Complete set of Eigenvectors. $\lambda_1,...,\lambda_k$ Eigenvalues. A is an n x n matrix.

 $B_1,...,B_k$ bases $N(A-\lambda_i I)$ $B=B_1\cup...\cup B_k\subset R^n$ $Sp\ B\subset R^n$

If Span $B = R^n$, then we call B the full set of Eigenvectors. B had n vectors.

Example where we have a full set of Eigenvectors:

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} \quad C(A) = |A - \lambda I| \quad \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 0 & 0 \\ 0 & 3 - \lambda & 0 \\ 0 & 0 & 3 - \lambda \end{bmatrix}$$

 $\lambda_1 = 2$, $\lambda_2 = 3$, $\lambda_3 = 3$ So $\lambda = 2$ has a multiplicity of one and $\lambda = 3$ has a multiplicity of 2.

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} * \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2x \\ 3y \\ 3z \end{bmatrix}$$
 diag{2,3,3}

$$N(A-2I) = \operatorname{Sp} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right\} = B_1 \quad \text{also} \quad N(A-3I) = \left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\} = B_2$$

$$\operatorname{Sp}\{B_1 \cup B_2\} = R^n$$

THEOREM

A has a full set of eigenvectors If and Only If (IFF) A is similar to a diagonal matrix.

PROOF (⇒) (the 1st direction)

A has a full set of eigenvectors. $V_1,...,V_n$

We have to find a non-singular matrix P such that $P^{-1}AP$ is a diagonal matrix.

Define: $P = [V_1, ..., V_n]$ (P is non-singular)

$$\begin{split} \mathbf{I} &= P^{-1}P = P^{-1}\left[V_{1},...,V_{n}\right] = \left[P^{-1}V_{1},...,P^{-1}V_{n}\right] \quad \text{ for } \mathbf{K} = 1, ..., \mathbf{n} \quad P^{-1}V_{k} = e_{k} \\ P^{-1}AP &= P^{-1}A[V_{1},...,V_{n}] = P^{-1}[\lambda_{1}V_{1},\lambda_{2}V_{2},...,\lambda_{n}V_{n}] = \left[P^{-1}\lambda_{1}V_{1},P^{-1}\lambda_{2}V_{2},...,P^{-1}\lambda_{n}V_{n}\right] = \\ \left[\lambda_{1}P^{-1}V_{1},...,\lambda_{n}P^{-1}V_{n}\right] &= \left[\lambda_{1}e_{1},...,\lambda_{n}e_{n}\right] = \operatorname{diag}\left\{\lambda_{1},...,\lambda_{n}\right\} \end{split}$$

PROOF ((the other direction)

 $PAP^{-1} = \text{diag} \{\lambda_1, ..., \lambda_n\} = B$ A and B have the same eigenvalues. Also, the geometric multiplicity is the same for each eigenvalue. $\dim(N(A-\lambda I)) = \dim(N(B-\lambda I))$. The complete set of eigenvalues has n elements. (A full set). Full set spans full space.

EXAMPLE:

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & 0 \\ -1 & -1 & 3 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 0 \\ 0 & 1 - \lambda & 0 \\ -1 & -1 & 3 - \lambda \end{bmatrix} = 0$$

 $(3-\lambda)^*(2-\lambda)^*(1-\lambda)=0$ Eigenvalues are $\lambda=1, \lambda=2, \lambda=3$

when
$$\lambda = 1$$
 then
$$\begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & 0 \\ -1 & -1 & 3 \end{bmatrix} - 1 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ -1 & -1 & 2 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ -1 & -1 & 2 \end{bmatrix} * \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \vec{0}$$
$$\begin{cases} x + y = 0 \Rightarrow x = -y \\ -x - y + 2z = 0 \end{cases}$$
$$\begin{cases} x + y = 0 \Rightarrow x = -y \\ -x - y + 2z = 0 \end{cases}$$

when
$$\lambda = 2$$
 then
$$\begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & 0 \\ -1 & -1 & 3 \end{bmatrix} - 2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -1 & 0 \\ -1 & -1 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & -1 & 0 \\ -1 & -1 & 1 \end{bmatrix} * \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \vec{0} \qquad \begin{cases} y = 0 \\ -y = 0 \\ -x - y + z = 0 \end{cases}$$
$$V_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

when
$$\lambda = 3$$
 then
$$\begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & 0 \\ -1 & -1 & 3 \end{bmatrix} - 3 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -2 & 0 \\ -1 & -1 & 0 \end{bmatrix}$$
$$\begin{bmatrix} -1 & 1 & 0 \\ 0 & -2 & 0 \\ -1 & -1 & 0 \end{bmatrix} * \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \vec{0} \qquad \begin{cases} -x + y = 0 \\ -2y = 0 \\ -x - y = 0 \end{cases}$$
$$V_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Therefore P equals these vectors $\begin{vmatrix} 1 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 1 & 1 \end{vmatrix}$ and thus $P^{-1}AP = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{vmatrix}$