K=E-m,?~10% eV — (0.5 x10° eV) ~10® eV | or more.

The electric potential energy of the electron-nucleus system would be

9 2 7 2\(10-19
ks (9%10° N-m?/ C*)(107" C}(~e) ey
Cor 107 m
With its K+U, >>0, the electron would immediately escape the nucleus
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3
2822 (a) From E=ym,c’ Y= 20.0x 107 MeV _ 3.91x10* ‘
0.511 MeV

(2.00 x10* Mev)(1.6o x10713 ]/ Mev)
(3.00 x10% m /s)

= 1.07x1077 kg-m/s

(b) sz (for m,c® << pc) p=
C

—34
(c) A=l _6626x107 s =‘ 6.22><10_17m‘

p 1.07x1077 kg-m/s

Since the size of a nucleus is on the order of 107 m, the 20-GeV electrons would be small enough
to go through the nucleus.

*28.23 As a bonus, we begin by proving that the phase speed v, = @ /k is not the speed of the particle.
22 24 2.2 22 4 2 2 2 2 2
s + h | ‘
vp=9=NpC — /}’mvc +me =c31+%=c 1+C7 1_07 =C\/1+%_1=L
k hy mo Jy2m%? Vv v c v v

In fact, the phase speed is larger than the speed of light. A point of constant phase in the wave
function carries no mass, no energy, and no information.

Now for the group speed: vy = ‘f;{) ZZ;‘: iE = /m ctrp??
p P

! 2 4

1/ 2 -1/2 2\_ | pc
vy = E(m c +p c ) (O+2pc )_V7p262+m264
‘ 2 ‘ 2
c 2,22 | % | %
o —c Yy mo —eA=0t/ct | A=vT /et
§ y2m*0? + m?c? Lo L v? +c2 -2
\‘l—vz/c2 1-02/c?
It is this speed at which mass, energy, and momentum are transported.
28.24 Consider the first bright band away from the center:
dsin6 = mA. (6.00x107 m)sin(tan_l[o;ooooD =(DA=120x10"" m
A= L S0 m,v = h
m,v A
2.2 2
and K=lmgvz=me ¢ =h72=eAV
2m,  2m,A
34 1.\
2 (6626107 J5)
AV=——— AV = >= 105V
2em A 2(1.60x107" C)(9.11x 107" kg)(1.20x107"" m
)
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347
2825 (a) A= ho_ 6'622;(10 J-s =‘ 9.92x107 m
mo - (1.67x107 kg)(0.400 m/s)

(b) For destructive interference in a multiple-slit experiment, d sinf = (m +%)),, with m=0 for the

first minimum.

Then, 0= sin—l(’l) =0.0284°
2d

S0 %: tan @ y =L tan6 = (10.0 m)(tan 0.0284°) =| 4.96 mm

(c) We cannot say the neutron passed through one slit. We can only say it passed through the slits.

h _h_6.626x107* ] s

28.26 A=
A 1.00x107 " m

=6.63x10 kg-m/s

2
p? (6.63 x 10734 ]-s) —

(a) electrons: K, = = 3 J = 15.1keV
2m, 2(9.11>< 10~ ) |

The relativistic answer is more precisely correct:

K, = \fp%z +m,%c* —m,c? =14.9 keV

(b) photons: E, =pe=(6.63x107)3.00x10%) = 124 keV
28.27 For the electron,  Ap=m,Av = (9.11 x107! kg)(500 m/s)(l.OO X 10‘4) =456x1072 kg-m/s
34
Ax h 6.626 107" J-s 1116 mm

4mAp 4x(456x1072 kg m/s)

For the bullet, Ap = mAv = (0.0200 kg)(500 m /s)(l.oo X 10‘4) =1.00x107° kg-m/s
Ax=—" =‘ 528x107? m ‘
4r Ap
28.28 (a) ApAx = mAvAx 2h /2
S0 Av > h 2z ] s :‘ 0.250 m/s ‘
4rmAx  4m(2.00 kg)(1.00m) |

(b) The duck might move by (0.25 m/s)(5 s) =1.25 m. With original position uncertainty of 1.00 m,

we can think of Ax growing to 1.00 m+1.25m=| 2.25m
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A
*28.29 Ay by and dAp, = h/4n
X Py
Eliminate Ap, and solve for x.
-3
J _3 Ly (200x107° m)
x=4 Ay)—: x=4n(1.00x10™ kg (100 m/s)(1.00x10™ m
{4y )h ( g)( )( )(6.626><10‘34 ]-s)

The answer ,x = 3.79 X 102 m , 15 190 times greater than the diameter of the Universe!
*28.30 From the uncertainty principle ~ AEAt>#/2

or A(mcz)At =h/2

Therefore, am_ h h

m arcA(Am An(At)Eg

2.81x1078

Am _ 6.626x107* J-s ( 1MeV )_
m 4x(870x107 s)(135 MeV)( 1.60x 10 ]

2831 (a) At the top of the ladder, the woman holds a pellet inside a small region Ax;. Thus, the uncertainty
principle requires her to release it with typical horizontal momentum Ap, = mAv, =#/2Ax;. It

falls to the floor in a travel time given by H =0 +% gt? as t= J2H/g, so the total width of the
impact points is

Ay = A%, + (Ao, )t = A +[ | 2 py e A
ZmAxl- \w‘ g Axl-
where A=— E
m
L . d(Ax;) A
To minimize Axy, we require =0 or 1-——=0
d(Axi) Axi
so Ax; =~ A

The minimum width of the impact points is

“ 1/4
=2JA = M(ZHJ
\ml\ g

A
(Axf)min - Axi * AxiJAxi:\/Z

= 519%x107° m

- 1/2

2(1.0546 3107 J-s) | T 2(2.00 m) T/*

© (&%) = = [ 2]
min 5.00x107* kg 9.80 m/s
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(c)

Chapter 28

a

prsaity 2= " Jyt07 't yaes(2) ()

P= %[tan_l 1-tan'(-1)] = E[Z - (—Zn =

y(x)=A sin(zzx) = A'sin(5.00x10"x)

) 27” =5.00x10"" m™

2r

1:710:‘ 1.26x107" m‘
500x10"0 L

-34
B _8626X10° TS _ 5574102 kg m/s
A 126x10 0 m

p

m=9.11x10"" kg

p? (5.27 x107* kg - m/s)2 17 1.52x107"7 ]
= =152x107" J= -

K= = 19 =
1.602x107"7 J/eV

95.5 eV

2m (2x9.11x107 kg)

For an electron wave to “fit” into an infinitely deep potential well, an
integral number of half-wavelengths must equal the width of the well.

-9
%:1.00x10_9m SO ﬂ,zwzk

n p

Si k=2 —(hz//lz)— e =(0.377 2) \'
mce = ) = 2me = 2me (2x10_9)2 = . n e

For K=6eV, n=4‘

With n=4, K=6.03 eV
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We can draw a diagram that parallels our treatment of standing n
mechanical waves. In each state, we measure the distance d NN g4
from one node to another (N to N), and base our solution upon NANA A NA
that:
P h N A NAXK AN
Since dNtoN = 5 and A=—
T e e — 2
N A A
L
Y P ——
Y . U 1
2 -10
2 n2 1](6626x107 ) +—1=1.0x10" m —
Next, K= = =— 5
2m,  8md d*| 89.11x107" kg)
38 1. 2 19 v m2
Evaluating, K= 6.02 x 1(;2 J-m K= 3.77 x 10012 eV-m
n K (eV)
In state 1, d=1.00x10""" m Ky =377 eV 603 0
In state 2, d=500x10"" m K, =151eV
In state 3, d=333x10"" m K; =339 eV
In state 4, d=250x10"" m K, =603 eV

When the electron falls from state 2 to state 1, it puts out energy

E=151eV-377 eV=113eV=hf=%

into emitting a photon of wavelength

ke (6.626>< 1073 ]~s)(3.00>< 108 m/ s)

=T =11.0 nm
E (113 eV)(1.60x 107 J/eV)
The wavelengths of the other spectral lines we find similarly:
Transition 43 42 41 32 31 21
E(eV) 264 452 565 188 302 113
A(nm) 4.71 2.75 2.20 6.60 4.12 11.0
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(c)

Chapter 28

The confined proton can be described in the same way as a standing wave on a string. At level 1,
the node—to-node distance of the standing wave is 1.00 x10™* m, so the wavelength is twice this
distance: 11/p=2.00x10"* m.

The proton’s kinetic energy is

-34 2 _
Kelp2 o PP 1 _ (6:626x107% ) 5) __329x10) ey
2 2 -19 .
2 2m - 2mA= 2(1.67x107% kg)(200x107* m)"  1.60x1077]/eV
e 0] [e.o]

In the first excited state, level 2, the node-to-node distance is half
as long as in state 1. The momentum is two times larger and the
energy is four times larger: K =8.22 MeV.

The proton has mass, has charge, moves slowly compared to light
in a standing wave state, and stays inside the nucleus. When it
falls from level 2 to level 1, its energy change is

2.05 MeV —-8.22 MeV =-6.16 MeV | «<—1.0x 10"*m —>|

Therefore, we know that a photon (a traveling wave with no mass and no charge) is emitted at the
speed of light, and that it has an energy of | +6.16 MeV |,

(6.16 x10° ev)(1.60 x10710 ] /ev)

— =149x10*' Hz
6.626x107* J-s

Its frequency is f= % =

8
And its wavelength is A=S= M()mmfls = 2.02x107% m
f 149x10° s
This is a gamma ray, according to Figure 24.13.
L 2 L 4
(x)= xzsinz(m)dx = zf x(l - lcosm()dx
0 L L Lo \2 2 L
122 112 [477:x _ Amx 4n'x:|L L
(x)=—" -+—= sin + cos =| =
L 2] Lilen"l L L o 2
0.510L
0.510L
Probability = 2sinz(ZHX)alx = |:1x - lisin 47”]
0490L [, L L Lir L 1ya901

Probability = 0.020 - %(sin 2.04r —sin1.967) = 5.26 x 107
3

x 1 4rrx |20
—— sin
L 4r L ]

Probability[ =‘ 3.99x1072 ‘

0.240L
In the n =2 graph in Figure 28.21 (b), it is more probable to find the particle either near x zi or
x= % than at the center, where the probability density is zero.

Nevertheless, the symmetry of the distribution means that the average position is L/2.
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Normalization requires

L
j v ‘zdx =1 or J. A? sinz(m)dx =1
all space 0 L
L c
J A? sinz(m)dx = AZ(L) =1 or A= 2
0 L 2 L
. e _(L/4y 2 2eL/4 . of27x
The desired probability is P= Jo ‘l//‘ dx = ZJO sin (L)dx
where sin? = 1= cos26
2
x 1 4rx L4
Thus, P:(—sin) =(l—0—0+0): 0.250
L 4z L ), \4
. oy .
y(x) = Acoskx + Bsinkx o —kAsinkx + kBcoskx
x
2
g—l’g = —k*Acoskx — k*Bsinkx —i—T(E -U)y = —Z;IHTE(Acoskx + Bsinkx)
x

Therefore the Schrédinger equation is satisfied if

2
a—wz _2m E-U or —k?(Acoskx + Bsinkx) = _2mE Acoskx + Bsinkx
0 2 h2 v hZ
x
n’k*
This is true as an identity (functional equality) for all x if | E = TP
m
. 2
We have y = Acke and &71/; =Ky
ax
v qe , . 821// 2 2m
Schrodinger’s equation: —5=—k'y=-"5(E-U)y
ax h
2 2 2 2
2
Since k2 = 7(27? = ( nf) = p—z and E—u=+t_
A h h 2m

Thus this equation balances
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*28.42 (a) With y(x)= Asin(kx),
d , . d’ 2
— Asinkx = Akcoskx and — Y =—-Ak"sinkx
dx dx
n*(47°) P mk?
Y=o V= y = mo’y =Ky
m 2m

2 2 2.2
then P )
2m dx 2m 47r2(12)(2m)

With y(x) = Asin(znx) = Asinkx, the proof given in part (a) applies again

2843 (a) wy(x)= A{l -z

Schrodinger’s equation 2
x

becomes -
2w 2] a2 mLZ(L2 - xz)
1 mE mEx?  x?
TR R T
This will be true for all x if both lz = m—f
L h
mE 1
and e
2
E= ’27
L'm

both these conditions are satisfied for a particle of energy

2
. 2 L 2 4
(b) For normalization, 1= j_L Az(l - }ICPJ dx = A J‘_L [1 - % + Jl;]dx

5 L
TTTE N2 SO 50 S PN P S VA I 16L 15
3775 3775 16L

2 4
3> 5Lt
L/3 2% xt 15 2x3 ¥ [L 2L ]
2 ax = e Z_=
s “T6L|3 81 1215

LI3 o
P _2x"
(©) .[L/a 16L L/3 ZtE 6L 32 500

P= 47 _ 0.580
81
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28.44

28.45

*28.46

*28.47

(a)

(a)

Chapter 28

\;’2(9.11 x107")(5.00 - 4.50)(1.60x 107"7) kg -m /s

o =3.62x10° m™
1.055x107* J s

C=

T = ¢ 2% = exp|-2(3.62x10° m™")(950x 102 m)| = exp(~6.88)

T= 1.03x107

T=e2L  (Use Equation 28.36)

2\;’2(9.11 x101)(8.00x1071°)

2CL =
1.055x 1074

—
(2.00 X 10*10) — 458 Electron

Energy L~

Electron

——

<—

Ofetri+

T=e¢*8 :‘ 0.0103 L a 1% chance of transmission.

R=1-T :‘ 0.990 L a 99% chance of reflection.

u

|<—>‘

0.200 nm

-U=100eV

77777 -~ E=5.00eV

0

The radiation wavelength of 1”=500 nm that is observed by observers on Earth is not the true
wavelength, A, emitted by the star because of the Doppler effect. The true wavelength is related

to the observed wavelength using:

1- - 11-(0.
L’:ﬁ (v/c) : A (v/c) ~ (500 nm) 1-(0.280)
A A\ 1+(vjc) \ 1+ (v/c) 1+(0.280)
The temperature of the star is given by A maxT =2.898x107° m-K:
-3 -3
T=2.898><10 m-K T:2.898><10 19n K ‘ 7_73><1031<‘
Amax 375% 10" It
Wien’'s law: AT =2.898%107° m-K
_3 . _3 .
Thus, A = 2.898x107° m-K _ 2.898x107° m-K

T 2.73 K

This is a| microwave |

=1.06x1073 m=‘ 1.06 mm ‘

=375 nm

337



*28.48

28.49

*28.50

338

(a)

(c)

Chapter 28

We suppose that the fireball of the Big Bang is a black body.

I=eoT* =(1)(5.67 x10% W/m?-K*)(273 K)* =‘ 3.15%x107° W/m?

As a bonus, we can find the current power of direct radiation from the Big Bang in the section of
the universe observable to us. If it is fifteen billion years old, the fireball is a perfect sphere of
radius fifteen billion light years, centered at the point halfway between your eyes:

3x10% m/s
1ly/yr

2
] (3.156x107 s/yr)2

P=1A=1(4xr*)=(3.15x10° W/m?)(4r)(15x 107 1y)2(

P=798x10Y W

h
(-

From two points on the graph 0= (h)(él.l x10M Hz) ¢
e e

(h " ¢ 011400, _|_800i | 1200
and 3.3V_(€)(12><10 Hz)—; £ (IHz)

Combining these two expressions we find:

¢:‘ 1.7 eV ‘

h_ 4ox10 Vs ‘
e

At the cutoff wavelength ke =¢= (h)ic
e (o

3x10° m/
A =(42x107"° V-s)(16x 107 C) i e\(/) (?6“?_139)]/8\1) = 730 nm

From the path the electrons follow in the magnetic field, the maximum kinetic energy is seen to
be:

¢’B2R?
Kinax = 2m,
. . he
From the photoelectric equation, Kpax =hf—¢ = 7 )
he e’B°R*
Thus, the work function is o= % —Kppax = TC _¢ 2m




28.51

*28.52

(c)

Chapter 28

We want an Einstein plot of Kyax versus f

A, nm f, 10 Hz Kmax €V
588 5.10 0.67
505 5.94 0.98
445 6.74 1.35
399 7.52 1.63
0.402 eV
slope = ——— 1+ 8%
TR T
eAVS = I’lf — ¢

6.4x1073* J.s +8%

1.60x107 J-s
h= (0.402)(1014) =

at  f~344x10"? Hz

p=hf=232x10""J= 14eV

Begin with momentum expressions: p=
Equating these expressions () = ( h )l
q & p , Y] me ) 2

Thus,

o -5

giving V=

0 200 400 600 800
f (Thz)

p=ymv= ymc(v)
c

0)2— (/2 _ 1

1+ (Ac/AY (M) +1
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28.53 p=mov=-2mE = \/2(1.67 x 1077 kg)(0.0400 eV)(1.60x 107 J/eV)

A= —143%107° m = 0.143 nm
mo L 1

This is of the same order of magnitude as the spacing between atoms in a crystal so diffraction
should appear.

2854 (a) A=2L= 2.00x107" m

_ 6.626% 10747

h ‘ 24
220720 J°_ 33110 ke-m/s
A 200x10710 m &

(b) p=

(©) E=§;= 0.172 eV‘

L4
2855 (a) | See the first figure to the right | A
(b) | See the second figure to the right |.
(c) wis continuous
| | x
and v -0 -1/a 0 1/a
as X = too |2
A2
(d) Since yis symmetric,
oD o D
j_w‘w‘ dx=2_[0 ‘y/‘ dx=1
oo 2 I I x
or ZAZ_[ e 2%y = (M](e_“ - eo) =1 -1/a 0 1/a
0 2o

This gives A=+«

2 ¢1/200 _ 2 _ _
©  Ptjaaysjze =2(Ye) [, e dez(_z‘zJ(e 20/20 1) =1-¢7 = 0,632
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28.56

Chapter 28

(a) Use Schrédinger’s equation

Py 2m
2=z By
with solutions
y; = Ae™* 4 Be™ ¥ [region I]
y, = Celko [region II]
Where
and

Then, matching functions and derivatives at x = 0:

(w1) = (w2), gives
and (d%) = (d‘//z) gives
dx 0 dx 0
Then
and
Incident wave Ae™™ reflects Be™**, with probability

With

and

The reflection probability is

The probability of transmission is

Incoming particles

; E=7.00 eV
U=5.00 eV
u=0
klzx/ZmE
f
J2m(E-U)
k=
h
A+B=C
kl(A_B):kzc
5o l-k/k
1+k,/kq
c=— 2
1+ky /g
Rzﬁizﬂ—b/hfz(h—bf
AT (14 ky [ hy) (ky +ky)?
E=7.00 eV
U =5.00 eV
kp_ [E-U_ /2.00 0535
kk \ E  \7.00
2
R=%= 0.0920
(1+0.535)

T=1-R= 0908
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*28.57 (a)

(c)

*28.58

*28.59

(a)

342

Chapter 28

mgy; =~ mvf2

v =28y = (9 80 m/s?)(50.0 m) =31.3 m/s

-34
A= o _6626X1077 TS ) 650107 (not observable)
mo  (75.0kg)(31.3 m/s)
AEAt>H/2
—34 .
50 AE 8026XA077 T8 1y g6 10 106107 J

47:(5.00 x10™ s)

AE _ 1.06x10™ J = 287x102° %
E (750 kg)(9.80 m/s*)(50.0 m)

<x2>=Jij2‘w‘2dx

For a one-dimensional box of width L, v, = 2 Sm(mrx)

\ L L
2 2¢L 5 2 NTTX L2 Lz
Thus, <x >:ZJ'O x°sin ( . )dx: 3 02 (from integral tables)

For a particle with wave function

/2 / 2 ||l‘(}|2
= |£,x/a <
w(x)—N;e forx>0 = J\\
and 0 forx <0 ——_—
o' L
‘l//(x)‘2=0, x<0 and ‘wz(x)‘:ge_zx/“, x>0
a

Prob(x < 0) = J- lw( ‘ dx —J‘_m )dx ’ ‘
Normalization Ji;‘ v(x) ‘de = J‘l‘ v ‘2dx + J.:‘ v ‘de =1

ﬁ)dex+_[:(2/a)e_2’“/“dx = 0—6_2"/”: = —(e_°° —1) =1

Prob(0<x <a)= J:‘ v ‘2 dx :jg(Z/ a)e 2¥ gy = —e_ZX/“; =1-¢2= 0.865




10.

12.

14.

16.

18.

20.

22,

24.

26.

28.

30.

32.

34.

Chapter 28
ANSWERS TO EVEN NUMBERED PROBLEMS

(@) 5.75x10° K (b) 504 nm
5.71x10° photons

1.32x10%!
(a) 1.38eV (b) 334 THz

148 days; absurdly large

1.78 eV, 9.47x107%® kg-m/s

22.1keV/c, 478 eV

(a) 2.88 pm (b) 101°
(a) 0.709 nm (b) 414 nm
(@ 1.10x10* m/s (b) 1.36x10%s

() No. The time is over 10'° times the age of the universe.

(@) 3.91x10* (b) 1.07x1077 kg-m/s
() 6.22x10™7 m, much smaller than 107 m

105V

(a) 15.1keV (b) 124 keV
(a) 0.250m/s (b) 2.25m
2.81x1078

1/2

(@) n=4 (b) 6.03eV
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36.

38.

40.

42,

44.

46.

48.

50.

52.

54.

56.

58.

344

6.16 MeV, 202 fm, a gamma ray

See the solution

See the solution; E = #%k? / 2m

See the solution
1.03x107°
7.73x10% K
3.15 W /m?

hc _¢’B’R?
A 2m

e

See the solution

(@) 2.00x107%m (b)

(a) See the solution (b)

See the solution

Chapter 28

3.31x107%* kgm/s

R'=0.0920, T = 0.908

(c)

0.172 eV



