PREF	SECTION SC	DATE
 	\	
	PREF	PREF SECTION SC

EXPERIMENT 31: RELATIVE ACTIVITY OF METAL IONS

Equipment: 3 test tubes, rack, gloves

Materials: 15 mL Cu⁺²_(eq), 15 mL Pb⁺²_(eq), 15 mL Ag⁺_(eq), 3 strips each of Cu, Pb and Zn, sand paper

In this experiment you will learn how Table N in the Reference Tables was set up.

A. Pour about 1 inch (25 mm), 5 mL of Cu⁺² ion solution into a clean test tube (label it #1), 5 mL of Pb⁺² ion solution into another (label it #2) and 5 mL Ag⁺_(sq) ion solution to a third (label it #3). Add a strip of polished Zn to each test tube.

Do not allow the solutions to completely cover the zinc strip. After 4 minutes, examine each Zn strip.

- 1. In which solutions do you find deposits on the Zn strip?
- 2. Identify the solid deposited and record your observation in the table below. If there was no deposit write none.
- 3. For the reaction occurring in test tube #1, write an equation showing how copper ion changes to copper metal. (Reduction half reaction)
- 4. Where did the electrons used in the reduction of copper ion come from?

 Write an equation to illustrate your answer. (Oxidation half reaction)
- 5. Combine the equations you wrote above to obtain a net redox equation for the reaction which

what is the spectator ion? _____ Why is it not included in the net redox equation?

- 6. Use this information to fill in the table below.
- B. Apply 1 through 6 above to the reactions in test tubes 2 and 3. Enter your equations and observations in the Table of Results.
- C. Repeat procedure A substituting strips of Cu° for Zn° and test tubes containing solutions of Zn², Pb² and Ag. Enter your equations (if reactions took place) in the Table of Results.
- D. Repeat procedure A using strips of Pb in test tubes containing solutions of Cu⁺², and Zn⁺² and Ag⁺. Complete the Table of Results in cases where a reaction occurred.

SAFETY NOTE:BE SURE YOUR HANDS ARE THOROUGHLY WASHED BEFORE LEAVING THE LABORATORY!

SOL'N	METAL ADDED	METAL DEPOSITED	REDUCTION HALF-REACTION	OXIDATION HALF-REACTION	NET REDOX REACTION
Cu ⁺²	Zn				
Pb⁺²	Zn				
Ag⁺	Zn				
Zn ⁺²	Cu				
Pb ⁺²	Cu				
Ag⁺	Cu				
Zn ⁺²	Pb				
Cu ⁺²	Pb				
Ag⁺	Pb				

Tres	'AT	* TT 4	ATING	THE	DEC	STIT /	70
LΥ	м	/UZ	71 174/2		K.E.S	سال	10

	1.	Which metal ions can take electrons from Zn°?					
	2. '	Which metal ions can take electrons from Cu°?					
	3.	Which metal ions can take electrons from Pb°?					
	4.	Based on your answers to questions 1, 2, and 3 above, rank the metal ions Pb ⁺² , Cu ⁺² , and					
		Zn ⁺² in decreasing order of ability to take electrons (oxidizing agents).					
		How does your ranking compare with their relative order on Table N?					
SUI	OL!	ary questions					
	1.	When Zn is placed in a solution of HCl, $H_{2(g)}$ is produced. Use Table N to identify four metals which will not react with hydrochloric acid to produce hydrogen gas.					
	2.	The best taker of electrons (oxidizing agent) is and it is located at the					
		(top, bottom), (left, right) of the N Table.					
	3.	The best donor of electrons (reducing agent) is and is located at the					
		(top, bottom), (left, right) of the N Table.					
	4.	An ion or molecule on the left side of the N Table will react with any ion, atom, or molecule on					
		the right side if that particle is (above, below) it.					