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ANSWERS TO QUESTIONS

Q29.1 Neon signs do not emit light in a continuous spectrum. There are many discrete wavelengths which
correspond to transitions among the various energy levels of neon. This also accounts for the particular
color of the light emitted from a neon sign. You can see the separate colors if you look at a section of
the sign through a diffraction grating, or at its reflection in a compact disk.  A spectroscope lets you
read their wavelengths.

Q29.2 No. An atom need only be in a high-energy state. When the atom falls to a lower energy state, a
quantum of light is emitted.

Q29.3 The term electron clouds refers to the probabilistic location of electrons about an atom. Electrons in an s
subshell have a spherical probability distribution. Electrons in p, d, and f subshells have directionality
to their distribution. It is shape of these electron clouds that determines how atoms form molecules and
chemical compounds.

Q29.4 If the exclusion principle were not valid, all electrons would descend to the 1s energy state. There
would be no chemical compounds or molecules or any chemical difference between elements.  Such a
universe, without life, would be extremely boring.

Q29.5 Fundamentally, three quantum numbers describe an orbital wave function because we live in three-
dimensional space. They arise mathematically from boundary conditions on the wave function,
expressed as a product of a function of r, a function of θ , and a function of φ .

Q29.6 The deflecting force on an atom with a magnetic moment is proportional to the gradient of the magnetic
field. Thus, atoms with oppositely directed magnetic moments would be deflected in opposite
directions in an inhomogeneous magnetic field.

Q29.7 Practically speaking, no. Ions have a net charge and the magnetic force     q v B×( )  would deflect the
beam, making it difficult to separate the atoms with different orientations of magnetic moments.

Q29.8 The Stern-Gerlach experiment with hydrogen atoms. Electron spin resonance on atoms with one
unpaired electron.

Q29.9 If the exclusion principle were not valid, the elements and their chemical behavior would be grossly
different because every electron would end up in the lowest energy level of the atom. All matter would
be nearly alike in its chemistry and composition, since the shell structures of all elements would be
identical. Most materials would have a much higher density. The spectra of atoms and molecules
would be very simple, and there would be very little color in the world.

Q29.10 The three elements have similar electronic configurations. Each has filled inner shells plus one electron
in an s orbital. Their single outer electrons largely determine their chemical interactions with other
atoms.

Q29.11 All these elements have a single valence electron in an s state. The outermost electron is relatively
loosely bound, so the ionization energies of these metals are low compared to other atoms. Comparing
these elements with one another, we may attribute the decease in ionization energy with increasing
atomic number to this: As atomic number increases atomic size increases slightly. As the outer electron
is farther from the center of the positively charged cloud below it, it interacts less strongly and the
ionization energy decreases.

Q29.12 At low density, the gas consists of essentially separate atoms. As the density increases, the atoms
interact with each other. This has the effect of giving different atoms levels at slightly different
energies, at any one instant. The collection of atoms can then emit photons in lines or bands, narrower
or wider, depending on the density.
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Q29.13 An atom is a quantum system described by a wave function.  The electric force of attraction to the
nucleus imposes a constraint on the electrons.  The physical constraint implies mathematical boundary
conditions on the wave functions, with consequent quantization so that only certain wave functions are
allowed to exist. The Schrödinger equation assigns a definite energy to each allowed wave function.
Each wave function is spread out in space, describing an electron with no definite position.

Q29.14 Each of the electrons must have at least one quantum number different
from the quantum numbers of each of the other electrons. They can differ
(in   ms ) by being spin-up or spin-down. They can also differ (in l) in
angular momentum and in the general shape of the wave function (Look
at the 2s and 2p graphs in Figure 29.7). Those electrons with l = 1 can
differ (in     ml) in orientation of angular momentum – look at Figure
QQAns29.4.

Fig. QQAns29.4

Q29.15 The Mosely graph shows that the reciprocal square root of the wavelength of   Kα  characteristic x-rays
is a linear function of atomic number. Then measuring this wavelength for a new chemical element
reveals its location on the graph, including its atomic number.
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PROBLEM SOLUTIONS

*29.1 (a) The point of closest approach is found when
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29.2 (a) Longest wavelength implies lowest frequency and smallest energy:
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(b) The biggest energy loss is for an atom to fall from an ionized configuration,
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29.3 The reduced mass of positronium is less than hydrogen, so the photon energy will be less for
positronium than for hydrogen. This means that the wavelength of the emitted photon will be
longer than 656.3 nm. On the other hand, helium has about the same reduced mass but more
charge than hydrogen, so its transition energy will be larger, corresponding to a wavelength
shorter than 656.3 nm.

All the factors in the given equation are constant for this problem except for the reduced mass and
the nuclear charge. Therefore, the wavelength corresponding to the energy difference for the
transition can be found simply from the ratio of mass and charge variables.

For hydrogen,
  
µ =

+
≈

m m

m m
mp e

p e
e The photon energy is     ∆E E E= −3 2

Its wavelength is   λ = 656 3.  nm, where
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f
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so the energy of each level is one half as large as in hydrogen, which we could call “protonium”.
The photon energy is inversely proportional to its wavelength , so for positronium,
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(b) For   He+,   µ ≈ me ,     q e1 = , and     q e2 2= ,

so the transition energy is   2 42 =  times larger than hydrogen.

Then,
  
λ32

656
4

= 



 = nm

  
164 nm  (in the ultraviolet region)
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29.5 (a) The photon has energy 2.28 eV.

And   13.6 eV( )/ 22 = 3.40 eV  is required to ionize a hydrogen atom from state n = 2. So while the
photon cannot ionize a hydrogen atom pre-excited to n = 2, it can ionize a hydrogen atom in the

n = 
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29.6 (a) In the 3d subshell, n = 3 and  l = 2,

we have n 3 3 3 3 3 3 3 3 3 3
l 2 2 2 2 2 2 2 2 2 2

    ml +2 +2 +1 +1 0 0 –1 –1 –2 –2

  ms +1/2 –1/2 +1/2 –1/2 +1/2 –1/2 +1/2 –1/2 +1/2 –1/2

(A total of 10 states)

(b) In the 3p subshell, n = 3 and l = 1,

we have n 3 3 3 3 3 3
l 1 1 1 1 1 1

    ml +1 +1 +0 +0 –1 –1

  ms +1/2 –1/2 +1/2 –1/2 +1/2 –1/2

(A total of 6 states)

*29.7 (a)
    

ψ π ψ π
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29.8
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Solving for r, this is a maximum at 
    

r a= 4 0 .

29.11 The hydrogen ground-state radial probability density is
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29.12 (a) For the d state,   l = 2,   L =
    

6 h   = × ⋅−2 58 10 34.  J s

(b) For the f state,   l = 3,       L = + =l l h( )1
    

12 h   = × ⋅−3 65 10 34.  J s

29.13       L = +l l h( )1 :
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so  
    
l= 4

*29.14 In the N shell,     n = 4. For     n = 4,   l can take on values of 0, 1, 2, and 3. For each value of   l,     ml can
be   −l to   l in integral steps. Thus, the maximum value for     ml is 3. Since     Lz = mlh, the maximum

value for   Lz  is   Lz =
    

3h .

29.15 The 5th excited state has n = 6, energy
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which is the energy in state 3:
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While n = 3,   l can be as large as 2, giving angular momentum     l l h( )+ =1
    

6 h

29.16 For a 3d state,     n = 3 and     l= 2

Therefore,       L = +( ) =l l h1
    

6 h   = × ⋅−2 58 10 34.  J s

    ml can have the values –2, –1, 0, 1, and 2

so  
      

Lz can have the values   0,   and  − −2 2h h h h, ,

Using the relation     cos /θ = L Lz

we find the possible values of θ   
  
145° ° ° ° °, , , 114  90.0  65.9 ,  and 35.3
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29.17 (a)     n = 1: For 
      
n m ms= = = = ±1 0 0 1

2
, , ,   l l

n l     ml   ms

1 0 0 –1/2
1 0 0 +1/2

Yields 2 sets;     2 2 12 2n = =( )
  

2

(b)     n = 2: For     n = 2,

we have

n l     ml   ms

2 0 0   ±1 2

2 1 –1   ±1 2

2 1 0   ±1 2

2 1 1   ±1 2

yields 8 sets;     2 2 22 2n = ( ) =
  

8

Note that the number is twice the number of     ml values. Also, for each l there are     (2l+ 1)
different     ml values. Finally, l can take on values ranging from 0 to     n − 1.

So the general expression is
      
number = +( )∑

−
2 2 1

0

1
l

n

The series is an arithmetic progression: 2 + 6 + 10 + 14 . . .

the sum of which is
    
number = + −[ ]n

a n d
2

2 1( )

where     a = 2,     d = 4:
    
number = + −[ ] =n

n n
2

4 1 4 2 2( )

(c)     n = 3:   2(1) + 2(3) + 2(5) = 2 + 6 + 10 = 18     2n2 = 2(3)2 =
  
18

(d)     n = 4:   2(1) + 2(3) + 2(5) + 2(7) = 32     2n2 = 2(4)2 =
  

32

(e)     n = 5:   32 + 2(9) = 32 + 18 = 50     2n2 = 2(5)2 =
  

50
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29.18 (a) Density of a proton:
    
ρ = m

V
= 1.67 × 10−27  kg

(4 / 3)π(1.00 × 10−15  m)3 =
  

3 99 1017. × kg/m3
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(d) This is 
  

5 91 103. × times larger  than the speed of light.

*29.19  The 3d subshell has   l = 2, and n = 3.  Also, we have s = 1.

Therefore, we can have 
      

n m s ms= = = − − = = −3 2 2 1 0 1 2 1 1 0 1,  ;  ,  ,  ,  ,  ;  ;   ,  ,  l l and

leading to the following table:

n 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
l 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

    ml   −2   −2   −2   −1   −1   −1 0 0 0 1 1 1 2 2 2
s 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

  ms –1 0 1 –1 0 1 –1 0 1 –1 0 1 –1 0 1

29.20 (a)
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29.21 (a)
    
1 2 22 2 4s s p

(b) For the 1s electrons, n = 1, l = 0,     ml = 0,   ms  = + 1/2 and – 1/2
For the two 2s electrons, n = 2, l = 0,     ml = 0,   ms  = + 1/2 and – 1/2
For the four 2p electrons, n = 2; l = 1;     ml = –1, 0, or 1; and   ms  = + 1/2 or – 1/2

29.22 Electronic configuration: Sodium to Argon

    [1s2 2s2 2p6]     + 3s1 →   Na11

    +3s2 →   Mg12

    +3s2 3p1 →   Al13

    +3s2 3p2 →   Si14

    +3s2 3p3 →   P
15

    +3s2 3p4 →   S
16

    +3s2 3p5 →   Cl17

    +3s2 3p6 →   Ar18

    [1s2 2s2 2p6 3s2 3p6]4s1 →   K
19

*29.23 The 
    

4 s subshell fills first , for potassium and calcium, before the 3d subshell starts to fill for

scandium through zinc. Thus, we would first suppose that     Ar[ ]3 44 2d s  would have lower energy
than     Ar[ ]3 45 1d s . But the latter has more unpaired spins, six instead of four, and Hund’s rule
suggests that this could give the latter configuration lower energy. In fact it must, for     Ar[ ]3 45 1d s
is the ground state for chromium.

29.24 (a) For electron one and also for electron two, n = 3 and   l = 1. The possible states are listed here in
columns giving the other quantum numbers:

electron     ml 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

one
  ms   

1
2   

1
2   

1
2   

1
2   

1
2   

− 1
2   

− 1
2   

− 1
2   

− 1
2   

− 1
2   

1
2   

1
2   

1
2   

1
2   

1
2

electron     ml 1 0 0 –1 –1 1 0 0 –1 –1 1 1 0 –1 –1

two
  ms   

− 1
2   

1
2   

− 1
2   

1
2   

− 1
2   

1
2   

1
2   

− 1
2   

1
2   

− 1
2   

1
2   

− 1
2   

− 1
2   

1
2   

− 1
2

electron     ml 0 0 0 0 0 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1

one
  ms   

− 1
2   

− 1
2   

− 1
2   

− 1
2   

− 1
2   

1
2   

1
2   

1
2   

1
2   

1
2   

− 1
2   

− 1
2   

− 1
2   

− 1
2   

− 1
2

electron     ml 1 1 0 –1 –1 1 1 0 0 –1 1 1 0 0 –1

two
  ms   

1
2   

− 1
2   

1
2   

1
2   

− 1
2   

1
2   

− 1
2   

1
2   

− 1
2   

− 1
2   

1
2   

− 1
2   

1
2   

− 1
2   

1
2

There are thirty allowed states, since electron one can have any of three possible values for     ml for
both spin up and spin down, amounting to six states, and the second electron can have any of the
other five states.

(b) Were it not for the exclusion principle, there would be 
  

36  possible states, six for each electron
independently.
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*29.25
Shell K L M N

n 1 2 3 4

  l 0 0 1 0 1 2 0

    ml 0 0 1 0 – 1 0 1 0 – 1 2 1 0 – 1 – 2 0

  ms ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓
count 1  2 3 4 10 12 18 21 30 20

 He Be Ne Mg Ar Zn Ca

(a)
  

zinc  or  copper

(b)
    
1 2 2 3 3 4 32 2 6 2 6 2 10s s p s p s d or

    
1 2 2 3 3 4 32 2 6 2 6 1 10s s p s p s d

*29.26 In the table of electronic configurations in the text, or on a periodic table, we look for the element
whose last electron is in a 3p state and which has three electrons outside a closed shell. Its electron

configuration then ends in     3 32 1s p . The element is 
  

aluminum .

29.27 (a) n + l 1 2 3 4 5 6 7

subshell 1s 2s 2p , 3s 3p , 4s 3d , 4p , 5s 4d , 5p , 6s 4f , 5d , 6p , 7s

(b) Z = 15: Filled subshells:     1 2 2 3s s p s, , ,   
(12 electrons)

Valence subshell: 3 electrons in 3p subshell
Prediction: Valence = + 3 or – 5
Element is phosphorus, Valence = + 3 or – 5 (Prediction correct)

Z = 47: Filled subshells:     1 2 2 3 3 4 3 4 5s s p s p s d p s, , , , , , , ,        
(38 electrons)

Outer subshell: 9 electrons in 4d subshell
Prediction: Valence = – 1
Element is silver, (Prediction fails) Valence is + 1

Z = 86: Filled subshells:     1 2 2 3 3 4 3 4 5 4 5 6 4 5 6s s p s p s d p s d p s f d p, , , , , , , , , , , , , ,              
(86 electrons)

Prediction Outer subshell is full: inert gas
Element is radon, inert (Prediction correct)

29.28 Listing subshells in the order of filling, we have for element 110,

    1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6 6s2 4 f 14 5d10 6p6 7s2 5 f 14 6d8

In order of increasing principal quantum number, this is

    
1 2 2 3 3 3 4 4 4 4 5 5 5 5 6 6 6 72 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 8 2s s p s p d s p d f s p d f s p d s
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*29.29 In the ground state of sodium, the outermost electron is in an s state. This state is spherically
symmetric, so it generates no magnetic field by orbital motion, and has the same energy no matter
whether the electron is spin-up or spin-down. The energies of the states     3p ↑ and     3p ↓ above 3s
are     hf hc1 1= /λ  and     hc/λ2.

The energy difference is

    
2

1 1

1 2
µ

λ λBB hc= −






so

    

B
hc

B
= −






=

× ⋅( ) ×( )
×( ) ×

−
×







−

− − −2
1 1 6 63 10

2 9 27 10

1
588 995 10

1
589 592 101 2

3

24 9 9µ λ λ

.

. . .

4 8 J s 3 10  m/s

 J/T  m  m

  B =
  
18 4.  T

29.30 (a)
      

n m= = =3 0 0,  ,  l l

      
n m= = = −3 1 1 0 1,  ,  ,  ,  l l

For 
      

n m= = = − −3 2 2 1 0 1 2,  ,  ,  ,  ,  ,  l l

(b)   ψ 300 corresponds to 
    
E

Z E
n300

2
0

2

2

2
2 13 6

3
= − = − ( ) =.

  
−6 05.  eV

  ψ ψ ψ31 1 310 311− ,  ,   have the same energy since n is the same.

  ψ ψ ψ ψ ψ32 2 32 1 320 321 322− −,  ,  ,  ,   have the same energy since n is the same.

All states are degenerate.

29.31
  
E

hc
e V= = ∆

λ
:

    

6 626 10 3 00 10

10 0 10
1 60 10

34 8

9
19

. .

.
.

× ⋅( ) ×( )
×( ) = ×( )∆

−

−
− J s  m/s

 m
V

  ∆ =V
  
124 V

*29.32 Some electrons can give all their kinetic energy   K e Ve = ∆  to the creation of a single photon of x-
radiation, with

  
h f

hc
e V= = ∆

λ

    

λ =
∆

=
× ⋅( ) ×( )

×( )∆ =
−

−
hc

e V V

6 6261 10 9979

1 6022 10

34

19

.  J s 2 10  m/s

.  C

8.

    

1240 nm V⋅
∆V
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29.33 Following Example 29.8
    
Eγ = −( ) ( ) = × = × −3

4
2 4 1542 1 13 6 1 71 10 2 74 10. . .   eV  eV J

    f = ×4 14 1018.  Hz

and λ =
  

0 0725.  nm

29.34 The Kβ x-rays are emitted when there is a vacancy in the (n = 1) K shell and an electron from the
(n = 3) M shell falls down to fill it. Then this electron is shielded by nine electrons originally and
by one in its final state.

    

hc Z Z
λ

= − −( ) + −( )13 6 9
3

13 6 1
1

2

2

2

2
. .

 eV  eV

    

6 626 10 3 00 10

0 152 10 1 60 10
13 6

9
18

9
81
9

2 1
34 8

9 19

2
2

. .

. .
.

× ⋅( ) ×( )
×( ) ×( ) = ( ) − + − + − +








−

− −

 J s  m/s

 m  J/eV
 eV

Z Z
Z Z

    
8 17 10 13 6

8
9

83
2

. .× = ( ) −






 eV  eV

Z

so
    
601

8
9

8
2

= −Z

and     Z = 26
  

Iron

*29.35 (a) Suppose the electron in the M shell is shielded from the nucleus by two K plus seven L electrons.
Then its energy is

  

−( ) −( ) = −13.6 eV 83 9
3

8.27 keV
2

2

Suppose, after it has fallen into the vacancy in the L shell, it is shielded by just two K-shell
electrons. Then its energy is

  

−( ) −( ) = −13.6 eV 83 2
2

22.3 keV
2

2

Thus the electron’s energy loss is the photon energy:   (22 3 8.27) keV =. −  
  
14 0.  keV

(b)
  
∆E = hc

λ

so
  

λ =
6.6 6 10 J s (3 00 10 m/s)

14 0 10 1.6 10 J
=

34 8

3 19

2

0

× ⋅( ) ×

×( ) ×( )
−

−

.

.   
8 85 10 11. × − m
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29.36
    
E

hc= = ⋅ = ⋅
λ λ λ

1240 1 240 eV nm  keV nm.

For   λ1 0 0185= .  nm,     E = 67 11.  keV

  λ2 0 0209= .  nm,     E = 59 4.  keV

  λ3 0 0215= .  nm,     E = 57 7.  keV

The ionization energy for the K shell is 69.5 keV, so the ionization energies for the other shells are:

  
L shell  keV= 11 8.

  
M shell  keV= 10 1.

  
N shell  keV= 2 39.

29.37 (a) The configuration we may model as 
  

SN  
  

NS   has higher energy than 
  

SN  
  

SN . The higher

energy state has antiparallel magnetic moments, so it has 
  

parallel spins  of the oppositely
charged particles.

(b)
    
E

hc= = × =−
λ

9 42 10 25.  J
  

5 89.  eVµ

(c)
      
∆ ∆ ≈E t

h

2
so

    

∆ ≈ × ⋅

( ) ×( ) ×





=

−

−E
1 055 10

3 16 10

1 0034

7 19
.

.

. J s

2 10  yr  s/yr

 eV
1.60 10  J7   

1 04 10 30. × − eV

*29.38 Section 24.3 says
    
f f

v c
v c

a

a
observer source= +

−
1
1

/
/

The velocity of approach,   va , is the negative of the velocity of mutual recession:   v va = − .

Then,
    

c c v c
v c′

= −
+λ λ

1
1

/
/

and
    

′ = +
−

λ λ 1
1

v c
v c

/
/

29.39 (a)
    
′ = +

−
λ λ 1

1
v c
v c

/
/     

510 434
1
1

 nm  nm= +
−

v c
v c

/
/

    
1 18

1
1

1 3812.
/
/

.= +
−

=v c
v c

    
1 1 381 1 381+ = −v

c
v
c

. .
    
2 38 0 381. .

v
c
=

    

v
c
= 0 160. or   v =

    
0 160. c   = ×4 80 107.  m/s

(b)   v HR= :
    
R

v
H

= = ×
× ⋅

=−
4 80 10

17 10

7

3
.  m/s

 m/s ly   
2 82 109. × ly
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29.40 (a) The energy difference between these two states is equal to the energy that is absorbed.

Thus,
    
E E E= − = −( ) − −( ) = =2 1

13 6
4

13 6
1

10 2
. .

.
 eV  eV

 eV
  

1 63 10 18. × − J

(b)
    
E k T= 3

2 B or

    

T
E
k

= =
×( )

×( ) =
−

−
2
3

2 1 63 10

3 1 38 10

18

23
B

 J

 J/K

.

.   
7 88 104. × K

29.41
    
r rP r dr

r
a

e drav
r a= =







∞ −∞
∫ ∫( ) ( )/
0

3

0
3

2
0

4
0

Make a change of variables with 
    

2

0

r
a

x= and
    
dr = a0

2
dx

Then
    
r

a
x e dxav

x= −∞
∫0 3
04     

= − + − + − −( )[ ] =− − −
∞a

x e x e e xx x x0 3 2

04
3 2 1( )

    
3
2 0a

*29.42 The fermions are described by the exclusion principle. Two of them, one spin-up and one spin-
down, will be in the ground energy level, with

    
d LNN = = 1

2
λ ,    

    
λ = =2L

h
p

,    and    
    
p

h
L

=
2     

K mv
p
m

h
mL

= = =1
2

2
2 2

22 8

The third must be in the next higher level, with

    
d

L
NN = =

2 2
λ

,      λ = L ,    and    
  
p

h
L

=
    
K

p
m

h
mL

= =
2 2

22 2

The total energy is then
    

h
mL

h
mL

h
mL

2

2

2

2

2

28 8 2
+ + =

    

3
4

2

2
h

mL

*29.43 The wave function for the 2s state is given by Eq. 29.8:
    
ψ

π2
0

3 2

0

21
4 2

1
2 0

s
r ar

a
r
a

e( ) = 





−










−
/

/

(a) Taking     r a= = × −
0

100 529 10.  m

we find
    
ψ

π2 0 10

3 2
1 21

4 2
1

0 529 10
2 1s a e( ) =

×




 −[ ] =−

−

.

/
/

 m   
1 57 1014. × − m 3/2

(b)
    
ψ 2 0

2 14 3 2 2
1 57 10s a( ) = ×( ) =−. / m

  
2 47 1028 3. × − m

(c) Using Equation 29.5 and the results to (b) gives 
    
P a a as s2 0 0

2
2 0

2
4( ) = ( ) =π ψ

  
8 69 108 1. × − m
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*29.44 From Figure 29.12, a typical ionization energy is 8 eV. For internal energy to ionize most of the
atoms we require

    
3
2

8k TB =  eV :

    

T =
× ×( )

×( )
−

−

2 8 1 60 10

3 1 38 10

19

23

.

.

 J

 J/K
 
  

~ between 10 K and 10 K4 5

29.45 We use 
    
ψ 2

1
4 0

3 1 2

0

22 2 0
s

r ar a
r
a

e( )
/ /= ( ) −







− −π

By Equation 29.6,
    
P r r

r
a

r
a

e r a( ) /= =






−







−4 22 2 1
8

2

0
3

0

2
0π ψ

(a)

    

dP r
dr

r
a

r
a

r
a a

r
a

r
a

r
a a

e r a( ) /= −






−






−





− −

























=−1
8

0
3

0

2 2

0
3

0 0

2

0
3

0

2

0

2
2

2 1
2 2

1
00

or
    

1
8

0
3

0 0 0 0 0
2 2 2

2
2 00

r
a

r
a

r
a

r
a

r
a

r
a

e r a





−






−





− − −















 =− /

The roots of  
    

dP
dr

= 0    at        r = 0,        r = 2a0    and       r = ∞     are minima with     P r( ) = 0

Therefore we require [ . . . . . ] =     4 − 6r / a0( ) + r / a0( )2 = 0

with solutions
    
r a= ±( )3 5 0

We substitute the last two roots into P(r) to determine the most probable value:

When 
    
r a a= −( ) =3 5 0 76390 0. ,     P r a( ) = 0 0519 0. /

When 
    
r a a= +( ) =3 5 5 2360 0. ,     P r a( ) = 0 191 0. /

Therefore, the most probable value of r is
    
3 5 0+( ) =a

    
5 236 0. a

(b)
    

P r dr
r
a

r
a

e drr a( ) /
0

1
8

2

0
3

0

2

0
2 0

∞ −∞
∫ ∫=







−







Let
    
u

r
a

=
0

,     dr a du= 0 ,

    
P r dr u u u e dru( ) ( )

0

1
8

2 2
0

4 4
∞ −∞
∫ ∫= − +

    
= − + −∞
∫ 1

8
4 3 2

0
4 4( )u u u e duu

    
= − + + + =− ∞1

8
4 2

0
4 8 8 1( )u u u e u

  
This is as desired .
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29.46
    
∆ ∆

z
at F

m
t

dB dz
m

x
v

z z z= =






= ( ) 





2
1
2

0

2

0

2

2 2
µ

and
      
µz = eh

2me

      

dB
d z

m z v m
x e

z e= 2 20
2

2
( ) ( )∆
∆ h

  

=
( ) ×( )( )( ) × ×( )

( ) ×( ) × ⋅( )
− − −

− −

2 108 1 66 10 10 10 2 9 11 10

1 00 1 60 10 1 05 10

27 3 4 2 2 31

2 19 34

. / .

. . .

    

  

kg m m s kg

 m C J s

  

dB
d z

z =
  

0 389.  T/m

29.47 With one vacancy in the K shell, excess energy

    
∆E ≈ −(Z − 1)2(13.6 eV)

1
22 − 1

12




 = 5.40 keV

We suppose the outermost 4s electron is shielded by 22 electrons inside its orbit:

    
Eionization ≈ 22(13.6 eV)

42 = 3.40 eV

Note the experimental ionization energy is 6.76 eV.

    K = ∆E − Eionization ≈
  

5 39.  keV

29.48
    
E

hc
E= = ⋅ = ∆

λ λ
1240 eV nm

  λ1 310=  nm, so     ∆ =E1 4 00.  eV

  λ2 400=  nm,     ∆ =E2 3 10.  eV

  λ3 1378=  nm ,     ∆ =E3 0 900.  eV

and the ionization energy = 4.10 eV

The energy level diagram having the fewest levels and consistent with these energies is shown at
the right.
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29.49 (a) One molecule’s share of volume

Al:
    
V = mass per molecule

density
  
=

×






×





−27 0

6 02 10
1 00 10

2 7023

6.
.

.
.

 g/mol
 molecules/mol

 m
 g

3

  = × −1 66 10 29.  m3

    V
3 =

  
2 55 10 1010 1. ~× − −m nm

U:
    
V = 238 g

6.02 × 1023  molecules






1.00 × 10−6  m3

18.9 g







= 2.09 × 10−29  m3

    V
3 =

  
2 76 10 1010 1. ~× − −m nm

(b) The outermost electron in any atom sees the nuclear charge screened by all the electrons below it.
If we can visualize a single outermost electron, it moves in the electric field of net charge,

    + − − = +Ze Z e e( )1 , the charge of a single proton, as felt by the electron in hydrogen. So the Bohr
radius sets the scale for the outside diameter of every atom. An innermost electron, on the other
hand, sees the nuclear charge unscreened, and the scale size of its (K-shell) orbit is     a0 Z.

29.50
    
P

r
a

e dr z e dzr a
a

z= =−∞ −∞
∫ ∫

4 2

0
3

2
2 50

1
2

2
5 00

0

0. .
 where 

    
z

r
a

≡ 2

0

    
P z z e z= − + + − ∞1

2
2

5 00
2 2( )

.     
= − + + +( ) = 



( ) =−1

2
1
2

50 25 0 10 0 2 00
37
2

0 00674[ ] . . . .e
  

0 125.

29.51 (a) For a classical atom, the centripetal acceleration is

      
a

v
r

e
r me

= =
2

0

2

2
1

4π e

      
E

e
r

m v e
r

e= − + = −
2

0

2 2

04 2 8π πe e

so
      

dE
dt

e
r

dr
dt

e a
c

e
c

e
r me

= = − = − 





2

0
2

0

2 2

3

2

0
3

2

0
2

2

8
1

6 6 4π π π πe e e e

Therefore,
      

dr
dt

= − e4

12π 2e 0
2r 2me

2c3

(b)
      
− =

× −∫ ∫2 00 10

0 2 2 2 2 3 4
010 12

. m 0π e r m c dr e dte
T

      

12π 2e0
2me

2c3

e4
r 3

3
0

2.00 × 10−10

= T =
  

8 46 10 10. × − s

Since atoms last a lot longer than 0.8 ns, the classical laws (fortunately!) do not hold for systems of
atomic size.
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*29.52     ∆E B h f= =2µB

so
    
2 9.27 10  J/T 0.350 T 6.626 10  J s24 34×( )( ) = × ⋅( )− − f

and   f =
  

9 79 109. × Hz

29.53
    
ψ =







−






= −






− − −1
4

1 2

0

3 2

0

2

0

22
1

2 20 0( ) /
/

/ /π
a

r
a

e A
r
a

er a r a

    

∂
∂

=






−







−2

2

2

0
2

3
2

0

0

4
ψ
r

Ae
a

r
a

r a/

Substituting into Schrödinger’s equation and dividing by ψ,

      

1
a0

2
1
2
− r

4a0






= − 2m

h2 [E −U] 2 − r
a0







Now

      

E U
ma

k e a m

m h ma
− = ( ) −

( )( )
( ) = −







1
4

2

0
2

2
0

2

2
1
4

2

0
22

4

2
h h h

and
    

1
4

1
4

2
0

2
1
2

0 0
2

0a
r
a a

r
a







−





= −







  ∴  ψ  is a solution.

*29.54 (a) Suppose the atoms move in the   +x  direction. The absorption of a photon by an atom is a
completely inelastic collision, described by

    
mvi i + h

λ
−i( ) = mvf i so

  
vf − vi = − h

mλ

This happens promptly every time an atom has fallen back into the ground state, so it happens
every     10 8− = s ∆ t . Then,

    

a
v v

t
h

m t
f i=
−

= − − × ⋅

( ) ×( )( )
−

− − −∆ ∆λ
~

.
~

6 626 10

500 10 10

34

9 8
 J s

10  kg  m  s25   
−106 m/s2

(b) With constant average acceleration,

    
v v a xf i
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29.55
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29.56 As n approaches infinity, we have f approaching
    

2 22 2 4

3 3
π mk e

h n
e

The classical frequency is
    
f

v
r

k e
m r
e= =

2
1

2
12

3 2π π /

 where  
    
r

n h
mk ee

=
2 2

24π

Using this equation to eliminate r from the expression for f,
    
f

mk e
h n

e= 2 22 2 4

3 3
π

*29.57 (a)

      

∆ = =
× × ⋅( )( )

×( )
⋅

⋅ ⋅






⋅
⋅





 = × =

− −

−
−E

e B
me

h 1 60 10 6 63 10 5 26

2 9 11 10
9 75 10

19 34

31
23

. . .

.
.

 C  J s  T

 kg

N s
T C m

kg m
N s

 J2π   
609 eVµ

(b)
    
k TB = ×( ) ×( ) = × =− − −1 38 10 1 10 1023 3 24. . J/K 80 10  K  J

  
6 90.  eVµ

(c)
    
f

E
h

= ∆ = ×
× ⋅

=
−

−
9 75 10

6 63 10

23

34
.

.
 J

 J s   
1 47 1011. × Hz

    
λ = = ×

×
=c

f
3 10

1 47 10

8

11
 m/s

 Hz.   
2 04 10 3. × − m
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ANSWERS TO EVEN NUMBERED PROBLEMS

  2. (a) 1.89 eV, 656 nm (b) 3.40 eV, 365 nm

  4. (a) See the solution (b) 0.179 nm

6. (a) n l     ml   ms (b) n l     ml   ms
3 2 2 1/2 3 1 1 1/2
3 2 2 –1/2 3 1 1 –1/2
3 2 1 1/2 3 1 0 1/2
3 2 1 –1/2 3 1 0 –1/2
3 2 0 1/2 3 1 –1 1/2
3 2 0 –1/2 3 1 –1 –1/2
3 2 –1 1/2
3 2 –1 –1/2
3 2 –2 1/2
3 2 –2 –1/2

  8. See the solution

10.     4 0a

12. (a)     6h (b)     12h

14.     3h

16.       L = 6h;         Lz = −2h, –  h, 0,   h, 2  h; θ = 145°, 114°, 90.0°, 65.9°, and 35.3°

18. (a)   3 99 1017. ×  kg/m3 (b) 81.7 am
(c) 1.77 Tm/s (d)     5 91 103. × c

20. (a)   2 52 1074. × (b)   2 10 10 41. × −  J

22. See the solution

24. (a) See the solution (b) 36

26. Aluminum

28.     1 2 2 3 3 3 4 4 4 4 5 5 5 5 6 6 6 72 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 8 2s s p s p d s p d f s p d f s p d s
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30. (a)   l = 0 and     ml = 0; or   l = 1 and     ml = –1, 0, or 1;  or   l = 2 and     ml = –2, –1, 0, 1, or 2
(b) –6.05 eV

32. See the solution

34. Iron

36. L shell = 11.8 keV;    M shell = 10.1 keV;   N shell = 2.39 keV;  see the solution

38. See the solution

40. (a)   1 63 10 18. × −  J (b)   7 88 104. ×  K

42.     3 42 2h mL/

44. between   104  K and   105 K

46. 0.389 T/m

48.

50. 0.125

52. 9.79 GHz

54. (a)   ~ −106  m/s2 (b) ~ 1 m

56.     4
2 2 4 3 3π m k e h ne e /  ; see the solution


