§24 1 (b), 2 (b), 3, 4, 6

Exercise 24.1) In each case, determine whether the system $A\vec{X} = \vec{b}$ is solvable and, if so, how many arbitrary variables will appear in the solution set.

b.)
$$A = \begin{bmatrix} 1 & -1 & -1 & -1 \\ 1 & 1 & 2 & 1 \\ 2 & 0 & 3 & 2 \end{bmatrix} \quad \vec{b} = \begin{bmatrix} 2 \\ 3 \\ 5 \end{bmatrix}$$

$$A^{+} = \begin{bmatrix} 1 & -1 & -1 & -1 & 2 \\ 1 & 1 & 2 & 1 & 3 \\ 2 & 0 & 3 & 2 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & -1 & -1 & 2 \\ 0 & 2 & 1 & 0 & 1 \\ 0 & 2 & 1 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & -1 & -1 & 2 \\ 0 & 1 & 1/2 & 0 & 1/2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3/2 & 1 & 5/2 \\ 0 & 1 & 1/2 & 0 & 1/2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = A^{+}_{row}, \text{ therefore } \mathbf{r}(\mathbf{A}^{+}) = 2$$

$$A = \begin{bmatrix} 1 & -1 & -1 & -1 \\ 1 & 1 & 2 & 1 \\ 2 & 0 & 3 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & -1 & -1 \\ 0 & 2 & 1 & 0 \\ 0 & 2 & 2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & -1 & -1 \\ 0 & 1 & 1/2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3/2 & 1 \\ 0 & 1 & 1/2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3/2 & 1 \\ 0 & 1 & 1/2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3/2 & 1 \\ 0 & 1 & 1/2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3/2 & 1 \\ 0 & 1 & 1/2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3/2 & 1 \\ 0 & 1 & 1/2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3/2 & 1 \\ 0 & 1 & 1/2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3/2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3/2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3/2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3/2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3/2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3/2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3/2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3/2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3/2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3/2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3/2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3/2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3/2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3/2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3/2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3/2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3/2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3/2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3/2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3/2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3/2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3/2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3/2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3/2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3/2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3/2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3/2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3/2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3/2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 3/2 &$$

- ✓ Since: $r(A)=2=r(A^{+})$ it <u>IS SOLVABLE</u>,
- ✓ Arbitrary variables : $\dim N(A) = n r(A) = 4 2 = 2$

Exercise 24.2) In each case, solve the system $A\vec{X} = \vec{b}$, leaving your solution in the form of Theorem 24.4.

b.)
$$A = \begin{bmatrix} 2 & 3 & -1 \\ 1 & 1 & 1 \\ 1 & 4 & -2 \end{bmatrix} \quad \vec{b} = \begin{bmatrix} 6 \\ 2 \\ 3 \end{bmatrix}$$

$$A^{+} = \begin{bmatrix} 2 & 3 & -1 & 6 \\ 1 & 1 & 1 & 2 \\ 1 & 4 & -2 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 & -3 & 2 \\ 1 & 1 & 1 & 2 \\ 0 & 3 & -3 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 4 & 0 \\ 0 & 1 & -3 & 2 \\ 0 & 0 & 6 & -5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 4 & 0 \\ 0 & 1 & -3 & 2 \\ 0 & 0 & 1 & -\frac{5}{6} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & \frac{10}{3} \\ 0 & 1 & 0 & -\frac{1}{2} \\ 0 & 0 & 1 & -\frac{5}{6} \end{bmatrix}$$

$$\vec{X} = \begin{bmatrix} 10/3 \\ -1/2 \\ -5/6 \end{bmatrix}$$

Exercise 24.3) Suppose \vec{X} and \vec{Y} are solutions of the non-homogeneous system $A\vec{X} = \vec{b}$. Show $\vec{Z} = w_1\vec{X} + w_2\vec{Y}$ is a solution of $A\vec{X} = \vec{b}$ if and only if $w_1 + w_2 = 1$ (convex property).

(ANSWER IN BACK OF THE TEXTBOOK)

(\Rightarrow) Suppose $\vec{Z} = w_1 \vec{X} + w_2 \vec{Y}$ is a solution of $A\vec{V} = \vec{b}$.

Then
$$\vec{b} = A\vec{Z} = A(w_1\vec{X} + w_2\vec{Z}) = w_1A\vec{X} + w_2A\vec{Z} = w_1\vec{b} + w_2\vec{b}$$
.

Thus, $\vec{b} = (w_1 + w_2)\vec{b} = \vec{0}$

Since $\vec{b} \neq \vec{0}$ then $w_1 + w_2 = 1$.

(\Leftarrow) Suppose $w_1 + w_2 = 1$

Then $A\vec{Z} = A(w_1\vec{X} + w_2\vec{Y}) = w_1A\vec{X} + w_2A\vec{Y} = w_1\vec{b} + w_2\vec{b} = (w_1 + w_2)\vec{b} = 1\vec{b} = \vec{b}$.

Thus, \vec{Z} is a solution.

Exercise 24.4) If $S \subset \mathbb{R}^m$ and $\vec{X} \in \mathbb{R}^m$, we will say that \vec{X} is orthogonal to S (notation: $\vec{X} \perp S$) if $\vec{X} \bullet \vec{Y} = 0$ for every \vec{Y} in S. Further, for $\mathcal{T} \subset \mathbb{R}^m$ we say $\mathcal{T} \perp S$ if $\vec{X} \perp S$ for all \vec{X} in \mathcal{T} . For all parts below, assume A is an $m \times n$ matrix.

Before we address the questions, let look at these notes:

E vector space E_1, E_2 subspace of E

 $E_1 \perp E_2$ is orthogonal if $\vec{X}_1 \perp \vec{X}_2 = 0$ for all $X_1 \in E_1$ and $X_2 \in E_2$ $E_1 \cap E_2 = \{0\}$ $\vec{X} \in E_1 \cap E_2$ $\vec{X} = (X_1, \dots, X_2)$ $E_1 \perp E_2 \Rightarrow \vec{X}_1 \perp \vec{X}_2 = 0$

$$\sum_{k=1}^{n} X_{k}^{2} = 0 X_{k} = 0 \text{for k=1,...,n}$$

a.) Prove that if $\vec{Y} \perp C(A)$, then $\vec{Y} \in N(A^T)$.

Answer: $\mathbf{A}^{\mathrm{T}} \ \vec{Y} = \vec{0}$ equivalent to $\forall_{\mathbf{I}} \ A_{ei} \bullet \vec{Y} = 0$

b.) Prove $C(A) \perp N(A^T)$.

Answer: $\vec{X} \in C(A)$ and $\vec{Y} \in N(A^T)$ (see answer (a) as the 1st half of this proof) $\vec{X} \cdot \vec{Y} = 0$

c.) Use Exercise 22.13 to show that dim $N(A^T) + \dim_{\mathbb{C}} C(A) = m$.

Answer: Since dimC(A)=dimR(A) then dimC(A^T) Therefore = dimN(A^T) + dim C(A) = m

d.) If B_1 is a basis for C(A) and B_2 is a basis for $N(A^T)$, prove $B_1 \cup B_2$ is a basis for \Re^m .

Section 24

Sample Homework

page: 3 of 3

Date: March 17, 2004

Answer: Show that $B_1 \cup B_2$ is a basis for \Re^m will be \Re^m but also need to be Linearly Independent. (Look to answer (c) for part of the explanation). $N(A^T) \perp C(A)$

e.) Prove that if $\vec{X} \perp N(A^T)$, then $\vec{X} \in C(A)$.

Answer: B_1 is a basis for C(A) $B_1 = \{x_1,...,x_n\}$

 B_2 is a basis for $N(A^T)$ $B_2 = \{ y_1,...,y_n \}$

 $\vec{X} = \alpha x_1, \dots, \alpha x_n \qquad B_1 Y_1 + \dots + B_k Y_k \neq 0$